1
|
Roux H, Chomont N. Measuring Human Immunodeficiency Virus Reservoirs: Do We Need to Choose Between Quantity and Quality? J Infect Dis 2024; 229:635-643. [PMID: 37665978 PMCID: PMC10938203 DOI: 10.1093/infdis/jiad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
The persistence of latent viral genomes in people receiving antiretroviral therapy (ART) is the main obstacle to a cure for human immunodeficiency virus (HIV) infection. Viral reservoirs can be defined as cells harboring HIV genomes that have the ability to produce infectious virions. Precise quantification of the cellular reservoirs of HIV is challenging because these cells are rare, heterogeneous, and outnumbered by a larger number of cells carrying defective genomes. In addition, measuring the inducibility of these proviruses requires functional assays and remains technically difficult. The recent development of single-cell and single-viral genome approaches revealed additional layers of complexity: the cell subsets that harbor proviruses are heterogeneous and their ability to be induced is variable. A substantial fraction of intact HIV genomes may be permanently silenced after years of ART, revealing the underappreciated importance of induction assays. As such, a simple approach that would assess simultaneously the genetic intactness and the inducibility of the reservoir is still lacking. In this study, we review recent advances in the development of methods to quantify and characterize persistently infected cells, and we discuss how these findings can inform the design of future assays aimed at measuring the size of the intact and inducible HIV reservoir.
Collapse
Affiliation(s)
- Hélène Roux
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Wallace Z, Kopycinski J, Yang H, McCully ML, Eggeling C, Chojnacki J, Dorrell L. Immune mobilising T cell receptors redirect polyclonal CD8 + T cells in chronic HIV infection to form immunological synapses. Sci Rep 2022; 12:18366. [PMID: 36319836 PMCID: PMC9626491 DOI: 10.1038/s41598-022-23228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
Collapse
Affiliation(s)
- Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK. .,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK.
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Leibniz Institute of Photonic Technology & Institute of Applied Optics and Biophysics, Friedrich-Schiller University, Jena, Germany
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK
| |
Collapse
|
3
|
de Almeida Baptista MV, da Silva LT, Samer S, Oshiro TM, Shytaj IL, Giron LB, Pena NM, Cruz N, Gosuen GC, Ferreira PRA, Cunha-Neto E, Galinskas J, Dias D, Sucupira MCA, de Almeida-Neto C, Salomão R, da Silva Duarte AJ, Janini LM, Hunter JR, Savarino A, Juliano MA, Diaz RS. Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Res Ther 2022; 19:2. [PMID: 35022035 PMCID: PMC8753935 DOI: 10.1186/s12981-021-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Background We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. Methods PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. Results The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. Conclusions MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016) Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00426-z.
Collapse
|
4
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Despite decades of suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and fuel viral rebound if therapy is interrupted. The persistence of viral reservoirs in infected individuals is the main obstacle to achieving HIV-1 eradication or a long-term remission. Accurate assessment of the viral reservoir size is necessary for monitoring the effectiveness of the curative interventions. Here, we review the recent progress in the development of assays to measure HIV-1 persistence, highlighting their key advantages and limitations. RECENT FINDINGS To estimate the viral reservoir size, a number of assays have been developed that assess different aspects of HIV-1 persistence in ART-treated individuals. These include viral outgrowth assays to measure proviral replication competence, sequencing-based assays to measure genetic intactness of HIV-1 proviruses, and diverse techniques that measure the ability of proviruses to produce viral RNA and/or proteins (transcription and translation competence), with or without ex vivo stimulation. Recent years have seen the development of next-generation reservoir assays that, in addition to measuring viral persistence markers, assess the proviral integration sites and characterize the HIV-1 reservoir cells on the single-cell level. SUMMARY Although no assay yet can measure the HIV-1 reservoir with 100% accuracy, recent technical advances allow reliable estimation of its size and composition.
Collapse
|
6
|
Wu G, Cheney C, Huang Q, Hazuda DJ, Howell BJ, Zuck P. Improved Detection of HIV Gag p24 Protein Using a Combined Immunoprecipitation and Digital ELISA Method. Front Microbiol 2021; 12:636703. [PMID: 33796087 PMCID: PMC8007784 DOI: 10.3389/fmicb.2021.636703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Greater than 90% of HIV-1 proviruses are thought to be defective and incapable of viral replication. While replication competent proviruses are of primary concern with respect to disease progression or transmission, studies have shown that even defective proviruses are not silent and can produce viral proteins, which may contribute to inflammation and immune responses. Viral protein expression also has implications for immune-based HIV-1 clearance strategies, which rely on antigen recognition. Thus, sensitive assays aimed at quantifying both replication-competent proviruses and defective, yet translationally competent proviruses are needed to understand the contribution of viral protein to HIV-1 pathogenesis and determine the effectiveness of HIV-1 cure interventions. Previously, we reported a modified HIV-1 gag p24 digital enzyme-linked immunosorbent assay with single molecule array (Simoa) detection of cell-associated viral protein. Here we report a novel p24 protein enrichment method coupled with the digital immunoassay to further extend the sensitivity and specificity of viral protein detection. Immunocapture of HIV gag p24 followed by elution in a Simoa-compatible format resulted in higher protein recovery and lower background from various biological matrices and sample volumes. Quantification of as little as 1 fg of p24 protein from cell lysates from cells isolated from peripheral blood or tissues from ART-suppressed HIV participants, as well as simian-human immunodeficiency virus-infected non-human primates (NHPs), with high recovery and reproducibility is demonstrated here. The application of these enhanced methods to patient-derived samples has potential to further the study of the persistent HIV state and examine in vitro response to therapies, as well as ex vivo study of translationally competent cells from a variety of donors.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Zuck
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
7
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
García M, López-Fernández L, Mínguez P, Morón-López S, Restrepo C, Navarrete-Muñoz MA, López-Bernaldo JC, Benguría A, García MI, Cabello A, Fernández-Guerrero M, De la Hera FJ, Estrada V, Barros C, Martínez-Picado J, Górgolas M, Benito JM, Rallón N. Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control. J Mol Med (Berl) 2020; 98:1093-1105. [PMID: 32556382 DOI: 10.1007/s00109-020-01930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023]
Abstract
The HIV reservoir is the main barrier to eradicating HIV infection, and resting memory CD4 T (Trm) cells are one of the most relevant cellular component harboring latent proviruses. This is the first study analyzing the transcriptional profile of Trm cells, in two well-characterized groups of HIV patients with distinct mechanisms of viral replication control (spontaneous versus treatment-induced). We use a systems biology approach to unravel subtle but important differences in the molecular mechanisms operating at the cellular level that could be associated with the host's ability to control virus replication and persistence. Despite the absence of significant differences in the transcriptome of Trm cells between Elite Controllers (ECs) and cART-treated (TX) patients at the single gene level, we found 353 gene ontology (GO) categories upregulated in EC compared with TX. Our results suggest the existence of mechanisms at two different levels: first boosting both adaptive and innate immune responses, and second promoting active viral replication and halting HIV latency in the Trm cell compartment of ECs as compared with TX patients. These differences in the transcriptional profile of Trm cells could be involved in the lower HIV reservoir observed in ECs compared with TX individuals, although mechanistic studies are needed to confirm this hypothesis. Combining transcriptome analysis and systems biology methods is likely to provide important findings to help us in the design of therapeutic strategies aimed at purging the HIV reservoir. KEY MESSAGES: HIV-elite controllers have the lowest HIV-DNA content in resting memory CD4 T cells. HIV-ECs show a particular transcriptional profile in resting memory CD4 T cells. Molecular mechanisms of enhanced adaptative and innate immune response in HIV-ECs. High viral replication and low viral latency establishment associate to the EC status.
