1
|
Li Y, Tang J, Tang W, Liu C, Li Z. Host factors influencing sexual differentiation and transmission of Plasmodium: A comprehensive review. Acta Trop 2025; 266:107634. [PMID: 40288552 DOI: 10.1016/j.actatropica.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Malaria, a severe parasitic disease caused by Plasmodium infections, remains a major global health challenge. Efforts to eradicate malaria are complicated by the parasite's intricate life cycle, which alternates between vertebrate hosts and mosquito vectors. Host-derived factors and parasite-sourced components exert crucial roles in regulating this biological process. This review explores the critical role of host-derived factors in shaping Plasmodium sexual differentiation and transmission. We examine how vertebrate and mosquito host-specific factors either promote or restrict parasite development, influencing the transition from vertebrates to mosquitoes. Understanding these host-mediated mechanisms is crucial for developing novel transmission-blocking strategies to reduce malaria prevalence. By highlighting key interactions between hosts and parasites, this review provides insights into potential interventions that could disrupt Plasmodium transmission and contribute to malaria control efforts.
Collapse
Affiliation(s)
- Yanlin Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Claessen MJAG, Yagci N, van Mierlo G, Kersten MJ, von Lindern M, van den Akker E. Human serum albumin or polyvinyl alcohol can only partially replace human plasma during in vitro red cell production from PBMC. Sci Rep 2025; 15:12058. [PMID: 40199875 PMCID: PMC11978868 DOI: 10.1038/s41598-024-81341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 04/10/2025] Open
Abstract
Transfusion of donor-derived red blood cells (RBC) depends on donor availability. Alloimmunization can limit the availability of transfusion units, particularly for chronically transfused patients. In vitro cultured, customizable RBC (cRBC) would negate these concerns and provide infinite RBC products. Previously, we developed a defined medium based on good manufacturing practice (GMP) requirements. To optimize medium conditions with regards to reproducibility and cost effectiveness, we tested the requirement for plasma during the differentiation phase and the replacement of HSA by polyvinyl alcohol (PVA) during the expansion and differentiation phase. We show that 5% plasma is essential to enhance cell count, enucleation% and mostly stability of cRBC during the differentiation phase. During the expansion phase HSA could be replaced by PVA without compromising the expansion capacity. Substitution of HSA by PVA even increased the number of cells at the end of the expansion phase. During the differentiation phase PVA could also replace HSA, but only in the presence of plasma. Plasma is still essential to achieve an optimum yield of enucleated cRBC, likely by stabilizing enucleated cRBC. Substitution of HSA by PVA is a new advancement in the development of a, defined, cost-effective culture medium to culture cRBC for all.
Collapse
Affiliation(s)
- Marie-José A G Claessen
- Department Research, Sanquin Blood Supply, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Nurcan Yagci
- Department Research, Sanquin Blood Supply, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Center, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department Research, Sanquin Blood Supply, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department Research, Sanquin Blood Supply, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Center, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department Research, Sanquin Blood Supply, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Landsteiner Laboratory, Amsterdam University Medical Center, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Roy A, Meregini S, Cho HJ, Chen Z, Zaki A, Argula T, Beutler B, SoRelle JA. N-glycosylation enzyme Mpi is essential for mucin O-glycosylation, host-microbe homeostasis, Paneth cell defense, and metabolism. RESEARCH SQUARE 2025:rs.3.rs-6222474. [PMID: 40195978 PMCID: PMC11975007 DOI: 10.21203/rs.3.rs-6222474/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intestinal homeostasis relies on a protective mucus layer that separates bacteria from the host, with Muc2 as its primary component. This secreted, gel-forming mucin is heavily O-glycosylated, allowing it to retain water and support beneficial bacteria. For the first time, we demonstrate that Muc2 N-glycosylation plays a critical in mucin maturation, O-glycosylation, barrier integrity, and the prevention of dysbiosis. Using mouse models with global and intestine-specific N-glycan deficiency- caused by the loss of the mannose producing enzyme, Mpi- we uncover an unexpected link between N-glycosylation and intestinal homeostasis. Our findings reveal that Mpi hypomorphic mice are highly sensitive to DSS-induced colitis, while Mpi flox; Villin Cre mice spontaneously develop disease, exhibiting increased ER stress and dysbiosis. Additionally, electron microscopy, proteomics, and gene expression analyses of goblet and Paneth cells indicate immaturity, mitochondrial loss, and disruptions in lipid metabolism. These results highlight the fundamental role of N-glycosylation in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Steve Meregini
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hye-Jeong Cho
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenglan Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aariz Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tandav Argula
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce Beutler
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey A SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Feufack-Donfack LB, Baldor L, Roesch C, Tat B, Orban A, Seng D, Salvador J, Khim N, Carias L, King CL, Russell B, Nosten F, Ong AS, Mao H, Renia L, Lo E, Witkowski B, Popovici J. The PvRBP2b-TfR1 interaction is not essential for reticulocytes invasion by Plasmodium vivax isolates from Cambodia. NPJ Vaccines 2024; 9:232. [PMID: 39578462 PMCID: PMC11584642 DOI: 10.1038/s41541-024-01031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Plasmodium vivax is the most widespread of the different Plasmodium species able to infect humans and is responsible for most malaria cases outside Africa. An effective, strain-transcending vaccine that alleviates or suppresses erythrocyte invasion would be a game-changer in eliminating vivax malaria. Recently, the binding of P. vivax Reticulocyte Binding Protein 2b (PvRBP2b) to human Transferrin receptor (TfR1) has been described as essential for reticulocyte invasion, making this parasite protein an appealing vaccine candidate. Here, using P. vivax Cambodian clinical isolates in robust ex vivo invasion assays, we show that anti-PvRBP2b polyclonal and monoclonal antibodies that inhibit binding of PvRBP2b to TfR1 do not block P. vivax invasion into reticulocytes even at high concentrations. Anti-TfR1 antibodies do not inhibit P. vivax invasion either. Combinations at high concentrations of human monoclonal antibodies targeting different PvRBP2b epitopes do not inhibit invasion. Combinations of anti-PvRBP2b with anti-PvDBP do not enhance invasion inhibition caused by anti-PvDBP alone. We also show that the invasion of Cambodian P. vivax is trypsin-resistant while TfR1 is trypsin-sensitive, and we demonstrate that TfR1 is not recycled following trypsin treatment. We determined the PvRBP2b sequence of all isolates used in the invasion assays and analyzed polymorphism within epitopes recognized by anti-PvRBP2b antibodies. We show that polymorphism does not explain the absence of neutralization. Anti-PvRBP2b polyclonal antibodies recognized all four isolates tested in immunofluorescence assays while not inhibiting P. vivax invasion. Overall, our results demonstrate that PvRBP2b binding to TfR1 is not essential for invasion into reticulocytes of P. vivax Cambodian strains questioning the relevance of PvRBP2b as vaccine candidate.
Collapse
Affiliation(s)
| | - Léa Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Baura Tat
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Dynang Seng
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jeremy Salvador
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nimol Khim
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lenore Carias
- Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, USA
- Cleveland Veterans Affairs Medical Center, Cleveland, USA
| | - Bruce Russell
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Old Road, Oxford, UK
| | - Alice Sm Ong
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Haitong Mao
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Laurent Renia
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, USA
| | - Benoit Witkowski
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris-Cité, Paris, France.
| |
Collapse
|
5
|
Martins Freire C, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv 2024; 8:5166-5178. [PMID: 38916993 PMCID: PMC11470287 DOI: 10.1182/bloodadvances.2024012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.
