1
|
Lanave G, Pellegrini F, Diakoudi G, Catella C, Cavalli A, Capozza P, Elia G, Di Martino B, Zini E, Pollicino G, Zatelli A, Bányai K, Lavazza A, Decaro N, Camero M, Martella V. Discovery of a human parvovirus B19 analog (Erythroparvovirus) in cats. Sci Rep 2025; 15:9650. [PMID: 40113872 PMCID: PMC11926167 DOI: 10.1038/s41598-025-94123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Two feral cats (from the same colony) were presented to the veterinary clinic for weakness, weight loss, and anorexia. The cats were part of a study on feline hepatotropic viruses (collection A, 43 animals). On metaviromic investigation, parvoviral reads were identified in the sera of the two cats. The feline parvovirus genome was 5.3 kb long with an organization similar to other members of the Erythroparvovirus genus. In the ORF1 (nonstructural proteins) and ORF2 (VP1/VP2 precursor) the feline virus displayed 43.1% and 49.1% nucleotide identity to human parvovirus B19, and 48.9% and 56.6% to chipmunk parvovirus. Sequence identity to canine/feline protoparvovirus (Protoparvovirus carnivoran 1) was as low as 36.5% % and 29.2% in the ORF1 and ORF2, respectively. Using a quantitative PCR assay, the virus was also identified in an additional ten cats (prevalence 27.6%, 12/43) from collection A and in 15/1150 (1.3%) of archival sera (collection B), revealing a higher infection rate in cats with altered hepatic markers, suggestive of hepatic distress. The findings of our study extend the list of known parvoviruses in the feline host.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy.
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Alessandra Cavalli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | | | - Eric Zini
- AniCura Istituto Veterinario Novara, Granozzo Con Monticello, Novara, Italy
- Department of Animal Medicine, Productions and Health University of Padua, Padua, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Giuseppe Pollicino
- AniCura Istituto Veterinario Novara, Granozzo Con Monticello, Novara, Italy
| | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardia and Emilia Romagna, Brescia, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Mirolo M, Kühl B, Roji MD, Rubio-García A, Lima VA, Puff C, Martina B, Beineke A, Wohlsein P, Baumgärtner W, Ludlow M, Osterhaus A. Hepatovirus infections in juvenile seals from the North Sea. NPJ VIRUSES 2025; 3:1. [PMID: 40295823 PMCID: PMC11721073 DOI: 10.1038/s44298-024-00084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025]
Abstract
The discovery of several novel hepatovirus species in marine and terrestrial mammals has expanded the recognised members of the genus Hepatovirus and has provided better understanding on the evolutionary origins of human hepatovirus A (HAV). Using high throughput sequencing we detected a seal hepatovirus (SealHAV_NL/PV/21), in liver tissue of a deceased harbor seal (Phoca vitulina) originating from the Dutch North Sea coast. RT-PCR screening of liver samples of 88 harbor seals and 12 grey seals (Halichoerus grypus) from the same region identified seal hepatovirus in nine juvenile harbor seals in which minor sequence variation was observed in the VP1 gene. Whole-genome sequence analysis showed that SealHAV_NL/PV/21 displayed 95.6% nucleotide indentity to New England seal hepatovirus but had a 5'-UTR which contained additional 51 bp. Phylogenetic analysis showed that seal hepatoviruses clustered in a monophyletic group separate from other hepatovirus species that have been identified in terrestrial mammals. Assessment of seal hepatovirus RNA loads in organs of all infected animals showed that the liver had the highest number of RNA copies with up to 107 RNA copies per mg of tissue. Seal hepatovirus RNA was readily detected by in situ hybridization in hepatocytes in the liver but was not associated with pathological lesions. Serological screening of 90 contemporary seal sera using a HAV-based ELISA showed the presence of hepatovirus antibodies in 14 harbor seals and one juvenile grey seal. These findings collectively show that seal hepatovirus is enzootic among seals of the North Sea, causing quiescent infections in young animals.