Collapse
Affiliation(s)
- Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Luis López-Fernández
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Mínguez
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Isabel García
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | - Javier Martínez-Picado
- irsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
9
|
Pallikkuth S, Bolivar H, Fletcher MA, Babic DZ, De Armas LR, Gupta S, Termini JM, Arheart KL, Stevenson M, Tung FY, Fischl MA, Pahwa S, Stone GW. A therapeutic HIV-1 vaccine reduces markers of systemic immune activation and latent infection in patients under highly active antiretroviral therapy. Vaccine 2020; 38:4336-4345. [PMID: 32387010 DOI: 10.1016/j.vaccine.2020.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
HIV infection is characterized by chronic immune activation and the establishment of a pool of latently infected cells. Antiretroviral therapy (ART) can suppress viral load to undetectable levels in peripheral blood by standard measure, however immune activation/chronic inflammation and latent infection persist and affect quality of life. We have now shown that a novel therapeutic HIV vaccine consisting of replication-defective HIV (HIVAX), given in the context of viral suppression under ART, can reduce both immune activation/chronic inflammation and latent infection. Immune activation, as measured by percent of CD8 + HLA-DR + CD38 + T cells, approached levels of healthy controls at week 16 following vaccination. Reduced immune activation was accompanied by a reduction in pro-inflammatory cytokines and peripheral α4β7 + plasmacytoid DC (a marker of mucosal immune activation). Levels of both HIV-1 DNA and 2-LTR circles were reduced at week 16 following vaccination, suggesting HIVAX can impact HIV-1 latency and reduce viral replication. Surprisingly, reduced immune activation/chronic inflammation was accompanied by an increase in the percent of memory CD4 + T cells expressing markers PD-1 and TIM-3. In addition, evaluation of HIV-1 Gag-specific CD4 + T cells for expression of 96 T cell related genes pre- and post-therapy revealed increased expression of a number of genes involved in the regulation of immune activation, T cell activation, and antiviral responses. Overall this study provides evidence that vaccination with HIVAX in subjects under long term antiviral suppression can reduce immune activation/chronic inflammation and latent infection (Clinicaltrials.gov, identifier NCT01428596).
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary A Fletcher
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dunja Z Babic
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lesley R De Armas
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sachin Gupta
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James M Termini
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences and the Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Margaret A Fischl
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Geoffrey W Stone
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Pinzone MR, Bertuccio MP, VanBelzen DJ, Zurakowski R, O'Doherty U. Next-Generation Sequencing in a Direct Model of HIV Infection Reveals Important Parallels to and Differences from In Vivo Reservoir Dynamics. J Virol 2020; 94:e01900-19. [PMID: 32051279 PMCID: PMC7163122 DOI: 10.1128/jvi.01900-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) represents a powerful tool to unravel the genetic make-up of the HIV reservoir, but limited data exist on its use in vitro Moreover, most NGS studies do not separate integrated from unintegrated DNA, even though selection pressures on these two forms should be distinct. We reasoned we could use NGS to compare the infection of resting and activated CD4 T cells in vitro to address how the metabolic state affects reservoir formation and dynamics. To address these questions, we obtained HIV sequences 2, 4, and 8 days after NL4-3 infection of metabolically activated and quiescent CD4 T cells (cultured with 2 ng/ml interleukin-7). We compared the composition of integrated and total HIV DNA by isolating integrated HIV DNA using pulsed-field electrophoresis before performing sequencing. After a single-round infection, the majority of integrated HIV DNA was intact in both resting and activated T cells. The decay of integrated intact proviruses was rapid and similar in both quiescent and activated T cells. Defective forms accumulated relative to intact ones analogously to what is observed in vivo Massively deleted viral sequences formed more frequently in resting cells, likely due to lower deoxynucleoside triphosphate (dNTP) levels and the presence of multiple restriction factors. To our surprise, the majority of these deleted sequences did not integrate into the human genome. The use of NGS to study reservoir dynamics in vitro provides a model that recapitulates important aspects of reservoir dynamics. Moreover, separating integrated from unintegrated HIV DNA is important in some clinical settings to properly study selection pressures.IMPORTANCE The major implication of our work is that the decay of intact proviruses in vitro is extremely rapid, perhaps as a result of enhanced expression. Gaining a better understanding of why intact proviruses decay faster in vitro might help the field identify strategies to purge the reservoir in vivo When used wisely, in vitro models are a powerful tool to study the selective pressures shaping the viral landscape. Our finding that massively deleted sequences rarely succeed in integrating has several ramifications. It demonstrates that the total HIV DNA can differ substantially in character from the integrated HIV DNA under certain circumstances. The presence of unintegrated HIV DNA has the potential to obscure selection pressures and confound the interpretation of clinical studies, especially in the case of trials involving treatment interruptions.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Paola Bertuccio
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - D Jake VanBelzen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Ryan Zurakowski
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent landscape of HIV therapeutic vaccine research, emphasizing the results of randomized controlled trials that included analytical treatment interruption (ATI) to assess efficacy. RECENT FINDINGS Therapeutic vaccines for HIV are designed to re-educate the host immune response in HIV-infected individuals to better control viral replication in the absence of antiretroviral therapy. No therapeutic vaccine has yet to induce long-term HIV remission following ATI in a randomized controlled trial. This is likely because the vaccines have not elicited a broad enough immune response to suppress the diverse escape variants that emerge during viral rebound, and have not been used with effective agents to reduce the HIV reservoir. Recent studies in nonhuman primates using combination approaches are showing significant successes, with several candidates eliciting significant antiviral activity following ATI. Future studies pairing these vaccines with effective reservoir reduction hold great promise. SUMMARY Therapeutic vaccines aim to modulate the immune system of HIV-infected individuals to elicit sustained virologic control in the absence of antiretroviral therapy. Therapeutic vaccines that elicit broad immune responses have recently shown promise in randomized controlled trials and nonhuman primate studies.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. RECENT FINDINGS Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Niessl
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Amy E Baxter
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada.
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.
| |
Collapse
|
15
|
Liang G, Zhao L, Qiao Y, Geng W, Zhang X, Liu M, Dong J, Ding H, Sun H, Shang H. Membrane metalloprotease TRABD2A restricts HIV-1 progeny production in resting CD4 + T cells by degrading viral Gag polyprotein. Nat Immunol 2019; 20:711-723. [PMID: 31061530 DOI: 10.1038/s41590-019-0385-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/26/2019] [Indexed: 11/09/2022]
Abstract
Resting CD4+ T cells are highly resistant to the production of human immunodeficiency virus type 1 (HIV-1). However, the mechanism by which resting CD4+ T cells restrict such production in the late viral replication phase of infection has remained unclear. In this study, we found that the cell membrane metalloprotease TRAB domain-containing protein 2A (TRABD2A) inhibited this production in resting CD4+ T cells by degrading the virion structural precursor polyprotein Gag at the plasma membrane. Depletion or inhibition of metalloprotease activity by TRABD2A profoundly enhanced HIV-1 production in resting CD4+ T cells. TRABD2A expression was much higher in resting CD4+ T cells than in activated CD4+ T cells and was considerably reduced by T cell activation. Moreover, reexpressing TRABD2A reinforced the resistance of activated CD4+ T cells to the production of HIV-1 progeny. Collectively, these results elucidate the molecular mechanism employed by resting CD4+ T cells to potently restrict the assembly and production of HIV-1 progeny.