Collapse
Affiliation(s)
| | - Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro L. Moura
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Johannes G. G. Dobbe
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Geert J. Streekstra
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
6
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
7
|
Zuo S, Lu J, Sun Y, Song J, Han S, Feng X, Han ET, Cheng Y. The Plasmodium vivax MSP1P-19 is involved in binding of reticulocytes through interactions with the membrane proteins band3 and CD71. J Biol Chem 2024; 300:107285. [PMID: 38636656 PMCID: PMC11107369 DOI: 10.1016/j.jbc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.
Collapse
Affiliation(s)
- Shenghuan Zuo
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Feng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Alves-Rosa MF, Tayler NM, Dorta D, Coronado LM, Spadafora C. P. falciparum Invasion and Erythrocyte Aging. Cells 2024; 13:334. [PMID: 38391947 PMCID: PMC10887143 DOI: 10.3390/cells13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.
Collapse
Affiliation(s)
| | | | | | | | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (M.F.A.-R.); (N.M.T.); (D.D.); (L.M.C.)
| |
Collapse
|
9
|
Kho S, Siregar NC, Qotrunnada L, Fricot A, Sissoko A, Shanti PAI, Candrawati F, Kambuaya NN, Rini H, Andries B, Hardy D, Margyaningsih NI, Fadllan F, Rahmayenti DA, Puspitasari AM, Aisah AR, Leonardo L, Yayang BTG, Margayani DS, Prayoga P, Trianty L, Kenangalem E, Price RN, Yeo TW, Minigo G, Noviyanti R, Poespoprodjo JR, Anstey NM, Buffet PA. Retention of uninfected red blood cells causing congestive splenomegaly is the major mechanism of anemia in malaria. Am J Hematol 2024; 99:223-235. [PMID: 38009287 PMCID: PMC10952982 DOI: 10.1002/ajh.27152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/28/2023]
Abstract
Splenomegaly frequently occurs in patients with Plasmodium falciparum (Pf) or P. vivax (Pv) malarial anemia, but mechanisms underlying this co-occurrence are unclear. In malaria-endemic Papua, Indonesia, we prospectively analyzed red blood cell (RBC) concentrations in the spleen and spleen-mimetic retention in 37 subjects splenectomized for trauma or hyperreactive splenomegaly, most of whom were infected with Plasmodium. Splenomegaly (median 357 g [range: 80-1918 g]) was correlated positively with the proportion of red-pulp on histological sections (median 88.1% [range: 74%-99.4%]; r = .59, p = .0003) and correlated negatively with the proportion of white-pulp (median 8.3% [range: 0.4%-22.9%]; r = -.50, p = .002). The number of RBC per microscopic field (>95% uninfected) was correlated positively with spleen weight in both Pf-infected (r = .73; p = .017) and Pv-infected spleens (r = .94; p = .006). The median estimated proportion of total-body RBCs retained in Pf-infected spleens was 8.2% (range: 1.0%-33.6%), significantly higher than in Pv-infected (2.6% [range: 0.6%-23.8%]; p = .015) and PCR-negative subjects (2.5% [range: 1.0%-3.3%]; p = .006). Retained RBCs accounted for over half of circulating RBC loss seen in Pf infections. The proportion of total-body RBC retained in Pf- and Pv-infected spleens correlated negatively with hemoglobin concentrations (r = -.56, p = .0003), hematocrit (r = -.58, p = .0002), and circulating RBC counts (r = -.56, p = .0003). Splenic CD71-positive reticulocyte concentrations correlated with spleen weight in Pf (r = 1.0; p = .003). Retention rates of peripheral and splenic RBCs were correlated negatively with circulating RBC counts (r = -.69, p = .07 and r = -.83, p = .008, respectively). In conclusion, retention of mostly uninfected RBC in the spleen, leading to marked congestion of the red-pulp, was associated with splenomegaly and is the major mechanism of anemia in subjects infected with Plasmodium, particularly Pf.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Nurjati C. Siregar
- Eijkman Institute for Molecular BiologyJakartaIndonesia
- Department of Anatomical PathologyRumah Sakit Cipto Mangunkusumo and Universitas IndonesiaJakartaIndonesia
| | | | | | | | | | - Freis Candrawati
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Noy N. Kambuaya
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Hasrini Rini
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Benediktus Andries
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - David Hardy
- Institut PasteurExperimental Neuropathology UnitParisFrance
| | | | | | | | | | | | - Leo Leonardo
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Bagus T. G. Yayang
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Dewi S. Margayani
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Pak Prayoga
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Enny Kenangalem
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
- Rumah Sakit Umum Daerah Kabupaten MimikaTimikaIndonesia
| | - Ric N. Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Tsin W. Yeo
- Lee Kong Chian School of MedicineNanyang Technology UniversitySingaporeSingapore
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Jeanne R. Poespoprodjo
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia
- Rumah Sakit Umum Daerah Kabupaten MimikaTimikaIndonesia
- Department of PediatricsUniversity of Gadjah MadaYogyakartaIndonesia
| | - Nicholas M. Anstey
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | |
Collapse
|
10
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
11
|
Freire CM, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574621. [PMID: 38293086 PMCID: PMC10827085 DOI: 10.1101/2024.01.10.574621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- C M Freire
- School of Biochemistry, University of Bristol, Bristol, UK
| | - N R King
- School of Biochemistry, University of Bristol, Bristol, UK
| | - M Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - D Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - P L Moura
- Center for Haematology and Regenerative Medicine, Department of Medicine (MedH), Karolinska Institutet, Huddinge, Sweden
| | - J G G Dobbe
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - A D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - A M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - T J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Bouyssou I, El Hoss S, Doderer-Lang C, Schoenhals M, Rasoloharimanana LT, Vigan-Womas I, Ratsimbasoa A, Abate A, Golassa L, Mabilotte S, Kessler P, Guillotte-Blisnick M, Martinez FJ, Chitnis CE, Strouboulis J, Ménard D. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 2023; 31:2080-2092.e5. [PMID: 38056460 PMCID: PMC10727064 DOI: 10.1016/j.chom.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s). Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underestimated biological problem with potential clinical consequences in sub-Saharan Africa.
Collapse
Affiliation(s)
- Isabelle Bouyssou
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; École Doctorale ED515 "Complexité du Vivant", Sorbonne Université, 75005 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sara El Hoss
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Cécile Doderer-Lang
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases, Institut Pasteur of Madagascar, Antananarivo 101, Madagasca
| | | | | | - Arsène Ratsimbasoa
- Faculté de Médecine, Université de Fianarantsoa, Fianarantsoa 301, Madagascar
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Solenne Mabilotte
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Kessler
- Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | | - Francisco J Martinez
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - John Strouboulis
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France; Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
13
|
Nguyen TS, Park JH, Nguyen TK, Nguyen TV, Lee SK, Na SH, Han JH, Park WS, Chun W, Lu F, Han ET. Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand-receptor interaction for reticulocyte invasion. Parasit Vectors 2023; 16:426. [PMID: 37981686 PMCID: PMC10658926 DOI: 10.1186/s13071-023-06031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. METHODS A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. RESULTS Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. CONCLUSIONS Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax.
Collapse
Affiliation(s)
- Thau Sy Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-Si, 13488, Republic of Korea
| | - Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Truong Van Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
14
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
15
|
Kundu P, Naskar D, McKie SJ, Dass S, Kanjee U, Introini V, Ferreira MU, Cicuta P, Duraisingh M, Deane JE, Rayner JC. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nat Commun 2023; 14:5703. [PMID: 37709739 PMCID: PMC10502043 DOI: 10.1038/s41467-023-40885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.
