1
|
Hambach L, Gallwas J, Gründker C. G-Protein-coupled Estrogen Receptor 1 (GPER1) Overexpression Affects Aggressiveness of Cervical Carcinoma Cells Depending on Histological Entity. Cancer Genomics Proteomics 2025; 22:397-414. [PMID: 40280720 PMCID: PMC12041873 DOI: 10.21873/cgp.20509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/AIM Cervical cancer (CC) is the fourth most common cancer in women worldwide. There are two main histological subtypes of CC: the more common cervical squamous cell carcinoma (CSCC) and the rarer cervical adenocarcinoma (CAC), which has a poorer prognosis. Unlike estrogen receptor (ER) α and ERβ, G-protein-coupled estrogen receptor 1 (GPER1) is recognized as a rapid mediator of cellular estrogenic action and tends to have tumor suppressive properties in CC. Since a clinical study showed that an elevated GPER1 expression is associated with a worse prognosis, we investigated the effects of stable GPER1 overexpression (GPER1-OE) on SiHa CSCC and HeLa CAC cells. MATERIALS AND METHODS SiHa CSCC and HeLa CAC cells with stable GPER1-OE were generated. GPER1-OE was tested by RT-qPCR, western blot and fluorescence-activated cell analysis (FACS). The effects of GPER1-OE on proliferation, migration, invasion, apoptosis and stem cell properties (colony and sphere formation) were then examined. RESULTS Successful GPER1-OE in SiHa CSCC and HeLa CAC cells was confirmed. The cell characterization experiments showed that SiHa CSCC cells with stable GPER1-OE had faster proliferation and migration, and increased stem cell properties with larger and more numerous colonies and larger tumor spheres. In HeLa CAC cells, on the other hand, GPER1-OE resulted in slower cell proliferation, migration and invasion, reduced colony formation and tumor sphere formation. An increased rate of apoptosis was also observed. CONCLUSION GPER1-OE resulted in a more aggressive tumor behavior of SiHa CSCC cells and a less aggressive tumor behavior of HeLa CAC cells, due to a different effect of GPER1 overexpression depending on the respective histological subtypes of CC. This underlines the need for personalized medicine and a precise differentiation of subtypes in CC-related research.
Collapse
Affiliation(s)
- Lena Hambach
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Hambach L, Gallwas J, Gründker C. Expression of "Hallmarks of Cancer" Genes in Cervical Carcinoma Is Differentially Affected by GPER1 Overexpression Depending on Histologic Entity. Cancer Genomics Proteomics 2025; 22:415-433. [PMID: 40280717 PMCID: PMC12041877 DOI: 10.21873/cgp.20510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/AIM Cervical cancer (CC) remains the fourth most common malignancy in women worldwide. Current treatments primarily consist of surgery and combined radiochemotherapy, while targeted therapies, as seen in other malignancies, remain underdeveloped. The G-protein-coupled estrogen receptor (GPER1) is implicated in various cancers and can differentially influence tumor behavior, though its precise role in CC remains unclear, with both tumor-promoting and tumor-suppressive effects reported. We previously explored the impact of stable GPER1 overexpression (OE) in CC cell lines, SiHa (cervical squamous cell carcinoma, CSCC) and HeLa (cervical adenocarcinoma, CAC), analyzing proliferation, migration, invasion, apoptosis, and stem cell properties. GPER1-OE enhanced tumorigenic properties in CSCC cells but demonstrated tumor-suppressive effects in CAC cells. To investigate the underlying mechanisms, we conducted next-generation sequencing (NGS) analyses, which supported our earlier findings. MATERIALS AND METHODS SiHa CSCC and HeLa CAC cells with stable GPER1-OE were generated. The effects of GPER1-OE on gene expression were then examined using next-generation sequencing (NGS) analyses. RESULTS In CSCC cells, GPER1-OE upregulated genes involved in tumorigenic pathways, including epithelial-to-mesenchymal transition (EMT), mTOR-C1, Myc, p53, hypoxia, and angiogenesis signaling. In CAC cells, however, GPER1-OE downregulated these pathways, along with additional pathways such as KRAS, Hedgehog, TNFα (via NFκB), and Wnt/Beta-Catenin signaling. CONCLUSION The results highlight the divergent roles of GPER1-OE in CC cells, promoting oncogenesis in CSCC while exerting tumor-suppressive effects in CAC by modulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Lena Hambach
- University Medical Center Göttingen, Department of Gynecology and Obstetrics, Göttingen, Germany
| | - Julia Gallwas
- University Medical Center Göttingen, Department of Gynecology and Obstetrics, Göttingen, Germany
| | - Carsten Gründker
- University Medical Center Göttingen, Department of Gynecology and Obstetrics, Göttingen, Germany
| |
Collapse
|
3
|
Girija NS, Neethi B, Sakthimanipriya L, Sinekha MA, Shanmugapriya P, Meenakumari R. In-Vitro Cytotoxic, Antiproliferative and Apoptotic Activity of Siddha Formulation Nandhi Mezhugu (NM) Against Hela Cell Line. Appl Biochem Biotechnol 2024; 196:1612-1622. [PMID: 37436547 DOI: 10.1007/s12010-023-04657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Cervical cancer is the most common cancer among women of childbearing age. Nandhi Mezhugu is a Siddha herbo-mineral drug widely used to treat cancer. Due to a lack of scientific evidence, the present study was intended to evaluate the anti cancer activity of Nandhi Mezhugu in the HeLa cell line. The cells were cultured in Dulbecco's modified Eagle medium, then treated with different concentrations of the test drug (10 to 200 µg/ml). The anti proliferative activity of the drug was evaluated using an MTT assay. Cell apoptosis and cell cycle were measured by flow cytometry and typical nuclear changes of apoptotic processes were observed under the microscope using the dual acridine orange/ethidium bromide fluorescent staining method. The study result showed that the percentage of cell viability decreased with an increase in the concentration of the test drug. The MTT assay data showed that the test drug Nandhi Mezhugu had the antiproliferative effect on cervical cancer cells with IC50 of 139.7 ± 13.87 µg/ml. Further studies such as flow cytometry and dual staining method also revealed the apoptotic effect of the test drug. Nandhi Mezhugu can be effectively used as an anti cancer formulation to treat cervical cancer. Thus, the current study brings forth scientific evidence for the efficacy of Nandhi Mezhugu against the HeLa cell line. Further studies will be needed to prove the promising efficacy of Nandhi Mezhugu.