Collapse
Affiliation(s)
- Guoxin Liang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.
| | - Li Zhao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaowei Zhang
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mei Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jinxiu Dong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Sun
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
16
|
Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis. Curr HIV/AIDS Rep 2019; 16:151-168. [PMID: 30707400 PMCID: PMC6441623 DOI: 10.1007/s11904-019-00433-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glycoimmunology is an emerging field focused on understanding how immune responses are mediated by glycans (carbohydrates) and their interaction with glycan-binding proteins called lectins. How glycans influence immunological functions is increasingly well understood. In a parallel way, in the HIV field, it is increasingly understood how the host immune system controls HIV persistence and immunopathogenesis. However, what has mostly been overlooked, despite its potential for therapeutic applications, is the role that the host glycosylation machinery plays in modulating the persistence and immunopathogenesis of HIV. Here, we will survey four areas in which the links between glycan-lectin interactions and immunology and between immunology and HIV are well described. For each area, we will describe these links and then delineate the opportunities for the HIV field in investigating potential interactions between glycoimmunology and HIV persistence/immunopathogenesis. RECENT FINDINGS Recent studies show that the human glycome (the repertoire of human glycan structures) plays critical roles in driving or modulating several cellular processes and immunological functions that are central to maintaining HIV infection. Understanding the links between glycoimmunology and HIV infection may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication, functional cure, or improved tolerance of lifelong infection.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Leila B Giron
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | | |
Collapse
|
17
|
Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre L, Routy JP, Kaufmann DE, Chomont N. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog 2019; 15:e1007619. [PMID: 30811499 PMCID: PMC6411230 DOI: 10.1371/journal.ppat.1007619] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/11/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir. HIV persists in a small pool of infected CD4+ T cells during ART. A better characterization of these cells is a pre-requisite to the development of HIV eradication strategies. We developed a novel assay, named HIV-Flow, to simultaneously quantify and characterize reservoir cells in individuals receiving ART. With this assay, we found that a median of only 5 cells/million have the ability to produce the HIV protein Gag in individuals on suppressive ART. These frequencies correlated with other assays aimed at measuring HIV reservoirs. Importantly, we show that the HIV reservoir is phenotypically diverse, with numerous cell subsets contributing to the pool of persistently infected cells. Nonetheless, we identified several markers preferentially expressed at the surface or these rare reservoir cells, including immune checkpoint molecules and homing receptors. By combining these markers, we identified discrete cellular subsets highly enriched in HIV-infected cells. This novel assay will facilitate the identification of markers expressed by cellular HIV reservoirs.
Collapse
Affiliation(s)
- Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E. Baxter
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Marta Massanella
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Dufour
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Louise Leyre
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Heath Centre, Montreal, Quebec, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
18
|
Colomb F, Giron LB, Premeaux TA, Mitchell BI, Niki T, Papasavvas E, Montaner LJ, Ndhlovu LC, Abdel-Mohsen M. Galectin-9 Mediates HIV Transcription by Inducing TCR-Dependent ERK Signaling. Front Immunol 2019; 10:267. [PMID: 30842775 PMCID: PMC6391929 DOI: 10.3389/fimmu.2019.00267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Endogenous plasma levels of the immunomodulatory carbohydrate-binding protein galectin-9 (Gal-9) are elevated during HIV infection and remain elevated after antiretroviral therapy (ART) suppression. We recently reported that Gal-9 regulates HIV transcription and potently reactivates latent HIV. However, the signaling mechanisms underlying Gal-9-mediated viral transcription remain unclear. Given that galectins are known to modulate T cell receptor (TCR)-signaling, we hypothesized that Gal-9 modulates HIV transcriptional activity, at least in part, through inducing TCR signaling pathways. Gal-9 induced T cell receptor ζ chain (CD3ζ) phosphorylation (11.2 to 32.1%; P = 0.008) in the J-Lat HIV latency model. Lck inhibition reduced Gal-9-mediated viral reactivation in the J-Lat HIV latency model (16.8-0.9%; P < 0.0001) and reduced both Gal-9-mediated CD4+ T cell activation (10.3 to 1.65% CD69 and CD25 co-expression; P = 0.0006), and IL-2/TNFα secretion (P < 0.004) in primary CD4+ T cells from HIV-infected individuals on suppressive ART. Using phospho-kinase antibody arrays, we found that Gal-9 increased the phosphorylation of the TCR-downstream signaling molecules ERK1/2 (26.7-fold) and CREB (6.6-fold). ERK and CREB inhibitors significantly reduced Gal-9-mediated viral reactivation (16.8 to 2.6 or 12.6%, respectively; P < 0.0007). Given that the immunosuppressive rapamycin uncouples HIV latency reversal from cytokine-associated toxicity, we also investigated whether rapamycin could uncouple Gal-9-mediated latency reactivation from its concurrent pro-inflammatory cytokine production. Rapamycin reduced Gal-9-mediated secretion of IL-2 (4.4-fold, P = 0.001) and TNF (4-fold, P = 0.02) without impacting viral reactivation (16.8% compared to 16.1%; P = 0.2). In conclusion, Gal-9 modulates HIV transcription by activating the TCR-downstream ERK and CREB signaling pathways in an Lck-dependent manner. Our findings could have implications for understanding the role of endogenous galectin interactions in modulating TCR signaling and maintaining chronic immune activation during ART-suppressed HIV infection. In addition, uncoupling Gal-9-mediated viral reactivation from undesirable pro-inflammatory effects, using rapamycin, may increase the potential utility of recombinant Gal-9 within the reversal of HIV latency eradication framework.
Collapse
Affiliation(s)
- Florent Colomb
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila B. Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Thomas A. Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Brooks I. Mitchell
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Toshiro Niki
- GalPharma Co. Ltd., Takamatsu-shi, Takamatsu, Japan
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Japan
| | - Emmanouil Papasavvas
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
19
|
Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman B, Vourekas A, Nunnari G, O'Doherty U. Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 2019; 10:728. [PMID: 30760706 PMCID: PMC6374386 DOI: 10.1038/s41467-019-08431-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/31/2018] [Indexed: 01/17/2023] Open
Abstract
After initiating antiretroviral therapy (ART), a rapid decline in HIV viral load is followed by a long period of undetectable viremia. Viral outgrowth assay suggests the reservoir continues to decline slowly. Here, we use full-length sequencing to longitudinally study the proviral landscape of four subjects on ART to investigate the selective pressures influencing the dynamics of the treatment-resistant HIV reservoir. We find intact and defective proviruses that contain genetic elements favoring efficient protein expression decrease over time. Moreover, proviruses that lack these genetic elements, yet contain strong donor splice sequences, increase relatively to other defective proviruses, especially among clones. Our work suggests that HIV expression occurs to a significant extent during ART and results in HIV clearance, but this is obscured by the expansion of proviral clones. Paradoxically, clonal expansion may also be enhanced by HIV expression that leads to splicing between HIV donor splice sites and downstream human exons.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - D Jake VanBelzen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, 60201, IL, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Maria Paola Bertuccio
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Emmanuele Venanzi-Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, 98124, Italy
| | - Stephen Migueles
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - R Brad Jones
- Infectious Disease Division, Weill Cornell Medical College, New York, 10065, NY, USA
| | - Talia Mota
- Infectious Disease Division, Weill Cornell Medical College, New York, 10065, NY, USA
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Kevin Groen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, The Netherlands
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Brad Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratories for Cancer Research, Leidos Biomedical Research Inc., supporting the Division of Clinical Research, NIAID, Frederick, 21702, MD, USA
| | - Anastasios Vourekas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, 98124, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.
| |
Collapse
|
20
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
21
|
Khoury G, Mota TM, Li S, Tumpach C, Lee MY, Jacobson J, Harty L, Anderson JL, Lewin SR, Purcell DFJ. HIV latency reversing agents act through Tat post translational modifications. Retrovirology 2018; 15:36. [PMID: 29751762 PMCID: PMC5948896 DOI: 10.1186/s12977-018-0421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. Results Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. Conclusions Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat. Electronic supplementary material The online version of this article (10.1186/s12977-018-0421-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Talia M Mota
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Shuang Li
- School of Life Sciences, Peking University, Beijing, China
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leigh Harty
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
22
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
23
|
Baxter AE, O'Doherty U, Kaufmann DE. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology 2018; 15:18. [PMID: 29394935 PMCID: PMC5797386 DOI: 10.1186/s12977-018-0392-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.