Collapse
Affiliation(s)
- Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Shannon J McKie
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Pietro Cicuta
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Li W, Acker JP. CD71 + RBCs: A potential immune mediator in transfusion. Transfus Apher Sci 2023:103721. [PMID: 37173208 DOI: 10.1016/j.transci.2023.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Donor - recipient sex - mismatched transfusion is associated with increased mortality. The mechanisms for this are not clear, but it may relate to transfusion-related immunomodulation. Recently, CD71+ erythroid cells (CECs), including reticulocytes (CD71+ RBCs) and erythroblasts, have been identified as potent immunoregulatory cells. The proportion of CD71+ RBCs in the peripheral blood is sufficient to play a potential immunomodulatory role. Differences in the quantity of CD71+ RBCs are dependent on blood donor sex. The total number of CD71+ RBCs in red cell concentrates is also affected by blood manufacturing methods, and storage duration. As a component of the total CECs, CD71+ RBCs can affect innate and adaptive immune cells. Phagocytosed CECs directly reduce TNF-α production from macrophages. CECs can also suppress the production of TNF-α production from antigen presenting cells. Moreover, CECs can suppress T cell proliferation thorough immune mediation and / or direct cell-to-cell interactions. Different in their biophysical features compared to mature RBCs, blood donor CD71+ RBCs may be preferential targets for the macrophages. This report summarizes the currently literature supporting an important role for CD71+ RBCs in adverse transfusion reactions including immune mediation and sepsis.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton.
| |
Collapse
|
17
|
Kumari S, Sinha A. Culture and transfection: Two major bottlenecks in understanding Plasmodium vivax biology. Front Microbiol 2023; 14:1144453. [PMID: 37082177 PMCID: PMC10110902 DOI: 10.3389/fmicb.2023.1144453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The long term in vitro culture of Plasmodium falciparum was successfully established by Trager and Jensen in 1976; however it largely remains unachieved for P. vivax. The major obstacle associated with Plasmodium vivax in vitro culture is its predilection for invading younger reticulocytes and the complex remodelling of invaded reticulocytes. There are many factors under exploration for this predilection and host–parasite interactions between merozoites and invaded reticulocytes. These include various factors related to parasite, host and environment such as compromised reticulocyte osmotic stability after invasion, abundance of iron in the reticulocytes which makes them favourable for P. vivax growth and propagation and role of a hypoxic environment in P. vivax in vitro growth. P. vivax blood stage transfection represents another major hurdle towards understanding this parasite’s complex biology. Efforts in making this parasite amenable for molecular investigation by genetic modification are limited. Newer approaches in sustaining a longer in vitro culture and thereby help advancing transfection technologies in P. vivax are urgently needed that can be explored to understand the unique biology of this parasite.
Collapse
|
18
|
Jergović M, Watanabe M, Bhat R, Coplen CP, Sonar SA, Wong R, Castaneda Y, Davidson L, Kala M, Wilson RC, Twigg HL, Knox K, Erickson HE, Weinkauf CC, Bime C, Bixby BA, Parthasarathy S, Mosier JM, LaFleur BJ, Bhattacharya D, Nikolich JŽ. T-cell cellular stress and reticulocyte signatures, but not loss of naïve T lymphocytes, characterize severe COVID-19 in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521463. [PMID: 36597549 PMCID: PMC9810235 DOI: 10.1101/2022.12.21.521463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In children and younger adults up to 39 years of age, SARS-CoV-2 usually elicits mild symptoms that resemble the common cold. Disease severity increases with age starting at 30 and reaches astounding mortality rates that are ~330 fold higher in persons above 85 years of age compared to those 18-39 years old. To understand age-specific immune pathobiology of COVID-19 we have analyzed soluble mediators, cellular phenotypes, and transcriptome from over 80 COVID-19 patients of varying ages and disease severity, carefully controlling for age as a variable. We found that reticulocyte numbers and peripheral blood transcriptional signatures robustly correlated with disease severity. By contrast, decreased numbers and proportion of naïve T-cells, reported previously as a COVID-19 severity risk factor, were found to be general features of aging and not of COVID-19 severity, as they readily occurred in older participants experiencing only mild or no disease at all. Single-cell transcriptional signatures across age and severity groups showed that severe but not moderate/mild COVID-19 causes cell stress response in different T-cell populations, and some of that stress was unique to old severe participants, suggesting that in severe disease of older adults, these defenders of the organism may be disabled from performing immune protection. These findings shed new light on interactions between age and disease severity in COVID-19.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Ruchika Bhat
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Rachel Wong
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Yvonne Castaneda
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Lisa Davidson
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Mrinalini Kala
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Rachel C Wilson
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Homer L Twigg
- Division of Pulmonary Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kenneth Knox
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Heidi E Erickson
- Department of Medicine, Arizona Respiratory Center, Tucson, AZ, USA
| | - Craig C Weinkauf
- The Division of Vascular Surgery, University of Arizona, Tucson, AZ, USA
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Billie A Bixby
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Jarrod M Mosier
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona College of Medicine Tucson, AZ, USA
- Department of Emergency Medicine, University of Arizona College of Medicine Tucson, AZ, USA
| | - Bonnie J LaFleur
- R. Ken Coit College of Pharmacy
- BIO5 Institute, University of Arizona, Tucson, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- R. Ken Coit College of Pharmacy
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- R. Ken Coit College of Pharmacy
| |
Collapse
|
19
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
20
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Bernecker C, Lima M, Kolesnik T, Lampl A, Ciubotaru C, Leita R, Kolb D, Fröhlich E, Schlenke P, Holzapfel GA, Dorn I, Cojoc D. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front Physiol 2022; 13:979298. [PMID: 36051915 PMCID: PMC9424772 DOI: 10.3389/fphys.2022.979298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young’s modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Maria Lima
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- University of Trieste, Physics Department, Trieste, Italy
| | - Tatjana Kolesnik
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Annika Lampl
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Catalin Ciubotaru
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Riccardo Leita
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabel Dorn
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| |
Collapse
|
22
|
Bernecker C, Matzhold EM, Kolb D, Avdili A, Rohrhofer L, Lampl A, Trötzmüller M, Singer H, Oldenburg J, Schlenke P, Dorn I. Membrane Properties of Human Induced Pluripotent Stem Cell-Derived Cultured Red Blood Cells. Cells 2022; 11:cells11162473. [PMID: 36010549 PMCID: PMC9406338 DOI: 10.3390/cells11162473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Cultured red blood cells from human induced pluripotent stem cells (cRBC_iPSCs) are a promising source for future concepts in transfusion medicine. Before cRBC_iPSCs will have entrance into clinical or laboratory use, their functional properties and safety have to be carefully validated. Due to the limitations of established culture systems, such studies are still missing. Improved erythropoiesis in a recently established culture system, closer simulating the physiological niche, enabled us to conduct functional characterization of enucleated cRBC_iPSCs with a focus on membrane properties. Morphology and maturation stage of cRBC_iPSCs were closer to native reticulocytes (nRETs) than to native red blood cells (nRBCs). Whereas osmotic resistance of cRBC_iPSCs was similar to nRETs, their deformability was slightly impaired. Since no obvious alterations in membrane morphology, lipid composition, and major membrane associated protein patterns were observed, reduced deformability might be caused by a more primitive nature of cRBC_iPSCs comparable to human embryonic- or fetal liver erythropoiesis. Blood group phenotyping of cRBC_iPSCs further confirmed the potency of cRBC_iPSCs as a prospective device in pre-transfusional routine diagnostics. Therefore, RBC membrane analyses obtained in this study underscore the overall prospects of cRBC_iPSCs for their future application in the field of transfusion medicine.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Eva Maria Matzhold
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Afrim Avdili
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Annika Lampl
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
23
|
Moriconi C, Dzieciatkowska M, Roy M, D'Alessandro A, Roingeard P, Lee JY, Gibb DR, Tredicine M, McGill MA, Qiu A, La Carpia F, Francis RO, Hod EA, Thomas T, Picard M, Akpan IJ, Luckey CJ, Zimring JC, Spitalnik SL, Hudson KE. Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease. Br J Haematol 2022; 198:574-586. [PMID: 35670632 PMCID: PMC9329257 DOI: 10.1111/bjh.18287] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response. We evaluated blood samples from more than 100 patients with SCD and found elevated frequencies of mitochondria in reticulocytes and mature RBCs, as compared to healthy blood donors. The presence of mitochondria in mature RBCs was confirmed by flow cytometry, electron microscopy, and proteomic analysis. The mitochondria in mature RBCs were metabolically competent, as determined by enzymatic activities and elevated levels of mitochondria-derived metabolites. Metabolically-active mitochondria in RBCs may increase oxidative stress, which could facilitate and/or exacerbate SCD complications. Coculture of mitochondria-positive RBCs with neutrophils induced production of type 1 interferons, which are known to increase RBC alloimmunization rates. These data demonstrate that mitochondria retained in mature RBCs are functional and can elicit immune responses, suggesting that inappropriate retention of mitochondria in RBCs may play an underappreciated role in SCD complications and be an RBC alloimmunization risk factor.