Collapse
Affiliation(s)
- N Sabari Girija
- National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, 600047, India.
| | - B Neethi
- National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, 600047, India
| | - L Sakthimanipriya
- National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, 600047, India
| | - M A Sinekha
- National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, 600047, India
| | - P Shanmugapriya
- Department of Nanju Maruthuvam, National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, India
| | - R Meenakumari
- National Institute of Siddha, Tambaram Sanatorium, Chennai, Tamil Nadu, 600047, India
| |
Collapse
|
4
|
Cardona-Mendoza A, Fonseca-Benitez A, Buitrago DM, Coy-Barrera E, Perdomo SJ. Down-regulation of human papillomavirus E6 oncogene and antiproliferative effect of Schisandra chinensis and Pueraria lobata natural extracts on Hela cell line. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117225. [PMID: 37797877 DOI: 10.1016/j.jep.2023.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer is one of the most common malignancies in women that continues to be a public health problem worldwide. Human papillomavirus (HPV) infection is closely related as the causative agent of almost all cases of cervical cancer. Currently, there is no effective treatment for the persistence of HPV. Although vaccines have shown promising results in recent years, they are still a costly strategy for developing countries and have no therapeutic effect on existing infections, which is why the need arises to search for new strategies that can be used in treatment, suppressing oncogenic HPV and disease progression. Extracts of Schisandra Chinensis and Pueraria lobata have been used in traditional medicine, and it has been shown in recent years that some of their bioactive compounds have pharmacological, antioxidant, antitumor, apoptotic, and proliferation effects in HPV-positive cells. However, its mechanism of action has yet to be fully explored. AIM OF THE STUDY The following study aimed to determine the chemical composition, antioxidant activity, and potential antiproliferative and viral oncogene effects of natural extracts of S. chinensis and P. lobata on HPV-18 positive cervical cancer cells. MATERIALS AND METHODS The HPV-18-positive HeLa cells were treated for 24 and 48 h with the ethanolic extracts of S chinensis and P. lobata. Subsequently, cell viability was evaluated using the resazurin method, the effect on the cell cycle of the extracts (1.0, 10, and 100 μg/mL) was measured by flow cytometry, the gene of expression of the E6/E7, P53, BCL-2, and E2F-1 were determined by RT-PCR and the protein expression of p53, Ki-67, x|and Bcl-2 by immunohistochemistry. Additionally, the chemical characterization of the two extracts was carried out using LC-MS, and the total phenolics content (TPC), Total flavonoid content (TFC), and DPPH radical scavenging capacity were determined. Data were analyzed using the Mann-Whitney and Kruskal Wallis U test with GraphPad Prism 6 software. RESULTS The natural extracts of Schisandra chinensis and Pueraria lobata induced down-regulation of E6 HPV oncogene (p<0.05) and a strong up-regulation of P53 (p<0.05), E2F-1 (p<0.05), and Bcl-2 (p<0.05) gene expression. Simultaneously, the natural extracts tend to increase the p53 protein levels and arrest the cell cycle of HeLa in the G1/S phase (p<0.05). Investigated extracts were characterized by the occurrence of bioactive lignans and isoflavones in S. chinensis and P. lobata, respectively. CONCLUSION The extracts of S. chinensis and P. lobata within their chemical characterization mainly present lignan and isoflavone-type compounds, which are probably responsible for inhibiting the expression of the HPV E6 oncogene and inducing an increase in the expression of p53, Bcl -2 and E2F-1 producing cell cycle detection in S phase in HeLa cells. Therefore, these extracts are good candidates to continue studying their antiviral and antiproliferative potential in cells transformed by HPV.
Collapse
Affiliation(s)
- Andrés Cardona-Mendoza
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Angela Fonseca-Benitez
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Diana Marcela Buitrago
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia; Unidad de Investigación Básica Oral-UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Sandra J Perdomo
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia.
| |
Collapse
|
5
|
Liang C, Zhang C, Zhuo Y, Gong B, Xu W, Zhang G. 1,5,6-Trimethoxy-2,7-dihydroxyphenanthrene from Dendrobium officinale Exhibited Antitumor Activities for HeLa Cells. Int J Mol Sci 2023; 24:15375. [PMID: 37895055 PMCID: PMC10607032 DOI: 10.3390/ijms242015375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products are irreplaceable reservoirs for cancer treatments. In this study, 12 phenanthrene compounds were extracted and isolated from Dendrobium officinale. Each chemical structure was identified using comprehensive NMR analysis. All compounds were evaluated for their cytotoxic activities against five tumor cell lines, i.e., HeLa, MCF-7, SK-N-AS, Capan-2 and Hep G2. Compound 5, 1,5,6-trimethoxy-2,7-dihydroxyphenanthrene, displayed the most significant cytotoxic effect against HeLa and Hep G2 cells, with an IC50 of 0.42 and 0.20 μM. For Hela cells, further experiments demonstrated that compound 5 could obviously inhibit cell migration, block cell cycle in the G0/G1 phase and induce apoptosis. Expression measurements for p53 indicated that knock down of p53 by siRNA could mitigate the apoptosis induced by compound 5. Therefore, the compound 5 is a potential candidate drug for HeLa cells in cervical cancer.
Collapse
Affiliation(s)
- Chong Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Chonglun Zhang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Yinlin Zhuo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Baocheng Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Weizhuo Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Guogang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| |
Collapse
|
6
|
A standardized protocol for genetically stable artificial seed production of Ficus religiosa L. using ISSR fingerprinting. J Appl Genet 2023; 64:275-287. [PMID: 36882666 DOI: 10.1007/s13353-023-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023]
Abstract
Ficus religiosa LQuery. has several ornamental, medicinal, and economical applications. The in vivo propagation of this species has shown various limitations. Due to this reason, the present study efforts on genetically uniform artificial seed production from in vitro developed shoot tips of this species. The in vivo shoot tips were cultivated on Murashige and Skoog (MS) media containing different growth regulators. The maximum shoot response (93.67%) and the longest shoot length (3.85 cm) were exhibited with 0.5 mg L-1 6-furfuryl-amino purine (Kn), 0.2 mg L-1 benzyladenine (BA) and 0.1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) in combination. A treatment of 3% sodium alginate and 75 mM calcium chloride having a polymerization time of 15 min was exhibited to be superior for artificial seed production of these in vitro grown shoot tips. Artificial seed-derived micro shoots yielded the highest root response (94.44%) and roots per shoot (4.61) with 0.5 mg L-1 indole-3-butyric acid (IBA) and 0.1 mg L-1 BA in combination on ½-strength MS media. In comparison to 4 °C-kept artificial seeds, 24 °C-stored artificial seeds had superior germination potential across all storage times. The soil:organic manure (1:1) generated 90% of plantlet survival after 28 days of primary hardening than other mixtures tested. The secondary hardening displayed 92% of plant survival after 60 days. The banding patterns of ISSR analysis between the mother plant and hardened plants were discovered to be monomorphic. This methodology provides a promising and affordable approach to the large-scale plant production of this significant species.