Collapse
Affiliation(s)
- Amy E Baxter
- CR-CHUM, Université de Montréal, Montréal, QC, Canada.,Scripps CHAVI-ID, La Jolla, CA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine and Therapeutic Pathology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel E Kaufmann
- CR-CHUM, Université de Montréal, Montréal, QC, Canada. .,Scripps CHAVI-ID, La Jolla, CA, USA.
| |
Collapse
|
24
|
Pasternak AO, Berkhout B. What do we measure when we measure cell-associated HIV RNA. Retrovirology 2018; 15:13. [PMID: 29378657 PMCID: PMC5789533 DOI: 10.1186/s12977-018-0397-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Cell-associated (CA) HIV RNA has received much attention in recent years as a surrogate measure of the efficiency of HIV latency reversion and because it may provide an estimate of the viral reservoir size. This review provides an update on some recent insights in the biology and clinical utility of this biomarker. We discuss a number of important considerations to be taken into account when interpreting CA HIV RNA measurements, as well as different methods to measure this biomarker.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Evaluation of the immunogenicity and impact on the latent HIV-1 reservoir of a conserved region vaccine, MVA.HIVconsv, in antiretroviral therapy-treated subjects. J Int AIDS Soc 2017; 20:21171. [PMID: 28537062 PMCID: PMC5515041 DOI: 10.7448/ias.20.1.21171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction: Vaccines may be key components of a curative strategy for HIV-1. We investigated whether a novel immunogen, HIVconsv, designed to re-direct T cell responses to conserved viral epitopes, could impact the HIV-1 reservoir in chronic antiretroviral therapy (ART)-treated subjects when delivered by modified vaccinia virus Ankara (MVA). Methods: Nineteen virologically suppressed individuals were randomized to receive vaccinations with MVA.HIVconsv (5.5 × 107 plaque-forming units, pfu, n = 8; 2.2 × 108 pfu, n = 7) or placebo (n = 4) at 0, 4 and 12 weeks. Magnitude, breadth and antiviral function of vaccine-induced T cells, cell-associated HIV-1 DNA in circulating CD4+ T cells and residual viremia in plasma were measured before and after vaccination. Results: 90% of subjects completed the vaccine regimen; there were no serious vaccine-related adverse events. The magnitude of HIVconsv-specific IFN-γ-secreting T cells was not significantly boosted in vaccinees when compared with placebos in ex vivo Elispot assays, due to greater than expected variation in HIV-specific T cell responses in the latter during the observation period. Ex vivo CD8+ T cell viral inhibitory capacity was modest but significantly increased post-vaccination with MVA.HIVconsv at the higher dose (p = 0.004) and was positively correlated with the frequency of HIVconsv-specific CD8+ CD107+ IFN-α± T cells (r = 0.57, p = 0.01). Total HIV-1 DNA and residual viral load did not change significantly from baseline in any group. Conclusions: Homologous prime-boost vaccination with MVA.HIVconsv was safe in HIV-positive ART-treated subjects but showed modest immunogenicity and did not significantly change the size of the viral reservoir. MVA.HIVconsv may be more effective when used in a heterologous prime-boost vaccination regimen and when combined with a latency-reversing agent. Clinical Trials Registration NCT01024842
Collapse
|
26
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Mujib S, Saiyed A, Fadel S, Bozorgzad A, Aidarus N, Yue FY, Benko E, Kovacs C, Emert-Sedlak LA, Smithgall TE, Ostrowski MA. Pharmacologic HIV-1 Nef blockade promotes CD8 T cell-mediated elimination of latently HIV-1-infected cells in vitro. JCI Insight 2017; 2:93684. [PMID: 28878119 PMCID: PMC5621880 DOI: 10.1172/jci.insight.93684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Eradication of the HIV-1 latent reservoir represents the current paradigm to developing a cure for AIDS. HIV-1 has evolved multiple mechanisms to evade CD8 T cell responses, including HIV-1 Nef-mediated downregulation of MHC-I from the surface of infected cells. Nef transcripts and protein are detectable in samples from aviremic donors, suggesting that Nef expression in latently HIV-1-infected CD4 T cells protects them from immune-mediated clearance. Here, we tested 4 small molecule inhibitors of HIV-1 Nef in an in vitro primary CD4 T cell latency model and measured the ability of autologous ex vivo or HIV-1 peptide-expanded CD8 T cells to recognize and kill latently infected cells as a function of inhibitor treatment. Nef inhibition enhanced cytokine secretion by autologous CD8 T cells against latently HIV-1-infected targets in an IFN-γ release assay. Additionally, CD8 T cell-mediated elimination of latently HIV-1-infected cells was significantly enhanced following Nef blockade, measured as a reduction in the frequency of infected cells and Gag protein in cultures following viral outgrowth assays. We demonstrate for the first time to our knowledge that Nef blockade, in combination with HIV-specific CD8 T cell expansion, might be a feasible strategy to target the HIV-1 latent reservoir that should be tested further in vivo.
Collapse
Affiliation(s)
- Shariq Mujib
- Institute of Medical Science (IMS), Department of Medicine, and
| | - Aamir Saiyed
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Saleh Fadel
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ardalan Bozorgzad
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nasra Aidarus
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Colin Kovacs
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mario A. Ostrowski
- Institute of Medical Science (IMS), Department of Medicine, and
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Unravelling HIV-1 Latency, One Cell at a Time. Trends Microbiol 2017; 25:932-941. [PMID: 28668335 DOI: 10.1016/j.tim.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
A single virus is capable of infecting and replicating in a single cell. Recent advances across single-cell omics technologies - genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, and metabolomics - will offer unprecedented opportunities to gain more insights into the various aspects of the life cycle of viruses and their impact on the host cell. Here, using the human immunodeficiency virus type 1 (HIV-1) as an example, we summarize the current knowledge and the future potential of single-cell omics in the investigation of an important aspect of the life cycle of HIV-1 that represents a major hurdle in achieving viral eradication, HIV-1 latency.
Collapse
|
29
|
The Antiviral Immune Response and Its Impact on the HIV-1 Reservoir. Curr Top Microbiol Immunol 2017; 417:43-67. [PMID: 29071476 DOI: 10.1007/82_2017_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Latently infected resting memory CD4+ T cells represent a major barrier to HIV-1 eradication. Studies have shown that it will not be possible to cure HIV-1 infection unless these cells are eliminated. Latently infected cells probably do not express viral antigens and thus may not be susceptible to the HIV-1 specific immune response, nevertheless the size and composition of the reservoir is influenced by the immune system. In this chapter, we review the different components of the HIV-1 specific immune response and discuss how the immune system can be harnessed to eradicate the virus.
Collapse
|
30
|
Delagrèverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing Clinical Trials of Human Immunodeficiency Virus Latency-Reversing and Immunomodulatory Agents. Open Forum Infect Dis 2016; 3:ofw189. [PMID: 27757411 PMCID: PMC5066458 DOI: 10.1093/ofid/ofw189] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
In chronic human immunodeficiency virus (HIV)-1 infection, long-lived latently infected cells are the major barrier to virus eradication and functional cure. Several therapeutic strategies to perturb, eliminate, and/or control this reservoir are now being pursued in the clinic. These strategies include latency reversal agents (LRAs) designed to reactivate HIV-1 ribonucleic acid transcription and virus production and a variety of immune-modifying drugs designed to reverse latency, block homeostatic proliferation, and replenish the viral reservoir, eliminate virus-producing cells, and/or control HIV replication after cessation of antiretroviral therapy. This review provides a summary of ongoing clinical trials of HIV LRAs and immunomodulatory molecules, and it highlights challenges in the comparison and interpretation of the expected trial results.