Collapse
Affiliation(s)
- Chiara Moriconi
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Micaela Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philippe Roingeard
- INSERM U1259 and Electron Microscopy Facility, Université de Tours and CHRU de Tours, Tours, France
| | - June Young Lee
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Gibb
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marlon A McGill
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Annie Qiu
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Francesca La Carpia
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Richard O Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Eldad A Hod
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Tiffany Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Imo J Akpan
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Steven L Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Krystalyn E Hudson
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| |
Collapse
|
24
|
Introini V, Marin-Menendez A, Nettesheim G, Lin YC, Kariuki SN, Smith AL, Jean L, Brewin JN, Rees DC, Cicuta P, Rayner JC, Penman BS. The erythrocyte membrane properties of beta thalassaemia heterozygotes and their consequences for Plasmodium falciparum invasion. Sci Rep 2022; 12:8934. [PMID: 35624125 PMCID: PMC9142571 DOI: 10.1038/s41598-022-12060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.
Collapse
Affiliation(s)
- Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge, UK
| | | | | | - Yen-Chun Lin
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Silvia N Kariuki
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Letitia Jean
- University of Oxford, Sir William Dunn School of Pathology, Oxford, UK
| | - John N Brewin
- King's College London and King's College Hospital, London, UK
| | - David C Rees
- King's College London and King's College Hospital, London, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Bridget S Penman
- University of Warwick, Zeeman Institute, School of Life Sciences, Coventry, UK.
| |
Collapse
|
25
|
Hentzschel F, Gibbins MP, Attipa C, Beraldi D, Moxon CA, Otto TD, Marti M. Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. SCIENCE ADVANCES 2022; 8:eabm7348. [PMID: 35476438 PMCID: PMC9045723 DOI: 10.1126/sciadv.abm7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthew P. Gibbins
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Charalampos Attipa
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dario Beraldi
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Christopher A. Moxon
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ. Reticulocyte Maturation and Variant Red Blood Cells. Front Physiol 2022; 13:834463. [PMID: 35356079 PMCID: PMC8959883 DOI: 10.3389/fphys.2022.834463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
The bone marrow produces billions of reticulocytes daily. These reticulocytes mature into red blood cells by reducing their plasma membrane by 20% and ejecting or degrading residual internal organelles, membranes and proteins not required by the mature cell. This process occurs by autophagy, protein degradation and vesiculation but is not well understood. We previously reported that Southeast Asian Ovalocytic RBCs demonstrate incomplete reticulocyte maturation and we have now extended this study to a number of other variant RBCs. By comparing the profile of a pure reticulocyte preparation of cultured red cells with these variant cells, we show that the largest of these cells, the overhydrated hereditary stomatocytosis cells, are the least mature, they barely reduced their plasma membrane and contain large amounts of proteins that should have been reduced or removed. Intermediate sized variant RBCs appear to be more mature but retain some endoplasmic reticulum and residual membrane proteins. We propose that the size and composition of these variant cell types correlate with the different stages of reticulocyte maturation and provide insight into the reticulocyte maturation process.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Sabine Kupzig
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Component Development Laboratory, NHS Blood and Transplant, Long Road, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
27
|
Suriyun T, Winichagoon P, Fucharoen S, Sripichai O. Impaired Terminal Erythroid Maturation in β 0-Thalassemia/HbE Patients with Different Clinical Severity. J Clin Med 2022; 11:jcm11071755. [PMID: 35407362 PMCID: PMC8999960 DOI: 10.3390/jcm11071755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Anemia in β-thalassemia is associated with ineffective erythropoiesis and a shortened lifespan of erythroid cells. The limited differentiation of β-thalassemic erythroblasts has been documented, but the characteristic feature of terminal erythroid maturation and its physiological relevance are not clearly described in β-thalassemias. Here, the red blood cell and reticulocyte cellular characteristics were determined in patients with β0-thalassemia/HbE in comparison to patients with iron deficiency anemia and healthy normal subjects. Severely affected β0-thalassemia/HbE patients showed the highest increase in immature reticulocytes, but the number of total erythrocytes was the lowest. Despite similar ranges of hemoglobin levels, β0-thalassemia/HbE patients had a higher number of reticulocytes and a greater proportion of immature fraction than patients with iron deficiency anemia did. In vitro CD34+ hematopoietic progenitor cells' culture and flow cytometry analysis were conducted to investigate the erythroid maturation and mitochondrial clearance in β0-thalassemia/HbE erythroid cells as compared to normal cells. The delayed erythroid maturation and evidence of impaired mitochondria clearance were observed in β0-thalassemia/HbE cells at the terminal stage of differentiation. Additionally, increased transcript levels of genes related to erythroid mitophagy, BNIP3L and PINK1, were revealed in β0-thalassemia/HbE erythroblasts. The findings indicate that the erythroid maturation is physiologically relevant, and that the restoration of terminal maturation represents a potential therapeutic target for β-thalassemias.
Collapse
Affiliation(s)
- Thunwarat Suriyun
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Pranee Winichagoon
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
- Correspondence: ; Tel.: +66-2951-0011
| |
Collapse
|
28
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
29
|
Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152072. [PMID: 34863742 PMCID: PMC8634688 DOI: 10.1016/j.scitotenv.2021.152072] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
The combat against the Corona virus disease of 2019 (COVID-19), has created a chaos among the healthcare institutions and researchers, in turn accelerating the dire need to curtail the infection spread. The already established entry mechanism, via ACE2 has not yet successfully aided in the development of a suitable and reliable therapy. Taking in account the constant progression and deterioration of the cases worldwide, a different perspective and mechanistic approach is required, which has thrown light onto the cluster of differentiation 147 (CD147) transmembrane protein, as a novel route for SARS-CoV-2 entry. Despite lesser affinity towards COVID-19 virus, as compared to ACE2, this receptor provides a suitable justification behind elevated blood glucose levels in infected patients, retarded COVID-19 risk in women, enhanced susceptibility in geriatrics, greater infection susceptibility of T cells, infection prevalence in non-susceptible human cardiac pericytes and so on. The manuscript invokes the title role and distribution of CD147 in COVID-19 as an entry receptor and mediator of endocytosis-promoted entry of the virus, along with the "catch and clump" hypothesis, thereby presenting its Fundamental significance as a therapeutic target for potential candidates, such as Azithromycin, melatonin, statins, beta adrenergic blockers, ivermectin, Meplazumab etc. Thus, the authors provide a comprehensive review of a different perspective in COVID-19 infection, aiming to aid the researchers and virologists in considering all aspects of viral entry, in order to develop a sustainable and potential cure for the 2019 COVID-19 disease.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania.