Collapse
|
7
|
Zani AP, Zani CP, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Garcia FP, de Oliveira Silva S, Nakamura CV. Dibenzylideneacetone Induces Apoptosis in Cervical Cancer Cells through Ros-Mediated Mitochondrial Damage. Antioxidants (Basel) 2023; 12:antiox12020317. [PMID: 36829876 PMCID: PMC9952489 DOI: 10.3390/antiox12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer is a health problem among women worldwide. Considering the limitations of prevention and antineoplastic chemotherapy against cervical cancer, research is needed to discover new, more effective, and safe antitumor agents. In the present study, we investigated the in vitro cytotoxicity of a new synthetic dibenzylideneacetone derived from 1,5-diaryl-3-oxo-1,4-pentadienyl (A3K2A3) against cervical cancer cells immortalized by HPV 16 (SiHa), and 18 (HeLa) by MTT assay. Furthermore, we performed spectrofluorimetry, flow cytometry, and Western blot analyzes to explore the inhibitory mechanism of A3K2A3 in cervical cancer cells. A3K2A3 showed cytotoxic activity against both cell lines. Mitochondrial depolarization and reduction in intracellular ATP levels were observed, which may be dependent on the redox imbalance between increased ROS and reduced levels of the antioxidant defense. In addition, damage to the cell membrane and DNA, and effective blocking of cell division in the G2/M phase were detected, which possibly led to the induction of apoptosis. This result was further confirmed by the upregulation of apoptosis-related proteins Bax, cytochrome C, and caspases 9 and 3. Our results provided the first evidence that A3K2A3 contributes to the suppression of cervical cancer in vitro, showing promise as a possible alternative for the treatment of this cancer.
Collapse
Affiliation(s)
- Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
| | - Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
| | - Zia Ud Din
- LaBioMMi, Department of Chemistry, Federal University of São Carlos, CP 676, São Carlos CEP 13565-905, SP, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Department of Chemistry, Federal University of São Carlos, CP 676, São Carlos CEP 13565-905, SP, Brazil
| | - Tânia Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
| | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, PR, Brazil
- Correspondence: ; Tel.: +55-(044)-3011-5012; Fax: +55-(044)-3011-5046
| |
Collapse
|
8
|
Cayetano-Salazar L, de la Cruz-Concepción B, Navarro-Tito N, Álvarez-Fitz P, Leyva-Vázquez MA, Acevedo-Quiroz M, Zacapala-Gómez AE, Ortuño-Pineda C, Martinez-Carrillo DN, Castañeda-Saucedo E, García-Hernández AP, Mendoza-Catalán MA. Ficus crocata leaf extracts decrease the proliferation and invasiveness of breast cancer cells. Heliyon 2022; 8:e11405. [DOI: 10.1016/j.heliyon.2022.e11405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
9
|
Xu L, Zhong XL, Xi ZC, Li Y, Xu HX. Medicinal plants and natural compounds against acyclovir-resistant HSV infections. Front Microbiol 2022; 13:1025605. [PMID: 36299732 PMCID: PMC9589345 DOI: 10.3389/fmicb.2022.1025605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuan-Lei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Yang Li,
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong-Xi Xu,
| |
Collapse
|
10
|
Abstract
INTRODUCTION High-risk HPV infections are related to several epithelial cancers. Despite the availability of prophylactic vaccines, HPV infections are still responsible for about 5% of all human malignancies worldwide. While therapeutic vaccines are ongoing clinical trials, genotoxic agents and surgical interventions represent current clinical treatments, with no specific anti-HPV drugs yet available in the clinics. AREAS COVERED We offer a comprehensive report of small molecules in preclinical studies proposed as potential anticancer agents against HPV-driven tumors. Given the importance of HPV oncoproteins for cancer maintenance, particularly E6 and E7, we present a classification of both non-targeted and targeted agents, with a further subdivision of the latter into two categories according to their either direct or indirect activity against viral protein functions. EXPERT OPINION Prophylactic vaccines can prevent the insurgence of HPV-related cancers, but have no effect against pre-existing infections. Moreover, their high cost, genotype-restricted effect and the growing worldwide distrust for vaccines make the availability of a specific drug an unmet medical need. Different viral early proteins emerge as ideal candidates for drug development. We highlight the most promising strategies and address future challenges in this field to herald the prospect of a specific therapeutic regimen against HPV-related cancers.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy.,Clinical Microbiology and Virology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
11
|
Murugesu S, Selamat J, Perumal V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. PLANTS (BASEL, SWITZERLAND) 2021; 10:2749. [PMID: 34961220 PMCID: PMC8707271 DOI: 10.3390/plants10122749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/23/2023]
Abstract
Ficus is one of the largest genera in the plant kingdom that belongs to the Moraceae family. This review aimed to summarize the medicinal uses, phytochemistry, and pharmacological actions of two major species from this genus, namely Ficus benghalensis and Ficus religiosa. These species can be found abundantly in most Asian countries, including Malaysia. The chemical analysis report has shown that Ficus species contained a wide range of phytoconstituents, including phenols, flavonoids, alkaloids, tannins, saponins, terpenoids, glycosides, sugar, protein, essential and volatile oils, and steroids. Existing studies on the pharmacological functions have revealed that the observed Ficus species possessed a broad range of biological properties, including antioxidants, antidiabetic, anti-inflammatory, anticancer, antitumor and antiproliferative, antimutagenic, antimicrobial, anti-helminthic, hepatoprotective, wound healing, anticoagulant, immunomodulatory activities, antistress, toxicity studies, and mosquitocidal effects. Apart from the plant parts and their extracts, the endophytes residing in these host plants were discussed as well. This study also includes the recent applications of the Ficus species and their plant parts, mainly in the nanotechnology field. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PMC, Research Gate, and Scopus. Overall, the review discusses the therapeutic potentials discovered in recent times and highlights the research gaps for prospective research work.
Collapse
Affiliation(s)
- Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Jinap Selamat
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Vikneswari Perumal
- Faculty of Pharmacy & Health Sciences, University of Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| |
Collapse
|
12
|
Aphale S, Shinde K, Pandita S, Mahajan M, Raina P, Mishra JN, Kaul-Ghanekar R. Panchvalkala, a traditional Ayurvedic formulation, exhibits antineoplastic and immunomodulatory activity in cervical cancer cells and C57BL/6 mouse papilloma model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114405. [PMID: 34260879 DOI: 10.1016/j.jep.2021.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panchvalkala, an Ayurvedic traditional formulation has references in Charak Samhita and Bhavaprakasha Nighantu for the treatment of women with endometriosis-related problems, leucorrhea and vaginal ailments. The formulation comprises of equal ratios of the barks from Ficus glomerata, Ficus virens, Ficus religiosa, Ficus benghalensis, and Thespesia populnea. AIM OF THE STUDY The present study aimed to evaluate the anticancer and immunomodulatory activity of aqueous extract of Panchvalkala (PVaq) against cervical cancer in vitro and in vivo. MATERIALS AND METHODS The effect of PVaq on disruption of mitochondrial membrane potential in cervical cancer cell lines, SiHa and HeLa, was studied by using JC1 dye. The expression of generic caspases in the cells after treatment with PVaq was evaluated by ELISA kit. The expression of pRb, p53, E6 and E7 proteins were evaluated by western blotting. Acute oral toxicity and DRF studies were performed in Swiss albino mice by following OECD guidelines 423 and 407, respectively. Tumor retardation study was done in C57BL/6 mouse papilloma model. The mice were divided into six groups: No tumor control (NTC), Tumor control (TC), Cisplatin (Cis) (4 mg/kg b.w.), PVaq 100, 200 mg/kg b.w and combination of PVaq (200 mg/kg b.w.) and Cisplatin (4 mg/kg b.w.). The mice were orally gavaged with PVaq daily for 14 days and cisplatin was given intravenously on every 1st, 5th and 9th day. Hematological and biochemical parameters were studied by using hematology analyzer and kits, respectively. E6 and E7 gene expression in the tumor samples was determined by qPCR. Th1 and Th2 cytokine levels were determined by ELISA. RESULTS PVaq induced mitochondrial depolarization in SiHa and HeLa, and increased the expression of generic caspases, resulting into apoptosis. PVaq upregulated the expression of tumor suppressor proteins (p53 and pRb) and reduced the expression of viral oncoproteins (E6 and E7). Acute toxicity study displayed non-toxicity of PVaq while DRF study ensured its safe dose for further efficacy studies. PVaq reduced tumor volume and weight in mouse papilloma model and induced immunomodulation in the animals. It increased serum levels of IL-2 (Th1) with a concomitant decrease in IL-10 (Th2) cytokines. The drug did not affect body weight, food consumption and organ histopathology of the animals. CONCLUSIONS PVaq exhibited anticancer and immunomodulatory activities against cervical cancer cells and female mouse papilloma model.