Collapse
Affiliation(s)
- Héloïse M Delagrèverie
- INSERM U941, Université Paris Diderot, Laboratoire de Virologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris , France
| | - Constance Delaugerre
- INSERM U941, Université Paris Diderot, Laboratoire de Virologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris , France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Steven G Deeks
- HIV/AIDS Division, Department of Medicine , San Francisco General Hospital, University of California
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
31
|
Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, Massanella M, Brassard N, Alsahafi N, Delgado GG, Routy JP, Walker BD, Finzi A, Chomont N, Kaufmann DE. Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals. Cell Host Microbe 2016; 20:368-380. [PMID: 27545045 DOI: 10.1016/j.chom.2016.07.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
HIV cure efforts are hampered by limited characterization of the cells supporting HIV replication in vivo and inadequate methods for quantifying the latent viral reservoir in patients receiving antiretroviral therapy. We combine fluorescent in situ RNA hybridization with detection of HIV protein and flow cytometry, enabling detection of 0.5-1 gag-pol mRNA(+)/Gag protein(+)-infected cells per million. In the peripheral blood of untreated persons, active HIV replication correlated with viremia and occurred in CD4 T cells expressing T follicular helper cell markers and inhibitory co-receptors. In virally suppressed subjects, the approach identified latently infected cells capable of producing HIV mRNA and protein after stimulation with PMA/ionomycin and latency-reversing agents (LRAs). While ingenol-induced reactivation mirrored the effector and central/transitional memory CD4 T cell contribution to the pool of integrated HIV DNA, bryostatin-induced reactivation occurred predominantly in cells expressing effector memory markers. This indicates that CD4 T cell differentiation status differentially affects LRA effectiveness.
Collapse
Affiliation(s)
- Amy E Baxter
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Julia Niessl
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Rémi Fromentin
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jonathan Richard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Filippos Porichis
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Roxanne Charlebois
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marta Massanella
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nirmin Alsahafi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gloria-Gabrielle Delgado
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bruce D Walker
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicolas Chomont
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC H2X 0A9, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Lee SA, Bacchetti P, Chomont N, Fromentin R, Lewin SR, O’Doherty U, Palmer S, Richman DD, Siliciano JD, Yukl SA, Deeks SG, Burbelo PD. Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy. PLoS One 2016; 11:e0160192. [PMID: 27483366 PMCID: PMC4970722 DOI: 10.1371/journal.pone.0160192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Background A major challenge to HIV eradication strategies is the lack of an accurate measurement of the total burden of replication-competent HIV (the “reservoir”). We assessed the association of anti-HIV antibody responses and the estimated size of the reservoir during antiretroviral therapy (ART). Methods We evaluated anti-HIV antibody profiles using luciferase immunoprecipitation systems (LIPS) assay in relation to several blood-based HIV reservoir measures: total and 2-LTR DNA (rtPCR or droplet digital PCR); integrated DNA (Alu PCR); unspliced RNA (rtPCR), multiply-spliced RNA (TILDA), residual plasma HIV RNA (single copy PCR), and replication-competent virus (outgrowth assay). We also assessed total HIV DNA and RNA in gut-associated lymphoid tissue (rtPCR). Spearman correlations and linear regressions were performed using log-transformed blood- or tissue-based reservoir measurements as predictors and log-transformed antibody levels as outcome variables. Results Among 51 chronically HIV-infected ART-suppressed participants (median age = 57, nadir CD4+ count = 196 cells/mm3, ART duration = 9 years), the most statistically significant associations were between antibody responses to integrase and HIV RNA in gut-associated lymphoid tissue (1.17 fold-increase per two-fold RNA increase, P = 0.004) and between antibody responses to matrix and integrated HIV DNA in resting CD4+ T cells (0.35 fold-decrease per two-fold DNA increase, P = 0.003). However, these associations were not statistically significant after a stringent Bonferroni-adjustment of P<0.00045. Multivariate models including age and duration of ART did not markedly alter results. Conclusions Our findings suggest that anti-HIV antibody responses may reflect the size of the HIV reservoir during chronic treated HIV disease, possibly via antigen recognition in reservoir sites. Larger, prospective studies are needed to validate the utility of antibody levels as a measure of the total body burden of HIV during treatment.
Collapse
Affiliation(s)
- Sulggi A. Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| | - Peter Bacchetti
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Nicolas Chomont
- CR-CHUM and Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Remi Fromentin
- CR-CHUM and Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Sharon R. Lewin
- The Peter Doherty for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Douglas D. Richman
- Departments of Medicine and Pathology, University of California San Diego, La Jolla, California, United States of America, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
| | - Janet D. Siliciano
- Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
- Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Peter D. Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, Bethesda, MD, United States of America
| |
Collapse
|
33
|
Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors. Mol Ther 2016; 24:1913-1925. [PMID: 27401039 PMCID: PMC5154472 DOI: 10.1038/mt.2016.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Persistence of human immunodeficiency virus (HIV) in a latent state in long-lived CD4+ T-cells is a major barrier to eradication. Latency-reversing agents that induce direct or immune-mediated cell death upon reactivation of HIV are a possible solution. However, clearance of reactivated cells may require immunotherapeutic agents that are fine-tuned to detect viral antigens when expressed at low levels. We tested the antiviral efficacy of immune-mobilizing monoclonal T-cell receptors against viruses (ImmTAVs), bispecific molecules that redirect CD8+ T-cells to kill HIV-infected CD4+ T-cells. T-cell receptors specific for an immunodominant Gag epitope, SL9, and its escape variants were engineered to achieve supraphysiological affinity and fused to a humanised CD3-specific single chain antibody fragment. Ex vivo polyclonal CD8+ T-cells were efficiently redirected by immune-mobilising monoclonal T-cell receptors against viruses to eliminate CD4+ T-cells from human histocompatibility leukocyte antigen (HLA)-A*0201-positive antiretroviral therapy-treated patients after reactivation of inducible HIV in vitro. The efficiency of infected cell elimination correlated with HIV Gag expression. Immune-mobilising monoclonal T-cell receptors against viruses have potential as a therapy to facilitate clearance of reactivated HIV reservoir cells.
Collapse
|
34
|
Jones RB, Mueller S, O’Connor R, Rimpel K, Sloan DD, Karel D, Wong HC, Jeng EK, Thomas AS, Whitney JB, Lim SY, Kovacs C, Benko E, Karandish S, Huang SH, Buzon MJ, Lichterfeld M, Irrinki A, Murry JP, Tsai A, Yu H, Geleziunas R, Trocha A, Ostrowski MA, Irvine DJ, Walker BD. A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4+ T-Cells to Recognition by Cytotoxic T-Lymphocytes. PLoS Pathog 2016; 12:e1005545. [PMID: 27082643 PMCID: PMC4833318 DOI: 10.1371/journal.ppat.1005545] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Resting CD4+ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8+ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8+ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8+ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8+ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8+ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam3CSK4. In contrast, we did not observe CD8+ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8+ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8+ T-cells in HIV eradication strategies. Although modern therapies have greatly improved the lives of HIV-positive people with access to care, a cure remains elusive. This leaves these individuals burdened by a lifelong commitment to medication, and fails to fully restore health. Curing infection would likely require therapies that combine the ability to force the virus out the ‘latent state’ in which it hides, with immune responses able to kill unmasked infected cells, the so called “shock and kill” strategy. A critical aspect of this strategy is identifying drugs that are effective at shocking virus out of latency, known as latency reversing agents. In this study, we took the novel approach of using CD8+ T-cells, immune cells responsible for killing infected cells, as biosensors able to detect the unmasking of latently-infected cells. Using this method, we screened a panel of potential latency reversing agents. We found that while a subset of these agents exposed infected cells to the immune system, others did not. Our results establish a new method for screening potential latency reversing agents, and support the prioritization of the agents that were shown to be effective for combination with CD8+ T-cells in shock and kill strategies aimed at curing HIV infection.