| |
Collapse
|
30
|
Lombardini ED, Malleret B, Rungojn A, Popruk N, Kaewamatawong T, Brown AE, Turner GDH, Russell B, Ferguson DJP. Ultrastructural characterization of host-parasite interactions of Plasmodium coatneyi in rhesus macaques. Parasitology 2022; 149:161-170. [PMID: 35234595 PMCID: PMC11010572 DOI: 10.1017/s0031182021001669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
Plasmodium coatneyi has been proposed as an animal model for human Plasmodium falciparum malaria as it appears to replicate many aspects of pathogenesis and clinical symptomology. As part of the ongoing evaluation of the rhesus macaque model of severe malaria, a detailed ultrastructural analysis of the interaction between the parasite and both the host erythrocytes and the microvasculature was undertaken. Tissue (brain, heart and kidney) from splenectomized rhesus macaques and blood from spleen-intact animals infected with P. coatneyi were examined by electron microscopy. In all three tissues, similar interactions (sequestration) between infected red blood cells (iRBC) and blood vessels were observed with evidence of rosette and auto-agglutinate formation. The iRBCs possessed caveolae similar to P. vivax and knob-like structures similar to P. falciparum. However, the knobs often appeared incompletely formed in the splenectomized animals in contrast to the intact knobs exhibited by spleen intact animals. Plasmodium coatneyi infection in the monkey replicates many of the ultrastructural features particularly associated with P. falciparum in humans and as such supports its use as a suitable animal model. However, the possible effect on host–parasite interactions and the pathogenesis of disease due to the use of splenectomized animals needs to be taken into consideration.
Collapse
Affiliation(s)
- E. D. Lombardini
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - B. Malleret
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, 117597Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore, Singapore
| | - A. Rungojn
- Mahidol Oxford Clinical Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - N. Popruk
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - T. Kaewamatawong
- Department of Veterinary Pathology, Chulalongkorn University, Bangkok, Thailand
| | - A. E. Brown
- Faculty of Medical Technology, Mahidol University, Salaya, Thailand
| | - G. D. H. Turner
- Mahidol Oxford Clinical Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - B. Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - D. J. P. Ferguson
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department Biological & Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
31
|
Özpolat T, Chang TC, Wu X, St John AE, Konkle BA, Chen J, López JA. Phenotypic analysis of erythrocytes in sickle cell disease using imaging flow cytometry. Cytometry A 2022; 101:448-457. [PMID: 35099119 PMCID: PMC9592074 DOI: 10.1002/cyto.a.24536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023]
Abstract
The morphology and other phenotypic characteristics of erythrocytes in sickle cell disease (SCD) have been analyzed for decades in patient evaluation. This involves a variety of techniques, including microscopic analysis of stained blood films, flow cytometry, and cell counting. Here, we analyzed SCD blood using imaging flow cytometry (IFC), a technology that combines flow cytometry and microscopy to enable simultaneous rapid-throughput analysis of cellular morphology and cell-surface markers. With IFC, we were able to automate quantification of poikilocytes from SCD blood. An important subpopulation of poikilocytes represented dense cells, although these could not be distinguished from other poikilocytes without first centrifuging the blood through density gradients. In addition, CD71-positive RBCs from SCD patients had two subpopulations: one with high CD71 expression and a puckered morphology and another with lower CD71 expression and biconcave morphology and presumably representing a later stage of differentiation. Some RBCs with puckered morphologies that were strongly positive for DAPI and CD49d were in fact nucleated RBCs. IFC identified more phosphatidylserine-expressing red cells in SCD than did conventional flow cytometry and these could also be divided into two subpopulations. One population had diffuse PS expression and appeared to be composed primarily of RBC ghosts; the other had lower overall PS expression present in intense, punctate dots overlying Howell-Jolly bodies. This study demonstrates that IFC can rapidly reveal and quantify RBC features in SCD that require numerous tedious methods to identify conventionally. Thus, IFC is likely to be a useful technique for evaluating and monitoring SCD.
Collapse
Affiliation(s)
| | | | - Xiaoping Wu
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Alexander E St John
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Barbara A Konkle
- Bloodworks Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | - José A López
- Bloodworks Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Blanch AJ, Nunez-Iglesias J, Namvar A, Menant S, Looker O, Rajagopal V, Tham WH, Tilley L, Dixon MW. Multimodal imaging reveals membrane skeleton reorganisation during reticulocyte maturation and differences in dimple and rim regions of mature erythrocytes. J Struct Biol X 2022; 6:100056. [PMID: 34977554 PMCID: PMC8688873 DOI: 10.1016/j.yjsbx.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022] Open
Abstract
Multimodal microscopies reveal dynamic changes in erythrocyte membrane skeleton architecture. Reticulocytes have 30% more surface area than mature erythrocytes but only slightly lower skeletal meshwork coverage. The spectrin-based skeleton reorganises during reticulocyte maturation. Inhomogeneity within the erythrocyte’s membrane skeleton underpins its biconcave disc shape.
The red blood cell (RBC) is remarkable in its ability to deform as it passages through the vasculature. Its deformability derives from a spectrin-actin protein network that supports the cell membrane and provides strength and flexibility, however questions remain regarding the assembly and maintenance of the skeletal network. Using scanning electron microscopy (SEM) and atomic force microscopy (AFM) we have examined the nanoscale architecture of the cytoplasmic side of membrane discs prepared from reticulocytes and mature RBCs. Immunofluorescence microscopy was used to probe the distribution of spectrin and other membrane skeleton proteins. We found that the cell surface area decreases by up to 30% and the spectrin-actin network increases in density by approximately 20% as the reticulocyte matures. By contrast, the inter-junctional distance and junctional density increase only by 3–4% and 5–9%, respectively. This suggests that the maturation-associated reduction in surface area is accompanied by an increase in spectrin self-association to form higher order oligomers. We also examined the mature RBC membrane in the edge (rim) and face (dimple) regions of mature RBCs and found the rim contains about 1.5% more junctional complexes compared to the dimple region. A 2% increase in band 4.1 density in the rim supports these structural measurements.
Collapse
|
34
|
Cox HD, Miller GD, Manandhar A, Husk JD, Crouch AK, Eichner D. Tracking immature reticulocyte proteins for improved detection of recombinant human erythropoietin (rhEPO) abuse. Am J Hematol 2021; 96:1621-1629. [PMID: 34626008 DOI: 10.1002/ajh.26368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022]
Abstract
Athletes abuse recombinant human erythropoietin (rhEPO) and erythropoiesis stimulating agents to increase hemoglobin mass and improve performance. To evade detection, athletes have developed sophisticated blood doping regimens, which often include rhEPO micro-dosing. Detection of these methods requires biomarkers with increased sensitivity and a sample matrix that is more amenable to frequent testing in the field. We have developed a method to measure two immature reticulocyte proteins, CD71 and ferrochelatase (FECH), and one total erythrocyte protein, Band 3, in dried blood spots (DBS). This method was tested in response to rhEPO administration after low doses, 40 IU/kg, micro-doses, 900 IU, or saline injection in 20 healthy subjects. During administration of low-dose rhEPO, the mean CD71/Band 3 and FECH/Band 3 ratio increased by 412 ± 197% and 250 ± 44%, respectively. The mean response for the current biomarker, RET%, increased by 195 ± 35%. During administration of rhEPO micro-doses, CD71/Band 3 increased to 127 ± 25% on day 35 and 139 ± 36% on day 39, while no increase was observed in RET%. After rhEPO administration, during the washout phase, mean values decreased to a minimum of 64 ± 4% and 64 ± 11% for CD71/Band 3 and RET%, respectively. However, CD71/Band 3 remained below 75% of baseline for at least 4 weeks after rhEPO injection, while RET% returned to baseline levels. The results demonstrate that immature reticulocyte proteins have a larger response to rhEPO administration than the current biomarker, RET%, and can be monitored in the DBS matrix.