Collapse
Affiliation(s)
- Shama Aphale
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| | - Kavita Shinde
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| | - Savita Pandita
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| | - Minal Mahajan
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| | - J N Mishra
- Bharat Sewa Sansthan, Moti Mahal, Rana Pratap Marg, Lucknow, Uttar Pradesh, India.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| |
Collapse
|
13
|
Nath N, Rana A, Nagini S, Mishra R. Glycogen synthase kinase-3β inactivation promotes cervical cancer progression, invasion, and drug resistance. Biotechnol Appl Biochem 2021; 69:1929-1941. [PMID: 34554598 DOI: 10.1002/bab.2258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infection-dependent cervical cancer is one of the most common gynecological cancers and often becomes aggressive, with rapid proliferation, invasion/migration, and drug resistance. Here, 135 fresh human cervical squamous cell carcinoma (CSCC) tissue specimens, comprising 21 adjacent normal (AN), 30 cervical intraepithelial neoplasia (CIN1-3 ), 45 CSCC, and 39 drugs (chemo-radiation)-resistant cervical tumor (DRCT) tissues were included. HPV-positive (HeLa, SiHa), HPV-negative (C33A), and cisplatin-resistant (CisR-HeLa/-SiHa/-C33A) cell lines were used for in vitro studies. HPV16/18 oncoproteins E6/E7, pERK1/2, and glycogen synthase kinase-3 (GSK3) and the matrix metalloproteinases (MMPs) MMP-9/-2 were assessed using immunohistochemistry, WB, and gelatin zymography. HPV16/18 infection was observed in 16.7% of the CIN1-3 , 77.8% of the CSCC, and 89.7% of DRCT samples. Total and inactive GSK3β expressions were associated with overall CSCC progression (p = 0.039 and p = 0.024, respectively) and chemoresistance (p = 0.004 and p = 0.014, respectively). Positive correlations were observed, between the expression of E6 and pGSK3β expression (p = 0.013); E6 and CSCC progression (p < 0.0001)/drug resistance (p = 0.0001). CisR-HeLa/-SiHa was more dependent on pGSK3β, and activation of GSK3 by SMIs (iAkt), treatment with nimbolide, or knockdown of E6/E7 reduced cisplatin resistance and promoted apoptosis. Hence, the activation of GSK3β with nimbolide and iAkt can be exploited for therapeutic interventions of cervical cancer.
Collapse
Affiliation(s)
- Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
14
|
Involvement of p53-dependent apoptosis signal in antitumor effect of Colchicine on human papilloma virus (HPV)-positive human cervical cancer cells. Biosci Rep 2021; 40:222342. [PMID: 32163135 PMCID: PMC7098170 DOI: 10.1042/bsr20194065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Colchicine, a plant-derived alkaloid with relatively low toxicity on normal human epidermal keratinocytes (HEKn), has selective inhibitory effect on the growth of CaSki (HPV16-positive) and HeLa (HPV18-positive) human cervical cancer cell lines via the induction of apoptosis. Colchicine (2.5, 5.0 and 10.0 ng/ml) significantly reduced the expression of human papilloma virus (HPV) 16 E6/E7 mRNA and protein in CaSki and HeLa cells. Moreover, reduced expression of E6 and E7 induced by Colchicine resulted in the up-regulation of tumor suppressor proteins, p53 and Rb, as well as down-regulation of phospho Rb (pRb) protein. In addition, Bax, cytosolic cytochrome c and cleaved caspase-3 protein were increased while Bcl-2 protein was decreased significantly by 48 h of Colchicine treatment. These results implied that Colchicine could be explored as a potent candidate agent for the treatment and prevention of HPV-associated cervical cancer without deleterious effects.
Collapse
|
15
|
Suttisansanee U, Pitchakarn P, Ting P, Inthachat W, Thiyajai P, Rodthayoy D, Karinchai J, Chantarasuwan B, Nuchuchua O, Temviriyanukul P. Health-promoting bioactivity and in vivo genotoxicity evaluation of a hemiepiphyte fig, Ficus dubia. Food Sci Nutr 2021; 9:2269-2279. [PMID: 33841843 PMCID: PMC8020917 DOI: 10.1002/fsn3.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Ficus species have been used as a typical component in food and folk medicine in Asia for centuries. However, little is known regarding the bioactivity and genotoxicity of the recently identified Ficus dubia (FD), an indigenous plant of the tropical evergreen rain forest. FD is unique from other Ficus species because of its highly sought‐after red‐brown latex. Antioxidant properties together with phenolic and flavonoid contents of FD were elucidated. Health‐promoting characteristics were examined by studying the inhibition of enzymes as a drug target for diabetes, hypertension, Alzheimer's disease, and obesity, together with anticancer ability against human colorectal adenocarcinoma, human hepatocellular carcinoma, human ovarian carcinoma, human prostate adenocarcinoma, and human lung carcinoma. Besides, FD genotoxicity was tested using the Drosophila wing spot test. Results showed that both FD root and latex exhibited antioxidant activity due to the presence of phenolics and flavonoids, specifically caffeic acid and cyanidin. The ethanolic fraction of FD root demonstrated a potent antidiabetic mechanism underlying α‐glucosidase inhibitory activity similar to acarbose. This fraction also suppressed lung and ovarian cancer growth, possibly by G1 and G2/M arrest, respectively. All tested fractions lacked mutagenicity in vivo. Results indicated that FD can be developed as novel antidiabetic compounds; however, its bioactive compounds should be further identified.