Collapse
Affiliation(s)
- R. Brad Jones
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Stefanie Mueller
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Rachel O’Connor
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Katherine Rimpel
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Derek D. Sloan
- Gilead Sciences, Foster City, California, United States of America
| | - Dan Karel
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Hing C. Wong
- Altor BioScience Corporation, Miramar, Florida, United States of America
| | - Emily K. Jeng
- Altor BioScience Corporation, Miramar, Florida, United States of America
| | - Allison S. Thomas
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - James B. Whitney
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Colin Kovacs
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sara Karandish
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Szu-Han Huang
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Maria J. Buzon
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mathias Lichterfeld
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Alivelu Irrinki
- Gilead Sciences, Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Foster City, California, United States of America
| | - Angela Tsai
- Gilead Sciences, Foster City, California, United States of America
| | - Helen Yu
- Gilead Sciences, Foster City, California, United States of America
| | - Romas Geleziunas
- Gilead Sciences, Foster City, California, United States of America
| | - Alicja Trocha
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mario A. Ostrowski
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Medical Institute, St. Michael’s Hospital, Toronto, Ontario, Canad
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Massanella M, Fromentin R, Chomont N. Residual inflammation and viral reservoirs: alliance against an HIV cure. Curr Opin HIV AIDS 2016; 11:234-41. [PMID: 26575148 PMCID: PMC4743501 DOI: 10.1097/coh.0000000000000230] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW HIV persists in cellular and anatomical reservoirs during antiretroviral therapy (ART). Viral persistence is ensured by a variety of mechanisms including ongoing viral replication and proliferation of latently infected cells. In this review, we summarize recent findings establishing a link between the unresolved levels of inflammation observed in virally suppressed individuals on ART and the mechanisms responsible for HIV persistence. RECENT FINDINGS Residual levels of viral replication during ART are associated with persistent low levels of immune activation, suggesting that unresolved inflammation can promote the replenishment of the HIV reservoir in tissues. In addition, the recent findings that the latent HIV reservoir is maintained by continuous proliferation of latently infected cells provide another mechanism by which residual inflammation could contribute to HIV persistence. SUMMARY Residual inflammation during ART is likely to be a critical parameter contributing to HIV persistence. Therefore, reducing inflammation may be an efficient way to interfere with the maintenance of the HIV reservoir in virally suppressed individuals on ART.
Collapse
Affiliation(s)
- Marta Massanella
- Université de Montréal, Faculté de Médecine, Department of microbiology, infectiology and immunology, Montréal, QC, Canada
- Centre de Recherche du CHUM, Montréal, QC, Canada
| | - Rémi Fromentin
- Université de Montréal, Faculté de Médecine, Department of microbiology, infectiology and immunology, Montréal, QC, Canada
- Centre de Recherche du CHUM, Montréal, QC, Canada
| | - Nicolas Chomont
- Université de Montréal, Faculté de Médecine, Department of microbiology, infectiology and immunology, Montréal, QC, Canada
- Centre de Recherche du CHUM, Montréal, QC, Canada
| |
Collapse
|
36
|
Chan CN, Trinité B, Lee CS, Mahajan S, Anand A, Wodarz D, Sabbaj S, Bansal A, Goepfert PA, Levy DN. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology 2016; 13:1. [PMID: 26728316 PMCID: PMC4700562 DOI: 10.1186/s12977-015-0234-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection. Results Here, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells. Conclusions These studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses are inherent properties of the direct infection of resting CD4 T cells. Experimental models of HIV-1 latency employing directly infected resting CD4 T cells should calibrate the contribution of unintegrated HIV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi N Chan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Caroline S Lee
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Saurabh Mahajan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Akanksha Anand
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, School of Biological, Sciences, Irvine, CA, 92697, USA.
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
37
|
Abstract
After the success of combination antiretroviral therapy (cART) to treat HIV infection, the next great frontier is to cure infected persons, a formidable challenge. HIV persists in a quiescent state in resting CD4+ T cells, where the replicative enzymes targeted by cART are not active. Although low levels of HIV transcripts are detectable in these resting cells, little to no viral protein is produced, rendering this reservoir difficult to detect by the host CD8+ T cell response. However, recent advances suggest that this state of latency might be pharmacologically reversed, resulting in viral protein expression without the adverse effects of massive cellular activation. Emerging data suggest that with this approach, infected cells will not die of viral cytopathic effects, but might be eliminated if HIV-specific CD8+ T cells can be effectively harnessed. Here, we address the antiviral properties of HIV-specific CD8+ T cells and how these cells might be harnessed to greater effect toward achieving viral eradication or a functional cure.
Collapse
|
38
|
Sloan DD, Lam CYK, Irrinki A, Liu L, Tsai A, Pace CS, Kaur J, Murry JP, Balakrishnan M, Moore PA, Johnson S, Nordstrom JL, Cihlar T, Koenig S. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells. PLoS Pathog 2015; 11:e1005233. [PMID: 26539983 PMCID: PMC4634948 DOI: 10.1371/journal.ppat.1005233] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 11/24/2022] Open
Abstract
HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. Current HIV therapies prevent AIDS by dramatically reducing, but not eliminating, HIV infection. A reservoir of HIV-infected cells persists during long-term antiviral therapy, and individuals are at increased risk to develop non-AIDS illnesses, e.g., accelerated heart, bone, or kidney disease. Novel strategies are thus needed to safely kill HIV-infected cells and reduce or eliminate the HIV reservoir. An emerging strategy to kill HIV-infected cells involves antibodies (Abs) that bind the HIV envelope protein (Env). Env can distinguish HIV-infected cells from uninfected cells, and some Env-specific Abs can kill HIV-infected cells by recruiting immune cells, e.g., NK cells and macrophages. Here, we developed a strategy to kill HIV-infected cells that is complementary to Env-specific Abs. We designed and evaluated Dual-Affinity Re-Targeting (DART) molecules that incorporate Env-binding specificities with a CD3-binding specificity to recruit and activate cytotoxic T cells. We report that HIVxCD3 DARTs potently and selectively kill HIV-infected cells. Furthermore, HIV DARTs perturb resting and activated viral reservoirs in cells isolated from individuals on antiviral therapy. This novel strategy may be an important element of future antiviral therapies that target the HIV reservoir.
Collapse
Affiliation(s)
- Derek D. Sloan
- Gilead Sciences, Foster City, California, United States of America
- * E-mail: (DDS); (SK)
| | | | - Alivelu Irrinki
- Gilead Sciences, Foster City, California, United States of America
| | - Liqin Liu
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Angela Tsai
- Gilead Sciences, Foster City, California, United States of America
| | - Craig S. Pace
- Gilead Sciences, Foster City, California, United States of America
| | - Jasmine Kaur
- Gilead Sciences, Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Foster City, California, United States of America
| | | | - Paul A. Moore
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Syd Johnson
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | | | - Tomas Cihlar
- Gilead Sciences, Foster City, California, United States of America
| | - Scott Koenig
- MacroGenics, Inc., Rockville, Maryland, United States of America
- * E-mail: (DDS); (SK)
| |
Collapse
|
39
|
A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy. J Virol 2015; 90:2165-79. [PMID: 26537682 PMCID: PMC4810694 DOI: 10.1128/jvi.01913-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
A major goal in HIV eradication research is characterizing the reservoir cells that harbor HIV in the presence of antiretroviral therapy (ART), which reseed viremia after treatment is stopped. In general, it is assumed that the reservoir consists of CD4+ T cells that express no viral proteins. However, recent findings suggest that this may be an overly simplistic view and that the cells that contribute to the reservoir may be a diverse population that includes both CD4+ and CD4− cells. In this study, we directly infected resting CD4+ T cells and used fluorescence-activated cell sorting (FACS) and fiber-optic array scanning technology (FAST) to identify and image cells expressing HIV Gag. We found that Gag expression from integrated proviruses occurred in resting cells that lacked surface CD4, likely resulting from Nef- and Env-mediated receptor internalization. We also extended our approach to detect cells expressing HIV proteins in patients suppressed on ART. We found evidence that rare Gag+ cells persist during ART and that these cells are often negative for CD4. We propose that these double-negative α/β T cells that express HIV protein may be a component of the long-lived reservoir.
IMPORTANCE A reservoir of infected cells persists in HIV-infected patients during antiretroviral therapy (ART) that leads to rebound of virus if treatment is stopped. In this study, we used flow cytometry and cell imaging to characterize protein expression in HIV-infected resting cells. HIV Gag protein can be directly detected in infected resting cells and occurs with simultaneous loss of CD4, consistent with the expression of additional viral proteins, such as Env and Nef. Gag+ CD4− cells can also be detected in suppressed patients, suggesting that a subset of infected cells express proteins during ART. Understanding the regulation of viral protein expression during ART will be key to designing effective strategies to eradicate HIV reservoirs.