Collapse
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | | | | | - Jacob D. Husk
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Andre K. Crouch
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory South Jordan Utah USA
| |
Collapse
|
35
|
Li H, Liu ZL, Lu L, Buffet P, Karniadakis GE. How the spleen reshapes and retains young and old red blood cells: A computational investigation. PLoS Comput Biol 2021; 17:e1009516. [PMID: 34723962 PMCID: PMC8584971 DOI: 10.1371/journal.pcbi.1009516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/11/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
The spleen, the largest secondary lymphoid organ in humans, not only fulfils a broad range of immune functions, but also plays an important role in red blood cell’s (RBC) life cycle. Although much progress has been made to elucidate the critical biological processes involved in the maturation of young RBCs (reticulocytes) as well as removal of senescent RBCs in the spleen, the underlying mechanisms driving these processes are still obscure. Herein, we perform a computational study to simulate the passage of RBCs through interendothelial slits (IES) in the spleen at different stages of their lifespan and investigate the role of the spleen in facilitating the maturation of reticulocytes and in clearing the senescent RBCs. Our simulations reveal that at the beginning of the RBC life cycle, intracellular non-deformable particles in reticulocytes can be biomechanically expelled from the cell upon passage through IES, an insightful explanation of why this peculiar “pitting” process is spleen-specific. Our results also show that immature RBCs shed surface area by releasing vesicles after crossing IES and progressively acquire the biconcave shape of mature RBCs. These findings likely explain why RBCs from splenectomized patients are significantly larger than those from nonsplenectomized subjects. Finally, we show that at the end of their life span, senescent RBCs are not only retained by IES due to reduced deformability but also become susceptible to mechanical lysis under shear stress. This finding supports the recent hypothesis that transformation into a hemolyzed ghost is a prerequisite for phagocytosis of senescent RBCs. Altogether, our computational investigation illustrates critical biological processes in the spleen that cannot be observed in vivo or in vitro and offer insights into the role of the spleen in the RBC physiology. The spleen, the largest secondary lymphoid organ in humans, not only fulfils a broad range of immune functions, but also plays an important role in red blood cell (RBC) life cycle. In this study, we perform a computational study to simulate the passage of RBCs through interendothelial slits (IES) in the spleen at different stages of their lifespan, a critical biological process that cannot be observed in humans. Our simulation results illustrate a specific role of spleen in shaping young RBCs, which points to a probable missing step in current in vitro RBC culture protocols that fail to generate a majority of typical biconcave RBCs. Our results also reveal that intra-splenic mechanical constraints likely contribute to the final clearance and elimination of aged RBCs. Altogether, we demonstrate that our computational model can provide mechanistic rationales for experimental studies, offer insights into the role of the spleen in the RBC physiology and help the optimization of in vitro RBC culture techniques.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Zixiang Leonardo Liu
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Lu Lu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pierre Buffet
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
36
|
Sumi K, Munakata K, Konno S, Ashida K, Nakazato K. Inorganic Iron Supplementation Rescues Hematological Insufficiency Even Under Intense Exercise Training in a Mouse Model of Iron Deficiency with Anemia. Biol Trace Elem Res 2021; 199:2945-2960. [PMID: 33025520 DOI: 10.1007/s12011-020-02402-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Iron deficiency anemia (IDA) due to malnutrition and/or blood loss is a common condition, especially in women of reproductive age. Intense exercise can induce anemia via an inflammatory response, but whether intense exercise affects the efficacy of iron supplementation to treat IDA is unclear. Here, we show in a mouse model of IDA that acute intense swimming increased IL-6 levels in the blood, but did not affect the maximum elevation of plasma iron following oral administration of 0.5 mg/kg Bw iron. However, compared with the control group without intense exercise, acute intense swimming was associated with a significant decrease in plasma iron 2 and 4 h after iron loading that could be attributed to rapid iron absorption in peripheral tissues. In the chronic experiment, IDA mice administered 0.36, 1.06, or 3.2 mg/kg Bw iron per day that were subjected to 11 intense swimming sessions over 3 weeks showed significantly decreased recovery levels for hemoglobin and red blood cell count during the early phase of the experimental period. At the end of the experimental period, significant, dose-dependent effects of iron, but not the main effect of intense exercise, were seen for recovery of hemoglobin and red blood cell counts, consistent with the acute exercise study. These results suggested that intense exercise in the presence of IDA does not inhibit iron absorption from the gastrointestinal tract and that iron supplementation can enhance the recovery process even after intense exercise.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Kinuyo Munakata
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Saori Konno
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
37
|
Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol 2021; 6:991-999. [PMID: 34294905 DOI: 10.1038/s41564-021-00939-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.
Collapse
|
38
|
Leong YW, Lee EQH, Rénia L, Malleret B. Rodent Malaria Erythrocyte Preference Assessment by an Ex Vivo Tropism Assay. Front Cell Infect Microbiol 2021; 11:680136. [PMID: 34322397 PMCID: PMC8311856 DOI: 10.3389/fcimb.2021.680136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating red blood cells consist of young erythrocytes (early and late reticulocytes) and mature erythrocytes (normocytes). The human malaria parasites, Plasmodium falciparum and P. vivax, have a preference to invade reticulocytes during blood-stage infection. Rodent malaria parasites that also prefer reticulocytes could be useful tools to study human malaria reticulocyte invasion. However, previous tropism studies of rodent malaria are inconsistent from one another, making it difficult to compare cell preference of different parasite species and strains. In vivo measurements of cell tropism are also subjected to many confounding factors. Here we developed an ex vivo tropism assay for rodent malaria with highly purified fractions of murine reticulocytes and normocytes. We measured invasion into the different erythrocyte populations using flow cytometry and evaluated the tropism index of the parasite strains. We found that P. berghei ANKA displayed the strongest reticulocyte preference, followed by P. yoelii 17X1.1, whereas P. chabaudi AS and P. vinckei S67 showed mixed tropism. These preferences are intrinsic and were maintained at different reticulocyte and normocyte availabilities. Our study shed light on the true erythrocyte preference of the parasites and paves the way for future investigations on the receptor-ligand interactions mediating erythrocyte tropism.
Collapse
Affiliation(s)
- Yew Wai Leong
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Laurent Rénia
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
39
|
Ryzhkova A, Battulin N. Genome Reorganization during Erythroid Differentiation. Genes (Basel) 2021; 12:genes12071012. [PMID: 34208866 PMCID: PMC8306769 DOI: 10.3390/genes12071012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.