Collapse
Affiliation(s)
- Uthaiwan Suttisansanee
- Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand.,Food and Nutrition Academic and Research Cluster Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| | - Pisamai Ting
- Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand
| | - Woorawee Inthachat
- Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand.,Food and Nutrition Academic and Research Cluster Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand
| | - Parunya Thiyajai
- Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand
| | - Daraphan Rodthayoy
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| | - Jirarat Karinchai
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| | | | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand.,Food and Nutrition Academic and Research Cluster Institute of Nutrition Mahidol University Salaya, Phuttamonthon Nakhon Pathom Thailand
| |
Collapse
|
16
|
Grace VMB, B L, Wilson DD. The Effect of Indian Fig Fruit Extract on Human Papilloma Virus containing Cervical Cancer Cells (HeLa) by Decreasing the HPV18 L1 Gene Load. Asian Pac J Cancer Prev 2021; 22:785-791. [PMID: 33773542 PMCID: PMC8286670 DOI: 10.31557/apjcp.2021.22.3.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Global trend is moving towards the use of natural phytochemicals to fight against pathogens. Human cervical cancer is directly associated with onco-potent type of Human Papilloma Virus (HPV). There is no known medicine for clearance of HPV type whose persistence is the cause of occurrence and re-occurrence of cervical cancer. The different species of fig fruit and their latex are reported to have HPV associated genital warts clearance capability. Methods: In the current investigation, the effect of the methanol extract of Ficus benghalensis L. fruits on HPV type18 viral load in HeLa cell line was tested by doing PCR using HPV L1 primers (MY09/My011) and the cytotoxicity was also analysed by MTT assay. The induction of apoptotic activity in terms of DNA fragmentation and hyper-chromic effects of DNA was analysed. Results: The PCR results showed a reduction in the HPV18 DNA and also the treatment exhibited a promising cytotoxicity with IC50 value at 211.86 μg/ml. The DNA samples from treated HeLa cells showed DNA shearing and laddering as a mark of apoptotic DNA fragmentation (Fig. 2) and the UV absorbance value at 260 nm was found to be significantly (P<0.01) higher in the DNA sample treated with fruit extract compared to the untreated DNA sample. Conclusion: The Ficus benghalensis L. fruit extract reduced the HPV viral load in HPV18 containing HeLa cells and showed an effective cytotoxicity on HeLa cell line. It also could induce the apoptotic activity in HeLa cell line and this study results suggest that the Ficus benghalensis L. fruits can be used to fight against cervical carcinoma, acting on HPV load.
Collapse
Affiliation(s)
- V M Berlin Grace
- Department of Biotechnology & Health Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| | - Lydia B
- Department of Biotechnology & Health Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| | - D David Wilson
- School of Science, Arts, Media and Management (SSAMM), Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
| |
Collapse
|
17
|
Acevedo-Quiroz M, Mora-Candelario O, Leyva-Vázquez M, Mendoza-Catalán M, Álvarez L, Antunez-Mojica M, Ortiz-Ortiz J. Gas chromatography coupled with mass analysis phytochemical profiling, antiproliferative and antimigratory effect of tagetes lucida leaves extracts on cervical cancer cell lines. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_49_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Nadhe SB, Tawre MS, Agrawal S, Chopade BA, Sarkar D, Pardesi K. Anticancer potential of AgNPs synthesized using Acinetobacter sp. and Curcuma aromatica against HeLa cell lines: A comparative study. J Trace Elem Med Biol 2020; 62:126630. [PMID: 32738757 DOI: 10.1016/j.jtemb.2020.126630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa). METHODS bAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs). RESULTS Both the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 μg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 μg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis. CONCLUSION Overall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.
Collapse
Affiliation(s)
- Shradhda B Nadhe
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Madhumita S Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Sonia Agrawal
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balu A Chopade
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India; Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.
| |
Collapse
|
19
|
Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu-Darwish MS, Hussein Tarawneh A, Gadetskaya AV, Cabral C, Salgueiro L, Victoriano M, Martorell M, Docea AO, Abdolshahi A, Calina D, Sharifi-Rad J. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res 2020; 35:1187-1217. [PMID: 33025667 DOI: 10.1002/ptr.6884] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Ficus genus is typically tropical plants and is among the earliest fruit trees cultivated by humans. Ficus carica L. is the common fig, Ficus benjamina L. is the weeping fig, and Ficus pumila L. is the creeping fig. These species are commonly used in traditional medicine for a wide range of diseases and contain rich secondary metabolites that have shown diverse applications. This comprehensive review describes for Ficus genus the phytochemical compounds, traditional uses and contemporary pharmacological activities such as antioxidant, cytotoxic, antimicrobial, anti-inflammatory, antidiabetic, antiulcer, and anticonvulsant. An extended survey of the current literature (Science Direct, Scopus, PubMed) has been carried out as part of the current work. The trends in the phytochemistry, pharmacological mechanisms and activities of Ficus genus are overviewed in this manuscript: antimicrobial, antidiabetic, anti-inflammatory and analgesic activity, antiseizure and anti-Parkinson's diseases, cytotoxic and antioxidant. Health-promoting effects, recent human clinical studies, safety and adverse effects of Ficus plants also are covered. The medical potential and long-term pharmacotherapeutic use of the genus Ficus along with no serious reported adverse events, suggests that it can be considered as being safe.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Garhwal, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Garhwal, India
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anna Kiełtyka-Dadasiewicz
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Barbara Sawicka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Aleksandra Głowacka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Mohammad Sanad Abu-Darwish
- Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.,Departments of Basic and Applied Sciences, Al-Balqa Applied University, Al-Salt, Jordan
| | - Amer Hussein Tarawneh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| | - Anastassiya V Gadetskaya
- School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,Chemical Process Engineering and Forest Products Research Centre and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
20
|
Sánchez-Valdeolívar CA, Alvarez-Fitz P, Zacapala-Gómez AE, Acevedo-Quiroz M, Cayetano-Salazar L, Olea-Flores M, Castillo-Reyes JU, Navarro-Tito N, Ortuño-Pineda C, Leyva-Vázquez MA, Ortíz-Ortíz J, Castro-Coronel Y, Mendoza-Catalán MA. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complement Med Ther 2020; 20:191. [PMID: 32571387 PMCID: PMC7309984 DOI: 10.1186/s12906-020-02993-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Some species of the Ficus genus show pharmacological activity, including antiproliferative activity, in cell lines of several cancer Types. ficus crocata is distributed in Mexico and used in traditional medicine, as it is believed to possess anti-inflammatory, analgesic, and antioxidant properties. However, as of yet, there are no scientific reports on its biological activity. This study aims to evaluate the phytochemical profile of F. crocata leaf extracts and their effects on breast cancer MDA-MB-231 cells proliferation. Moreover, the study aims to unearth possible mechanisms involved in the decrease of cell proliferation. Methods The extracts were obtained by the maceration of leaves with the solvents hexane, dichloromethane, and acetone. The phytochemical profile of the extracts was determined using gas chromatography coupled with mass analysis. Cell proliferation, apoptosis, and cell cycle analysis in MDA-MB-231 cells were determined using a Crystal violet assay, MTT assay, and Annexin-V/PI assay using flow cytometry. The data were analyzed using ANOVA and Dunnett’s test. Results The hexane (Hex-EFc), dichloromethane (Dic-EFc), and acetone (Ace-EFc) extracts of F. crocata decreased the proliferation of MDA-MB-231 cells, with Dic-EFc having the strongest effect. Dic-EFc was fractioned and its antiproliferative activity was potentiated, which enhanced its ability to induce apoptosis in MDA-MB-231 cells, as well as increased p53, procaspase-8, and procaspase-3 expression. Conclusions This study provides information on the biological activity of F. crocata extracts and suggests their potential use against triple-negative breast cancer.