Collapse
|
40
|
Prolonged Antiretroviral Therapy Preserves HIV-1-Specific CD8 T Cells with Stem Cell-Like Properties. J Virol 2015; 89:7829-40. [PMID: 25995260 DOI: 10.1128/jvi.00789-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1-specific CD8 T cells can influence HIV-1 disease progression during untreated HIV-1 infection, but the functional and phenotypic properties of HIV-1-specific CD8 T cells in individuals treated with suppressive antiretroviral therapy remain less well understood. Here we show that a subgroup of HIV-1-specific CD8 T cells with stem cell-like properties, termed T memory stem cells (TSCM cells), is enriched in patients receiving suppressive antiretroviral therapy compared with their levels in untreated progressors or controllers. In addition, a prolonged duration of antiretroviral therapy was associated with a progressive increase in the relative proportions of these stem cell-like HIV-1-specific CD8 T cells. Interestingly, the proportions of HIV-1-specific CD8 TSCM cells and total HIV-1-specific CD8 TSCM cells were associated with the CD4 T cell counts during treatment with antiretroviral therapy but not with CD4 T cell counts, viral loads, or immune activation parameters in untreated patients, including controllers. HIV-1-specific CD8 TSCM cells had increased abilities to secrete interleukin-2 in response to viral antigen, while secretion of gamma interferon (IFN-γ) was more limited in comparison to alternative HIV-1-specific CD8 T cell subsets; however, only proportions of IFN-γ-secreting HIV-1-specific CD8 TSCM cells were associated with CD4 T cell counts during antiretroviral therapy. Together, these data suggest that HIV-1-specific CD8 TSCM cells represent a long-lasting component of the cellular immune response to HIV-1 that persists in an antigen-independent fashion during antiretroviral therapy but seems unable to survive and expand under conditions of ongoing viral replication during untreated infection. IMPORTANCE Memory CD8 T cells that imitate the functional properties of stem cells to maintain lifelong cellular immunity have been hypothesized for many years, but only recently have such cells, termed T memory stem cells (TSCM cells), been physically identified and isolated in humans, mice, and nonhuman primates. Here, we investigated whether cellular immune responses against HIV-1 include such T memory stem cells. Our data show that HIV-1-specific CD8 T memory stem cells are detectable during all stages of HIV-1 infection but occur most visibly at times of prolonged viral antigen suppression by antiretroviral combination therapy. These cells may therefore be particularly relevant for designing antiviral immune defense strategies against the residual reservoir of HIV-1-infected cells that persists despite treatment and leads to viral rebound upon treatment discontinuation.
Collapse
|
41
|
Tjiam MC, Taylor JPA, Morshidi MA, Sariputra L, Burrows S, Martin JN, Deeks SG, Tan DBA, Lee S, Fernandez S, French MA. Viremic HIV Controllers Exhibit High Plasmacytoid Dendritic Cell-Reactive Opsonophagocytic IgG Antibody Responses against HIV-1 p24 Associated with Greater Antibody Isotype Diversification. THE JOURNAL OF IMMUNOLOGY 2015; 194:5320-8. [PMID: 25911748 DOI: 10.4049/jimmunol.1402918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/24/2015] [Indexed: 12/26/2022]
Abstract
Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG Abs against HIV-1 Gag proteins (e.g., p24) and/or production of IgG2 Abs against HIV-1 proteins. These Abs likely exert their effect by activating antiviral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG Ab response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcγRIIa would be associated with control of HIV and that this would be enhanced by Ab isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG Ab responses against HIV-1 p24 were higher in HIV controllers (HIV RNA < 2000 copies/ml) than noncontrollers (HIV RNA > 10,000 copies/ml), particularly in controllers with low but detectable viremia (HIV RNA 75-2000 copies/ml). Opsonophagocytic Ab responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and, notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these Abs was mediated via FcγRIIa. Isotype diversification (toward IgG2) was greatest in HIV controllers, and depletion of IgG2 from Ig preparations indicated that IgG2 Abs to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of Ab function, such as Ag opsonization. Our findings emulate those for pDC-reactive opsonophagocytic Ab responses against coxsackie, picorna, and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development.
Collapse
Affiliation(s)
- M Christian Tjiam
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - James P A Taylor
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Mazmah A Morshidi
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lucy Sariputra
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Sally Burrows
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jeffrey N Martin
- Division of Clinical Epidemiology, University of California, San Francisco, San Francisco, CA 94117
| | - Steven G Deeks
- School of Medicine, University of California, San Francisco, San Francisco, CA 94117
| | - Dino B A Tan
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6009, Australia; Centre for Asthma, Allergy and Respiratory Research, Lung Institute of Western Australia, Perth, Western Australia 6009, Australia; and
| | - Silvia Lee
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Microbiology and Infectious Diseases, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martyn A French
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Western Australia 6000, Australia;
| |
Collapse
|
42
|
Abstract
OBJECTIVE The eradication of HIV necessitates elimination of the HIV latent reservoir. Identifying host determinants governing latency and reservoir size in the setting of antiretroviral therapy (ART) is an important step in developing strategies to cure HIV infection. We sought to determine the impact of cell-intrinsic immunity on the HIV latent reservoir. DESIGN We investigated the relevance of a comprehensive panel of established anti-HIV-1 host restriction factors to multiple established virologic and immunologic measures of viral persistence in HIV-1-infected, ART-suppressed individuals. METHODS We measured the mRNA expression of 42 anti-HIV-1 host restriction factors, levels of cell-associated HIV-1 RNA, levels of total pol and 2-long terminal repeat (2-LTR) circle HIV-1 DNA and immunophenotypes of CD4 T cells in 72 HIV-1-infected individuals on suppressive ART (23 individuals initiated ART less than 1 year post-infection, and 49 individuals initiated ART greater than 1 year post-infection). Correlations were analysed using nonparametric tests. RESULTS The enhanced expression of a few select host restriction factors, p21, schlafen 11 and PAF1, was strongly associated with reduced CD4 T-cell associated HIV RNA during ART (P < 0.001). In addition, our data suggested that ART perturbs the regulatory relationship between CD4 T-cell activation and restriction factor expression. Lastly, cell-intrinsic immune responses were significantly enhanced in individuals who initiated ART during early versus chronic infection and may contribute to the reduced reservoir size observed in these individuals. CONCLUSION Intrinsic immune responses modulate HIV persistence during suppressive ART and may be manipulated to enhance the efficacy of ART and promote viral eradication through reversal of latency in vivo.
Collapse
|
43
|
Li JZ, Heisey A, Ahmed H, Wang H, Zheng L, Carrington M, Wrin T, Schooley RT, Lederman MM, Kuritzkes DR. Relationship of HIV reservoir characteristics with immune status and viral rebound kinetics in an HIV therapeutic vaccine study. AIDS 2014; 28:2649-57. [PMID: 25254301 PMCID: PMC4267919 DOI: 10.1097/qad.0000000000000478] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The objective of this study is to evaluate the impact of therapeutic HIV vaccination on the HIV reservoir and assess the relationship of the viral reservoir with HIV-specific immune status and viral rebound kinetics. DESIGN A retrospective analysis of ACTG A5197, a randomized, placebo-controlled trial of a therapeutic rAd5 HIV-1 gag vaccine. METHODS Participants received vaccine/placebo at weeks 0, 4 and 26 prior to a 16-week analytic treatment interruption (ATI) at week 38. Cell-associated HIV-1 RNA and DNA (CA-RNA and CA-DNA) and HIV-1 residual viremia were quantified at weeks 0, 8 and 38. HIV-specific CD4(+)/CD8(+) activity was assessed by an intracellular cytokine staining assay. RESULTS At study entry, CA-RNA and CA-DNA levels were correlated inversely with the numbers of HIV-specific CD4(+) interferon-γ producing cells (CA-RNA: r = -0.23, P = 0.03 and CA-DNA: r = -0.28, P < 0.01, N = 93). Therapeutic HIV vaccination induced HIV-specific CD4(+) activity, but did not significantly affect levels of CA-RNA or CA-DNA. Vaccine recipients with undetectable residual viremia at week 8 had higher frequencies of HIV-specific CD4(+) and CD8(+) interferon-γ producing cells (undetectable versus detectable residual viremia: 277 versus 161 CD4(+) cells/10(6) lymphocytes, P = 0.03 and 1326 versus 669 CD8(+) cells/10 lymphocytes, P = 0.04). Pre-ATI CA-RNA and CA-DNA were associated with post-ATI plasma HIV set point (CA-RNA: r = 0.51, P < 0.01 and CA-DNA: r = 0.47, P < 0.01). CONCLUSION Vaccine-induced T-cell responses were associated with a modest transient effect on residual viremia, but more potent immune responses and/or combination treatment with latency-reversing agents are needed to reduce the HIV reservoir. HIV reservoir measures may act as biomarkers of post-ATI viral rebound kinetics. CLINICAL TRIALS REGISTRATION NCT00080106.