Collapse
Affiliation(s)
- Anastasia Ryzhkova
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
40
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
41
|
Salazar Alvarez LC, Vera Lizcano O, da Silva Barros DKA, Baia-da-Silva DC, Monteiro WM, Pimenta PFP, de Lacerda MVG, Costa FTM, Lopes SCP. Plasmodium vivax Gametocytes Adherence to Bone Marrow Endothelial Cells. Front Cell Infect Microbiol 2021; 11:614985. [PMID: 34249772 PMCID: PMC8265044 DOI: 10.3389/fcimb.2021.614985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
In a Plasmodium vivax infection, it was shown a proportionally increased on gametocyte distribution within the bone marrow aspirant, suggesting a role of this organ as a reservoir for this parasite stage. Here, we evaluated the ex vivo cytoadhesive capacity of P. vivax gametocytes to bone marrow endothelial cells (HBMEC) and investigated the involvement of some receptors in the cytoadhesion process by using transfected CHO cells (CHO-ICAM1, CHO-CD36 and CHO-VCAM), wild type (CHO-K1) or deficient in heparan and chondroitin sulfate (CHO-745). Ex-vivo cytoadhesion assays were performed using a total of 44 P. vivax isolates enriched in gametocyte stages by Percoll gradient in the different cell lines. The majority of isolates (88.9%) were able to adhere to HBMEC monolayer. ICAM1 seemed to be the sole receptor significantly involved. CD-36 was the receptor with higher adhesion rate, despite no significance was noticed when compared to CHO-745. We demonstrated that gametocyte P. vivax adheres ex vivo to bone marrow endothelial cells. Moreover, P. vivax gametocytes display the ability to adhere to all CHO cells investigated, especially to CHO-ICAM1. These findings bring insights to the comprehension of the role of the bone marrow as a P. vivax reservoir and the potential impact on parasite transmission to the vector.
Collapse
Affiliation(s)
- Luis Carlos Salazar Alvarez
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Omaira Vera Lizcano
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil.,Grupo de Investigación QUIBIO, Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Dayanne Kamylla Alves da Silva Barros
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| | | | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Paulo Filemon Paolluci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto René Rachou - IRR/Fiocruz Minas, Belo Horizonte, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Leonidas & Maria Deane - ILMD/Fiocruz Amazônia, Manaus, Brazil
| |
Collapse
|
42
|
Seliverstov ES. Morphometric properties of immature reticulocytes in health and during acute lymphoblastic and acute myeloid leukemia. Tissue Cell 2021; 71:101578. [PMID: 34130070 DOI: 10.1016/j.tice.2021.101578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Despite significant advances, many changes occurring in the tumor microenvironment during acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) remain unclear. The surface of immature reticulocytes was examined by atomic force microscopy (AFM) to determine specific changes during the development of ALL and AML. In patients with ALL the surface area of reticulocytes increased by 18.5 %, volume by 8.7 %, the width of invaginations by 18 %, and cell height decreased by 7.8 %. In patients with AML, the volume increased by 12.6 %, roughness by 35.5 %, the height of protrusions by 36.2 %, the depth of invaginations by 24.8 %, their width by 18.2 %, and the maximum height difference of the surface by 31.9 %. The obtained data1 has important prognostic value in studying the bone marrow activity during acute leukemia.
Collapse
Affiliation(s)
- Evgeniy S Seliverstov
- Department of Biology, Faculty of Biology and Chemistry, Belgorod State University, 85 Pobeda St., Belgorod, 308015, Russia.
| |
Collapse
|
43
|
Shakya B, Patel SD, Tani Y, Egan ES. Erythrocyte CD55 mediates the internalization of Plasmodium falciparum parasites. eLife 2021; 10:61516. [PMID: 34028351 PMCID: PMC8184214 DOI: 10.7554/elife.61516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum is a multi-step process. Previously, a forward genetic screen for P. falciparum host factors identified erythrocyte CD55 as essential for invasion, but its specific role and how it interfaces with the other factors that mediate this complex process are unknown. Using CRISPR-Cas9 editing, antibody-based inhibition, and live cell imaging, here we show that CD55 is specifically required for parasite internalization. Pre-invasion kinetics, erythrocyte deformability, and echinocytosis were not influenced by CD55, but entry was inhibited when CD55 was blocked or absent. Visualization of parasites attached to CD55-null erythrocytes points to a role for CD55 in stability and/or progression of the moving junction. Our findings demonstrate that CD55 acts after discharge of the parasite’s rhoptry organelles, and plays a unique role relative to all other invasion receptors. As the requirement for CD55 is strain-transcendent, these results suggest that CD55 or its interacting partners may hold potential as therapeutic targets for malaria.
Collapse
Affiliation(s)
- Bikash Shakya
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| | - Saurabh D Patel
- Zuckerman Institute, Columbia University, New York City, United States
| | | | - Elizabeth S Egan
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
44
|
Cox HD, Miller GD, Manandhar A, Husk JD, Jia X, Marvin J, Ward DM, Phillips J, Eichner D. Measurement of Immature Reticulocytes in Dried Blood Spots by Mass Spectrometry. Clin Chem 2021; 67:1071-1079. [PMID: 33993255 DOI: 10.1093/clinchem/hvab058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Immature reticulocytes (IRC) are the first cells to respond to changes in erythropoiesis. For antidoping applications, measurement of IRC may improve detection of blood doping practices. Unfortunately, this small cell population has limited stability in liquid blood samples and is difficult to measure with optimal precision. We developed a method to measure 3 IRC membrane proteins in dried blood spots (DBS) to monitor changes in erythropoiesis. METHODS DBS spots were washed with buffers to remove soluble proteins, membrane proteins remaining in the spot were digested with trypsin, and one peptide for each protein was measured by LC-MS/MS. IRC protein concentration was determined using a DBS single point calibrator. RESULTS Intraassay precision for IRC proteins was between 5%-15%. IRC proteins were stable in DBS for 29 days at room temperature. In a longitudinal study of 25 volunteers, the mean intraindividual variation for 3 IRC proteins was 17%, 20%, and 24% from capillary blood DBS. In comparison, the mean longitudinal variation for IRC counts measured on an automated hematology analyzer was 38%. IRC protein concentration from capillary blood DBS correlated well with venous blood DBS protein concentrations. CONCLUSIONS Measurement of IRC proteins in DBS samples provides a method to measure changes in erythropoiesis with improved analytical sensitivity, stability, and precision. When combined with the inherent advantages of capillary blood collection in the field, this method may substantially improve the detection of blood doping practices.