Collapse
Affiliation(s)
- Carlos A Sánchez-Valdeolívar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | | | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Macdiel Acevedo-Quiroz
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, Centro, 62780, Zacatepec, Morelos, Mexico
| | - Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Jhonathan U Castillo-Reyes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Julio Ortíz-Ortíz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Yaneth Castro-Coronel
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
21
|
Lv H, Hu C, Xie Z, Wang P, Chen X, Wen C. Purification, characterization and anti-tumor activity of a pectic-type polysaccharide isolated from Ficus pandurata H. Int J Biol Macromol 2020; 153:201-206. [DOI: 10.1016/j.ijbiomac.2020.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/25/2023]
|
22
|
Exploring the Pharmacological Potentials of Biosurfactant Derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 2020; 77:452-459. [PMID: 31897664 DOI: 10.1007/s00284-019-01850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Therapeutic potential of biosurfactant (BS) has been improved in recent years. Our present study deals with production of BS from Planococcus maritimus SAMP MCC 3013 in a mineral salt medium (MSM) supplemented with glucose (1.5% w/v). Further, BS has been purified and partially characterized as glycolipid type through our previous publication. Current research article aimed to evaluate biological potential of BS against Mycobacterium tuberculosis, Plasmodium falciparum and cancerous cell lines. Planococcus derived glycolipid BS was found to be a promising inhibitor of M. tuberculosis (MTB) H37Ra at IC50 64.11 ± 1.64 μg/mL and MIC at 160.8 ± 1.64 μg/mL. BS also showed growth inhibition of P. falciparum at EC50 34.56 ± 0.26 µM. Additionally, BS also displayed the cytotoxicity against HeLa (IC50 41.41 ± 4.21 μg/mL), MCF-7 (IC50 42.79 ± 6.07 μg/mL) and HCT (IC50 31.233 ± 5.08 μg/mL) cell lines. Molecular docking analysis was carried for the most popular glycolipid type BS namely Rhamnolipid (RHL) aiming to interpret the possible binding interaction for anti-tubercular and anti-cancer activity. This analysis revealed the involvement of RHL binding with enoyl reductase (InhA) of M. tuberculosis. Docking studies of RHL with tubulin directed several hydrophobic and Vander Waal interactions to exhibit anti-cancer potential. The present study will be helpful for further development of marine bioactive molecules for therapeutic applications. Their anti-tubercular, anti-plasmodial and cytotoxic activities make BS molecules as a noteworthy candidate to combat several diseases. To the best of our knowledge, this is the first report on projecting the pharmacological potential of Planococcus derived BS.
Collapse
|
23
|
Suryavanshi S, Choudhari A, Raina P, Kaul-Ghanekar R. A polyherbal formulation, HC9 regulated cell growth and expression of cell cycle and chromatin modulatory proteins in breast cancer cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112022. [PMID: 31201865 DOI: 10.1016/j.jep.2019.112022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HC9, a polyherbal formulation, is based upon a traditional Ayurvedic formulation, Stanya Shodhana Kashaya (SSK, having 10 plant materials), formulated on Stanyashodhana gana, explained by Charaka in Charakasaṃhita Sutrasthana IV and mentioned in other texts as well. Stanyasodhana is the Sanskrit name for a group of medicinal plants, classified for "improving the quality of milk". SSK is used by Ayurvedic practitioners for the cleansing and detoxification of breast milk in lactating mothers as well as for the management of various clinical conditions. HC9 is composed of equal ratios of nine different medicinal plants that include Picrorhiza kurroa Royle ex Benth., Cyperus rotundus L., Zingiber officinale Roscoe, Cedrus deodara (Roxb. ex D.Don) G.Don, Tinospora cordifolia (Willd.) Miers, Holarrhena antidysenterica (Roth) Wall. ex A.DC., Swertia chirata Buch.-Ham. ex Wall., Cissampelos pareira L. and Hemidesmus indicus (L.) R. Br. ex Schult.. It differs from the SSK formulation by having one ingredient [Marsdenia tenacissima (Roxb.)Moon (Murva)] less, due to its unavailability since it is mostly found in tropical hilly tracts of peninsular India and Vindhya ranges as well as in lower Himalayan tracts. All the medicinal plants in the formulation have reported activity against different types of cancers. AIM OF THE STUDY The present study is aimed at evaluating the anticancer activity of the polyherbal formulation (HC9) and its mechanism of action against breast cancer cell lines. MATERIALS AND METHODS The effect of HC9 on the viability of breast cancer (MCF-7 and MDAMB231) and non-cancerous (MCF-10A) cell lines was evaluated by MTT assay. The effect on cell growth and colony formation potential of cancer cells was determined by trypan blue dye exclusion method and soft agar assay, respectively. Cell cycle arrest was determined by propidium iodide (PI) staining and analyzed by flowcytometer. Scratch wound assay was used for studying cell migration. Cell invasion was determined by using BD BioCoat Matrigel invasion chambers. The gene expression of HIF-1α was examined by RT-PCR. The expression of p53, SMAR1, p16, MMP-2, CDP/Cux, p21, Rb, phospo-Rb (ppRb), VEGF, NFқB and COX-2 proteins was determined by western blotting. RESULTS HC9 significantly altered growth of breast cancer cell lines, MCF-7 and MDA MB-231. It blocked the cell cycle progression at S phase in MCF-7 by up regulating the expression of p53, p21 and p16 proteins. In MDA MB-231, HC9 induced G1 phase arrest by up regulating the expression of p53, p21 and pRb proteins with simultaneous decrease in ppRb. It significantly reduced migration and invasion in both the cell lines, accompanied by decrease in the expression of MMP-2/9, HIF-1α and VEGF. HC9 decreased the expression of inflammatory markers (NF-қB, COX-2), and modulated the expression of chromatin modulators (SMAR1 and CDP/Cux) in both MCF-7 and MDA MB-231. CONCLUSIONS HC9 exhibited potent anticancer activity against breast cancer cells, thereby warranting further pre-clinical and clinical studies in future.