Collapse
Affiliation(s)
- Jonathan Z Li
- aBrigham and Women's Hospital, Harvard Med School bHarvard School of Public Health, Boston, Massachusetts cCancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland dRagon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts eMonogram Biosciences fUniversity of California, San Diego, La Jolla, California gCase Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 2014; 12:750-64. [PMID: 25402363 PMCID: PMC4383747 DOI: 10.1038/nrmicro3352] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART.
Collapse
Affiliation(s)
- Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Julia Marsh Sung
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Carolina Garrido
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - David M Margolis
- 1] Department of Medicine, University of North Carolina at Chapel Hill. [2] Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. [3] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
45
|
Sebastian NT, Collins KL. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions. Expert Rev Anti Infect Ther 2014; 12:1187-201. [PMID: 25189526 DOI: 10.1586/14787210.2014.956094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy toward a cure targets latent virus in resting memory CD4(+) T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4(+) T cells and hematopoietic progenitor cells. In addition, the authors review approaches for clearance of these reservoirs along with other important topics related to HIV eradication.
Collapse
Affiliation(s)
- Nadia T Sebastian
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review highlights recent studies undertaken to further advance the search for successful approaches to eradicate HIV infection. RECENT FINDINGS Small pharmacological compounds such as histone deacetylase inhibitors, inhibitors of bromodomain and extraterminal proteins such as JQ1, and protein kinase C activators such as bryostatin and prostratin are proposed as putative candidates for inducing the expression of latent HIV in a so-called 'shock and kill' or 'kick and kill' strategy for HIV eradication. However, in order to achieve viral clearance, it is thought likely these compounds will have to be administered in concert with strategies that augment clearance of virus-infected cells in patients that have long been aviremic on successful antiretroviral therapy (ART). Several candidate therapies for this purpose are at hand, such as therapeutic HIV vaccines - recently shown to promote robust cytotoxic T cell responses and blunt viral rebound after ART interruption in clinical studies. HIV-infected patients treated during early infection may be ideal candidates for early studies to test these strategies, as early ART has been shown to limit the establishment of an HIV reservoir. SUMMARY HIV latency is multifactorial and thus the eradication of HIV infection may require multiple approaches. Translational efforts employing pharmacological methods to target HIV latency should evaluate in parallel the additional potential benefits of invigorating the immune response of HIV-infected individuals, and limiting the size of the reservoir via early ART.
Collapse
Affiliation(s)
- Nancie M Archin
- Institute for Global Health and Infectious Diseases, and Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
47
|
Abstract
HIV is a devastating disease affecting millions of people worldwide despite the advent of successful antiretroviral therapy (ART). However, ART does not result in a cure and has to be taken for life. Accordingly, researchers are turning towards cure efforts, particularly in the light of two patients whose HIV has been seemingly eradicated. Numerous approaches and strategies have been considered for curing HIV, but no scalable and safe solution has yet been reached. With newly discovered difficulties in measuring the HIV reservoir, the main barrier to a cure, the only true test of cure is to stop ART and see whether the virus becomes detectable. However, it is possible that this treatment interruption may be associated with certain risks for patients. Here, we compare the current major approaches and recent advances for curing HIV, as well as discuss ways of evaluating HIV cure and the safety concerns involved.
Collapse
Affiliation(s)
- Matthew Pace
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Co-delivery of LIGHT expression plasmid enhances humoral and cellular immune responses to HIV-1 Nef in mice. Arch Virol 2014; 159:1663-9. [PMID: 24435162 DOI: 10.1007/s00705-014-1981-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/03/2014] [Indexed: 01/17/2023]
Abstract
The immunogenicity and efficacy of a DNA vaccine can be greatly enhanced when a gene adjuvant is used. LIGHT, a member of TNF superfamily, can function as a costimulatory molecule for human naïve T cells to proliferate and can be a potential gene adjuvant. In the current study, the eukaryotic expression plasmid pcDNA-nef was constructed by inserting a full-length nef gene into pcDNA3.1(+), and an in vitro transfection experiment suggested that the nef gene could be expressed successfully in mammalian cells. BALB/c mice were immunized with HIV-1 nef DNA vaccine plasmids alone or in combination with LIGHT expression plasmids, and the specific humoral and cellular immune responses were measured. The data showed that HIV-1 nef DNA vaccine plasmids could induce anti-Nef antibodies, Nef-specific lymphocyte proliferation and CTL activity, whereas stronger specific immune responses were induced in mice when co-immunizing with HIV-1 nef DNA vaccine plasmids and LIGHT expression plasmids, suggesting that the eukaryotic expression vector encoding HIV-1 nef is capable of inducing specific immune responses towards HIV-1 Nef and that LIGHT could be considered as a gene adjuvant for HIV-1 DNA vaccination.
Collapse
|
49
|
Pohlmeyer CW, Buckheit RW, Siliciano RF, Blankson JN. CD8+ T cells from HLA-B*57 elite suppressors effectively suppress replication of HIV-1 escape mutants. Retrovirology 2013; 10:152. [PMID: 24330837 PMCID: PMC3878989 DOI: 10.1186/1742-4690-10-152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
Abstract
Background Elite Controllers or Suppressors (ES) are HIV-1 positive individuals who maintain plasma viral loads below the limit of detection of standard clinical assays without antiretroviral therapy. Multiple lines of evidence suggest that the control of viral replication in these patients is due to a strong and specific cytotoxic T lymphocyte (CTL) response. The ability of CD8+ T cells to control HIV-1 replication is believed to be impaired by the development of escape mutations. Surprisingly, viruses amplified from the plasma of ES have been shown to contain multiple escape mutations, and it is not clear how immunologic control is maintained in the face of virologic escape. Results We investigated the effect of escape mutations within HLA*B-57-restricted Gag epitopes on the CD8+ T cell mediated suppression of HIV-1 replication. Using site directed mutagenesis, we constructed six NL4-3 based viruses with canonical escape mutations in one to three HLA*B-57-restricted Gag epitopes. Interestingly, similar levels of CTL-mediated suppression of replication in autologous primary CD4+ T cells were observed for all of the escape mutants. Intracellular cytokine staining was performed in order to determine the mechanisms involved in the suppression of the escape variants. While low baseline CD8+ T cells responses to wild type and escape variant peptides were seen, stimulation of PBMC with either wild type or escape variant peptides resulted in increased IFN-γ and perforin expression. Conclusions These data presented demonstrate that CD8+ T cells from ES are capable of suppressing replication of virus harboring escape mutations in HLA-B*57-restricted Gag epitopes. Additionally, our data suggest that ES CD8+ T cells are capable of generating effective de novo responses to escape mutants.
Collapse
Affiliation(s)
| | | | | | - Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N, Broadway, BRB 880, Baltimore, MD 21205, USA.
| |
Collapse
|