Collapse
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | | | - Jacob D Husk
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James Marvin
- Flow Cytometry Core Facility, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Phillips
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan, UT, USA
| |
Collapse
|
45
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The current review outlines recent discoveries on the infection of erythroid cells by Plasmodium parasites, focusing on the molecular interactions governing the tropism of parasites for their host cell and the implications of this tropism for parasite biology and erythroid cell maturation. RECENT FINDINGS Although most studies about the interactions of Plasmodium parasites and their host cell focused on the deadliest human malaria parasite, Plasmodium falciparum, and the erythrocyte, there is increasing evidence that several Plasmodium species, including P. falciparum, also develop within erythroid precursors. These interactions likely modify the remodeling of the host cell by the parasite and affect the maturation of erythroblast and reticulocytes. SUMMARY A better understanding of the remodeling of immature erythroid cells by Plasmodium parasites will have important implications for the development of antimalarial drugs or vaccines. In addition, deciphering how Plasmodium parasites interfere with erythropoiesis will provide new insights on how these parasites contribute to anemia in malaria patients.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université de Paris, Institut Cochin
- Laboratoire d'excellence GR-Ex, Paris, France
| |
Collapse
|
47
|
Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PAI, Fricot A, Henry B, Hardy D, Margyaningsih NI, Apriyanti D, Puspitasari AM, Prayoga P, Trianty L, Kenangalem E, Chretien F, Brousse V, Safeukui I, del Portillo HA, Fernandez-Becerra C, Meibalan E, Marti M, Price RN, Woodberry T, Ndour PA, Russell BM, Yeo TW, Minigo G, Noviyanti R, Poespoprodjo JR, Siregar NC, Buffet PA, Anstey NM. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: A prospective human splenectomy study. PLoS Med 2021; 18:e1003632. [PMID: 34038413 PMCID: PMC8154101 DOI: 10.1371/journal.pmed.1003632] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival. METHODS AND FINDINGS We examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach. In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted. CONCLUSIONS Immature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Leo Leonardo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Benediktus Andries
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | | | - Aurelie Fricot
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Benoit Henry
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Pak Prayoga
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
| | - Fabrice Chretien
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Valentine Brousse
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Innocent Safeukui
- Department of Biological Sciences, Notre Dame University, Notre Dame, Indiana, United States of America
| | - Hernando A. del Portillo
- ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Germans Trias I Pujol Research Institute, Badalona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Germans Trias I Pujol Research Institute, Badalona, Spain
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tonia Woodberry
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Papa A. Ndour
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Bruce M. Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tsin W. Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Jeanne R. Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
- Department of Pediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Nurjati C. Siregar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Anatomical Pathology, Rumah Sakit Cipto Mangunkusumo and Universitas Indonesia, Jakarta, Indonesia
| | - Pierre A. Buffet
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
48
|
Jeppesen JS, Breenfeldt Andersen A, Bonne TC, Thomassen M, Sørensen H, Nordsborg NB, Olsen NV, Huertas JR, Bejder J. Immature reticulocytes are sensitive and specific to low-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2021; 13:1331-1340. [PMID: 33739618 DOI: 10.1002/dta.3031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We investigated whether immature reticulocyte fraction (IRF) and immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive biomarkers for low-dose recombinant human erythropoietin (rhEpo) treatment at sea level (SL) and moderate altitude (AL) and whether multi (FACS) or single (Sysmex-XN) fluorescence flow cytometry is superior for IRF and IR/RBC determination. Thirty-nine participants completed two interventions, each containing a 4-week baseline, a 4-week SL or AL (2,230 m) exposure, and a 4-week follow-up. During exposure, rhEpo (20 IU kg-1 ) or placebo (PLA) was injected at SL (SLrhEpo , n = 25, SLPLA n = 9) and AL (ALrhEpo , n = 12, ALPLA n = 27) every second day for 3 weeks. Venous blood was collected weekly. Sysmex measurements revealed that IRF and IR/RBC were up to ~70% (P < 0.01) and ~190% (P < 0.001) higher in SLrhEpo than SLPLA during treatment and up to ~45% (P < 0.001) and ~55% (P < 0.01) lower post-treatment, respectively. Compared with ALPLA , IRF and IR/RBC were up to ~20% (P < 0.05) and ~45% (P < 0.001) lower post-treatment in SLrhEpo , respectively. In ALrhEpo , IRF and IR/RBC were up to ~40% (P < 0.05) and ~110% (P < 0.001) higher during treatment and up to ~25% (P < 0.05) and ~40% (P < 0.05) lower post-treatment, respectively, compared with ALPLA . Calculated thresholds provided ~90% sensitivity for both biomarkers at SL and 33% (IRF) and 66% (IR/RBC) at AL. Specificity was >99%. Single-fluorescence flow cytometry coefficient of variation was >twofold higher at baseline (P < 0.001) and provided larger or similar changes compared to multi-fluorescence, albeit with smaller precision. In conclusion, IRF and IR/RBC were sensitive and specific biomarkers for low-dose rhEpo misuse at SL and AL.
Collapse
Affiliation(s)
- Jan Sommer Jeppesen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Rodríguez Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Martino S, Arlet JB, Odièvre MH, Jullien V, Moras M, Hattab C, Lefebvre T, Gouya L, Ostuni MA, Lefevre SD, Le Van Kim C. Deficient mitophagy pathways in sickle cell disease. Br J Haematol 2021; 193:988-993. [PMID: 33754349 DOI: 10.1111/bjh.17416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
Sickle cell disease (SCD) is characterised by chronic haemolysis and oxidative stress. Herein, we investigated 30 SCD patients and found 40% with elevated mitochondria levels (SS-mito+ ) in their mature red blood cells, while 60% exhibit similar mitochondria levels compared to the AA group (SS-mito- ). The SS-mito+ patients are characterised by higher reticulocytosis and total bilirubin levels, lower foetal haemoglobin, and non-functional mitochondria. Interestingly, we demonstrated decreased levels of mitophagy inducers, PINK1 and NIX, and higher levels of HSP90 chaperone in their red cells. Our results highlighted for the first time an abnormal retention of mitochondria in SCD linked with mitophagy-related proteins.
Collapse
Affiliation(s)
- Suella Martino
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Benoit Arlet
- Laboratoire d'Excellence GR-Ex, Paris, France.,Service de Médecine Interne, Centre de référence Syndromes Drépanocytaires Majeurs, Thalassémie et autres maladies rares du Globule Rouge et de l'érythropoïèse, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Marie-Hélène Odièvre
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Service de Pédiatrie Générale et Aval des Urgences, Centre de la Drépanocytose, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Vincent Jullien
- Service de Médecine Interne, Centre de référence Syndromes Drépanocytaires Majeurs, Thalassémie et autres maladies rares du Globule Rouge et de l'érythropoïèse, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Martina Moras
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Claude Hattab
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thibaud Lefebvre
- Laboratoire d'Excellence GR-Ex, Paris, France.,Centre de Recherche sur l'Inflammation/CRI, Université de Paris, Inserm, Paris, France.,CRMR Porphyrie, Hôpital Louis Mourier, AP-HP Nord - Université de Paris, Colombes, France
| | - Laurent Gouya
- Laboratoire d'Excellence GR-Ex, Paris, France.,Centre de Recherche sur l'Inflammation/CRI, Université de Paris, Inserm, Paris, France.,CRMR Porphyrie, Hôpital Louis Mourier, AP-HP Nord - Université de Paris, Colombes, France
| | - Mariano A Ostuni
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sophie D Lefevre
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
50
|
Liu N, Huang Y, Zhang H, Wang T, Tao C, Zhang A, Chen B, Yin Y, Song M, Qu G, Liang Y, Shi J, He B, Hu L, Jiang G. Unified Probability Distribution and Dynamics of Lead Contents in Human Erythrocytes Revealed by Single-Cell Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3819-3826. [PMID: 33660988 DOI: 10.1021/acs.est.0c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the presence and dynamics of chemical pollutants in individual cells is fundamentally important for their trafficking, fate, and toxicity in humans. The presence of molecular components (i.e., proteins and mRNA) in individual cells of higher organisms is considered a stochastic event. The characteristics of chemical pollutants, as extrinsic compounds, in subpopulation of human cells on single-cell basis have not been explored yet. Here, we demonstrated the lead (Pb) content in individual mature erythrocytes (m-erythrocytes) of Pb-intoxicated patients, and healthy subjects exhibited a unified pattern in probability distribution (gamma distribution) and dynamics, despite being highly heterogeneous. The Pb content in individual m-erythrocytes decreased with the lifetime of m-erythrocytes. Meanwhile, the distribution and dynamics were found to be highly related to the Pb content in m-erythrocytes and was independent of patients and their status. This is the first study to analyze the distribution pattern of chemical pollutants at a single-cell level in higher organisms. This study sheds light on the molecular mechanism of Pb trafficking and fate in humans and the search for an efficient strategy to improve Pb excretion during Pb treatment.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Huang
- Department of Occupational Medicine, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Huizhou City Occupational Disease Prevention and Control Hospital, Huizhou, Guangdong 516008, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|