Collapse
Affiliation(s)
- Snehal Suryavanshi
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India
| | - Amit Choudhari
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India
| | - Prerna Raina
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India
| | - Ruchika Kaul-Ghanekar
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-Satara Road, Pune, 411043, Maharashtra, India.
| |
Collapse
|
24
|
Vijayan S, Divya K, Jisha MS. In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01151-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Anticancer Potential of Fruit Extracts from Vatica diospyroides Symington Type SS and Their Effect on Program Cell Death of Cervical Cancer Cell Lines. ScientificWorldJournal 2019; 2019:5491904. [PMID: 31118873 PMCID: PMC6500633 DOI: 10.1155/2019/5491904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/18/2022] Open
Abstract
Vatica diospyroides Symington is locally known as Chan-Ka-Pho in Thailand. Ancient people have used it as therapeutic plant for cardiac and blood tonic cure. The purpose of this study was to investigate the potential cytotoxicity and selectivity of the extracts from V. diospyroides type SS fruit on cervical cancer HeLa and SiHa cell lines and to examine its underlying mechanism of action. MTT assay revealed that the extracts showed inhibition of cell survival in a dose-dependent manner and exhibited highly cytotoxic activity against both HeLa and SiHa cells with IC50 value less than 20 μg/mL along with less toxicity against L929 cells. Acetone cotyledon extract (ACE) showed the best selectivity index value of 4.47 (HeLa) and 3.51 (SiHa). Distinctive morphological changes were observed in ACE-treated cervical cancer cells contributing to apoptosis action. Flow cytometry analysis with Annexin V-FITC and PI staining precisely indicated that ACE induced apoptosis in HeLa and SiHa cell lines in a dose-dependent manner. Treatment of ACE with half IC50 caused DNA fragmentation and also activated increasing of bax and cleaved caspase-8 protein in HeLa cells after 48 h exposure. The results suggest that ACE has potent and selective cytotoxic effect against cervical cancer cells and the potential to induce bax and caspase-8-dependent apoptosis. Hence, the ACE could be further exploited as a potential lead in cancer treatment.
Collapse
|
26
|
Remadevi V, Mohan Lathika L, Sasikumar Sujatha A, Sreeharshan S. Ficus extract-A promising agent for antimammary tumorigenesis: A review on current status and future possibilities. Phytother Res 2019; 33:1597-1603. [PMID: 30937987 DOI: 10.1002/ptr.6348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/08/2022]
Abstract
Pharmacological studies have shown that various species of Ficus have antiviral, antidiarrheal, antipyretic, hypolipidemic, antidiabetic, antioxidant, anticancer, antiparasitic, antiangiogenic, anti-inflammatory, antibacterial, antiplatelet, reproductive, dermatological, immunological, endocrine, and hepato and nephron protective effects. But there is no sufficient research on biomolecules present in the leaf extract of Ficus religiosa and its mechanism of action. We have previously reported that bioavailable constituents of F. religiosa leaf extract exert photosensitizing and apoptosis-inducing capability through the generation of intracellular reactive oxygen species on breast cancer cells. In this review, we have evaluated the expression of checkpoint proteins of G1/S and sub G0 phase with wet lab data and also have done a data mining of other research for other potential mechanistic action of the F. religiosa leaf extract.
Collapse
Affiliation(s)
- Viji Remadevi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Lakshmi Mohan Lathika
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Anjana Sasikumar Sujatha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
27
|
Sánchez-Mendoza M, Santiago-Cruz J, Arrieta J, García-Machorro J, Arrieta-Baez D. Cytotoxic activity of Rauvolfia tetraphylla L. on human cervical cancer (HeLa) cells. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_106_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Zhang H, Xie B, Zhang Z, Sheng X, Zhang S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Devel Ther 2018; 13:119-127. [PMID: 30587932 PMCID: PMC6304242 DOI: 10.2147/dddt.s187776] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction and aim Cervical cancers are the most common forms of cancer that occur in women globally and are difficult to be cured in their terminal stages. Tetrandrine (TET), a monomeric compound isolated from a traditional Chinese medicine, Radix Stephania tetrandrae, exhibits anticancer effects on different tumor types. However, the mechanisms by which TET regulates the proliferation, apoptosis, migration, and invasion in cervical cancer remain unclear. Thus, this study aimed to investigate the therapeutic effects of TET on cervical cancer in vitro and in vivo. Methods Cell Counting Kit-8, immunofluorescence, flow cytometry, wound healing, and transwell migration assays were used to detect cell proliferation, apoptosis, and migration and invasion, respectively, in vitro. In addition, immunohistochemical assays were performed to evaluate tumor growth and apoptosis in vivo. Moreover, Western blotting was used to examine active caspase 3, matrix metalloproteinase (MMP)2, and MMP9 protein levels in vitro and in vivo. Results The results revealed that TET significantly inhibited SiHa cell proliferation in vitro and suppressed tumor growth in vivo. Meanwhile, TET was revealed to induce cervical cancer cell apoptosis by upregulating active caspase 3 in vitro and in vivo. Furthermore, the migration and invasion of SiHa cells were inhibited by TET accompanied with MMP2 and MMP9 downregulation. Conclusion We have shown that TET inhibited cervical tumor growth and migration in vitro and in vivo for the first time. The accumulating evidence suggests that TET could be a potential therapeutic agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Linyi, People's Republic of China, .,Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Beibei Xie
- Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Zhen Zhang
- Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Xiugui Sheng
- Department of Gynecology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shiqian Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Linyi, People's Republic of China,
| |
Collapse
|
29
|
Goswami P, Paul S, Banerjee R, Kundu R, Mukherjee A. Betulinic acid induces DNA damage and apoptosis in SiHa cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:1-9. [DOI: 10.1016/j.mrgentox.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
|
30
|
Nawale L, Dubey P, Chaudhari B, Sarkar D, Prabhune A. Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa. PLoS One 2017; 12:e0174241. [PMID: 28419101 PMCID: PMC5395175 DOI: 10.1371/journal.pone.0174241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/06/2017] [Indexed: 11/29/2022] Open
Abstract
Sophorolipids (SLs) are glycolipid biosurfactants that have been shown to display anticancer activity. In the present study, we report anti-proliferative studies on purified forms of novel SLs synthesized using cetyl alcohol as the substrate (referred as SLCA) and their anticancer mechanism in human cervical cancer cells. Antiproliferative effect of column purified SLCA fractions (A, B, C, D, E and F) was examined in panel of human cancer cell lines as well as primary cells. Among these fractions, SLCA B and C significantly inhibited the survival of HeLa and HCT 116 cells without affecting the viability of normal human umbilical vein endothelial cells (HUVEC). The two fractions were identified as cetyl alcohol sophorolipids with non-hydroxylated tail differing in the degree of acetylation on sophorose head group. At an IC50 concentration SLCA B (16.32 μg ml-1) and SLCA C (14.14 μg ml-1) blocked the cell cycle progression of HeLa cells at G1/S phase in time-dependent manner. Moreover, SLCA B and SLCA C induced apoptosis in HeLa cells through an increase in intracellular Ca2+ leading to depolarization of mitochondrial membrane potential and increase in the caspase-3, -8 and -9 activity. All these findings suggest that these SLCAs could be explored for their chemopreventive potential in cervical cancer.
Collapse
Affiliation(s)
- Laxman Nawale
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, India
| | - Parul Dubey
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | - Bhushan Chaudhari
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | - Dhiman Sarkar
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, India
- * E-mail: (AP); (DS)
| | - Asmita Prabhune
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
- * E-mail: (AP); (DS)
| |
Collapse
|
31
|
Suryavanshi S, Raina P, Deshpande R, Kaul-Ghanekar R. Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53. Pharmacogn Mag 2017; 13:21-24. [PMID: 28216878 PMCID: PMC5307909 DOI: 10.4103/0973-1296.197645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aim: The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. Materials and Methods: The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. Results: NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. Conclusions: The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells. NJet regulated the growth kinetics of the cancer cells. NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53.
Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography
Collapse
Affiliation(s)
- Snehal Suryavanshi
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Prerna Raina
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Rashmi Deshpande
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Ruchika Kaul-Ghanekar
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| |
Collapse
|
32
|
Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1574971. [PMID: 28050190 PMCID: PMC5168552 DOI: 10.1155/2016/1574971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
Bothrops jararaca (BJ) and Bothrops erythromelas (BE) are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123), nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.
Collapse
|
33
|
Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 2016; 161:3509-3514. [PMID: 27581805 DOI: 10.1007/s00705-016-3032-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
Abstract
Ficus religiosa extracts have been used in traditional Indian medicine to treat sexually transmitted infections such as gonorrhea and genital ulcers. The aim of this study was to investigate the antiviral activity of F. religiosa extracts against herpes simplex virus type 2 (HSV-2), the main causative agent of genital ulcers and sores. Water and chloroform bark extracts were the most active against HSV-2, and also against an acyclovir-resistant strain. We demonstrate that the water extract has a direct virus-inactivating activity. By contrast, the chloroform extract inhibits viral attachment and entry and limits the production of viral progeny.
Collapse
Affiliation(s)
- Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Andrea Civra
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Siva Ganesh Mavuduru
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Preeti Awasthi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - David Lembo
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy.
| |
Collapse
|
34
|
Tsai JH, Hsu LS, Huang HC, Lin CL, Pan MH, Hong HM, Chen WJ. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells. Int J Mol Sci 2016; 17:ijms17081274. [PMID: 27527160 PMCID: PMC5000672 DOI: 10.3390/ijms17081274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/24/2022] Open
Abstract
The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer.
Collapse
Affiliation(s)
- Jie-Heng Tsai
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan.
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Hsiu-Chen Huang
- Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Hui-Mei Hong
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wei-Jen Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
35
|
Deshpande R, Mansara P, Kaul-Ghanekar R. Alpha-linolenic acid regulates Cox2/VEGF/MAP kinase pathway and decreases the expression of HPV oncoproteins E6/E7 through restoration of p53 and Rb expression in human cervical cancer cell lines. Tumour Biol 2015; 37:3295-305. [DOI: 10.1007/s13277-015-4170-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
|
36
|
Xiong Y, Chen L, Luo P. N-Benzylcinnamide induces apoptosis in HPV16 and HPV18 cervical cancer cells via suppression of E6 and E7 protein expression. IUBMB Life 2015; 67:374-9. [PMID: 25914202 DOI: 10.1002/iub.1380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/03/2015] [Indexed: 01/15/2023]
Abstract
Seventy percent of all cervical cancers are caused by human papillomavirus (HPV) infections. Natural products are being extensively explored for their potential ability to prevent and treat cervical cancers. N-benzylcinnamide (PT-3) is a natural product purified from Piper submultinerve. Whether or not PT-3 has an effect on cervical cancer cells is as yet unknown. Therefore, we set out to explore the mechanism of action behind PT-3 and how it affects cells that either contain or lack HPV DNA. Our results demonstrate that PT-3 slows the growth kinetics of CaSki (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner, but does not slows HPV-negative cells. Importantly, we also found that PT-3 induces apoptosis by suppressing expression of E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and HeLa cells. Moreover, we found that suppression of E6 and E7 expression leads to modulations in p53 and protein retinoblastomas, which are not changed in HPV-negative cervical cancer C33A cells. These findings demonstrate that PT-3 can effectively promote apoptosis by downregulating expression of E6 and E7.
Collapse
Affiliation(s)
- Yuanhuan Xiong
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| | - Lin Chen
- Faculty of Medical Sciences, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Puying Luo
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
37
|
Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD, Kaul-Ghanekar R. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLoS One 2014; 9:e107315. [PMID: 25268975 PMCID: PMC4182032 DOI: 10.1371/journal.pone.0107315] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/08/2014] [Indexed: 01/11/2023] Open
Abstract
Cinnamaldehyde, the bioactive component of the spice cinnamon, and its derivatives have been shown to possess anti-cancer activity against various cancer cell lines. However, its hydrophobic nature invites attention for efficient drug delivery systems that would enhance the bioavailability of cinnamaldehyde without affecting its bioactivity. Here, we report the synthesis of stable aqueous suspension of cinnamaldehyde tagged Fe3O4 nanoparticles capped with glycine and pluronic polymer (CPGF NPs) for their potential application in drug delivery and hyperthermia in breast cancer. The monodispersed superparamagnetic NPs had an average particulate size of ∼ 20 nm. TGA data revealed the drug payload of ∼ 18%. Compared to the free cinnamaldehyde, CPGF NPs reduced the viability of breast cancer cell lines, MCF7 and MDAMB231, at lower doses of cinnamaldehyde suggesting its increased bioavailability and in turn its therapeutic efficacy in the cells. Interestingly, the NPs were non-toxic to the non-cancerous HEK293 and MCF10A cell lines compared to the free cinnamaldehyde. The novelty of CPGF nanoparticulate system was that it could induce cytotoxicity in both ER/PR positive/Her2 negative (MCF7) and ER/PR negative/Her2 negative (MDAMB231) breast cancer cells, the latter being insensitive to most of the chemotherapeutic drugs. The NPs decreased the growth of the breast cancer cells in a dose-dependent manner and altered their migration through reduction in MMP-2 expression. CPGF NPs also decreased the expression of VEGF, an important oncomarker of tumor angiogenesis. They induced apoptosis in breast cancer cells through loss of mitochondrial membrane potential and activation of caspase-3. Interestingly, upon exposure to the radiofrequency waves, the NPs heated up to 41.6 °C within 1 min, suggesting their promise as a magnetic hyperthermia agent. All these findings indicate that CPGF NPs prove to be potential nano-chemotherapeutic agents in breast cancer.
Collapse
Affiliation(s)
- Kirtee D. Wani
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, Maharashtra, India
| | - Brijesh S. Kadu
- Nanoscience Group, Department of Chemistry, Post-graduate and Research Center, MES Abasaheb Garware College, Pune, Maharashtra, India
| | - Prakash Mansara
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, Maharashtra, India
| | - Preeti Gupta
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Avinash V. Deore
- Department of Physics, University of Pune, Pune, Maharashtra, India
| | - Rajeev C. Chikate
- Nanoscience Group, Department of Chemistry, Post-graduate and Research Center, MES Abasaheb Garware College, Pune, Maharashtra, India
| | - Pankaj Poddar
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Sanjay D. Dhole
- Department of Physics, University of Pune, Pune, Maharashtra, India
| | - Ruchika Kaul-Ghanekar
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|