Collapse
Affiliation(s)
- Monica Mirolo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bianca Kühl
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melvin Daniel Roji
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Valéria Andrade Lima
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
3
|
Vigil K, Wu H, Aw TG. A systematic review on global zoonotic virus-associated mortality events in marine mammals. One Health 2024; 19:100872. [PMID: 39206255 PMCID: PMC11357810 DOI: 10.1016/j.onehlt.2024.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Marine mammals play a critical role as sentinels for tracking the spread of zoonotic diseases, with viruses being the primary causative factor behind infectious disease induced mortality events. A systematic review was conducted to document marine mammal mortality events attributed to zoonotic viral infections in published literature across the globe. This rigorous search strategy yielded 2883 studies with 88 meeting inclusion criteria. The studies spanned from 1989 to 2023, with a peak in publications observed in 2020. Most of the included studies were retrospective, providing valuable insights into historical trends. The United States (U.S.) reported the highest number of mortality events followed by Spain, Italy, Brazil and the United Kingdom. Harbor seals were the most impacted species, particularly in regions like Anholt, Denmark and the New England Coast, U.S. Analysis revealed six main viruses responsible for mortality events, with Morbillivirus causing the highest proportion of deaths. Notably, the occurrence of these viral events varied geographically, with distinct patterns observed in different regions. Immunohistochemistry emerged as the most employed detection method. This study underscores the importance of global surveillance efforts in understanding and mitigating the impact of viral infections on marine mammal populations, thereby emphasizing the necessity of collaborative One Health approaches to address emerging threats at the human-animal-environment interface. Additionally, the potential transfer of zoonotic viruses to aquatic organisms used in food production, such as fish and shellfish, highlights the broader implications for food safety, food security and public health.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
RETROSPECTIVE REVIEW OF NEUROLOGIC DISEASE IN STRANDED ATLANTIC HARBOR SEALS ( PHOCA VITULINA CONCOLOR) ALONG THE NEW ENGLAND COAST. J Zoo Wildl Med 2023; 53:705-713. [PMID: 36640072 DOI: 10.1638/2021-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Harbor seals (Phoca vitulina) are a common species admitted to marine mammal rehabilitation facilities. As important indicators of marine ecosystem health, monitoring trends of disease in harbor seal populations is critical. However, few studies have evaluated neurologic disease in this species. The general objective of this study was to retrospectively review and delineate neurologic disease in free-ranging Atlantic harbor seals (P. vitulina concolor) that stranded along the New England (United States) coast and entered a rehabilitation facility between 2006 and 2019. Any Atlantic harbor seal that stranded live along the New England coast during the study period and was diagnosed with neurologic disease on either antemortem or postmortem evaluation was included; medical records and pathologic reports were reviewed. From 211 records, 24 animals met the inclusion criteria. Prevalence of neurologic disease was 11% in the study population and six major categories of neurologic disease were identified including: inflammatory (54%), idiopathic (33%), trauma (4%), congenital (4%), and degenerative (4%). Of the seals diagnosed with neurologic disease, 13 (54%) seals died during rehabilitation, 10 (42%) seals were euthanized, and 1 (4%) seal survived to release. Unique cases seen included a seal with Dandy-Walker-like malformation and another seal with histopathologic findings compatible with neuroaxonal dystrophy, a degenerative process that has not been previously reported in marine mammals. This study contributes to the overall knowledge of the health of free-ranging Atlantic harbor seals and may aid clinicians in characterizing neurologic conditions that may be present in seals undergoing rehabilitation.
Collapse
|
5
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Abstract
Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.
Collapse
|
7
|
Pénzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hübinger AM, Hughes J, Cotmore SF, Harrach B. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Arch Virol 2020; 165:2133-2146. [PMID: 32533329 DOI: 10.1007/s00705-020-04632-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parvoviridae, a diverse family of small single-stranded DNA viruses was established in 1975. It was divided into two subfamilies, Parvovirinae and Densovirinae, in 1993 to accommodate parvoviruses that infect vertebrate and invertebrate animals, respectively. This relatively straightforward segregation, using host association as the prime criterion for subfamily-level classification, has recently been challenged by the discovery of divergent, vertebrate-infecting parvoviruses, dubbed "chapparvoviruses", which have proven to be more closely related to viruses in certain Densovirinae genera than to members of the Parvovirinae. Viruses belonging to these genera, namely Brevi-, Hepan- and Penstyldensovirus, are responsible for the unmatched heterogeneity of the subfamily Densovirinae when compared to the Parvovirinae in matters of genome organization, protein sequence homology, and phylogeny. Another genus of Densovirinae, Ambidensovirus, has challenged traditional parvovirus classification, as it includes all newly discovered densoviruses with an ambisense genome organization, which introduces genus-level paraphyly. Lastly, current taxon definition and virus inclusion criteria have significantly limited the classification of certain long-discovered parvoviruses and impedes the classification of some potential family members discovered using high-throughput sequencing methods. Here, we present a new and updated system for parvovirus classification, which includes the introduction of a third subfamily, Hamaparvovirinae, resolves the paraphyly within genus Ambidensovirus, and introduces new genera and species into the subfamily Parvovirinae. These proposals were accepted by the ICTV in 2020 March.
Collapse
Affiliation(s)
- Judit J Pénzes
- Center for Structural Biology, Department of Biochemistry and Molecular Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520-8035, USA
| | - Balázs Harrach
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| |
Collapse
|
8
|
Crane A, Goebel ME, Kraberger S, Stone AC, Varsani A. Novel anelloviruses identified in buccal swabs of Antarctic fur seals. Virus Genes 2018; 54:719-723. [DOI: 10.1007/s11262-018-1585-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 11/27/2022]
|
9
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|
10
|
Fahsbender E, Burns JM, Kim S, Kraberger S, Frankfurter G, Eilers AA, Shero MR, Beltran R, Kirkham A, McCorkell R, Berngartt RK, Male MF, Ballard G, Ainley DG, Breitbart M, Varsani A. Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica. Virus Evol 2017; 3:vex017. [PMID: 28744371 PMCID: PMC5518176 DOI: 10.1093/ve/vex017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152 anellovirus genomes that share 63–70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n = 133, genomes encompassing 40 genotypes) is highly recombinant, whereas TTLwV-2 (n = 19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, however, the role these anelloviruses play in seal health remains unknown.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Stacy Kim
- Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Greg Frankfurter
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd, Juneau, Alaska 99801, USA
| | - Robert McCorkell
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Maketalena F Male
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
11
|
Munang'andu HM, Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms. Front Microbiol 2017; 8:406. [PMID: 28382024 PMCID: PMC5360701 DOI: 10.3389/fmicb.2017.00406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.
Collapse
Affiliation(s)
- Hetron M. Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| | - Kizito K. Mugimba
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere UniversityKampala, Uganda
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere UniversityKampala, Uganda
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| |
Collapse
|
12
|
de Graaf M, Bodewes R, van Elk CE, van de Bildt M, Getu S, Aron GI, Verjans GMGM, Osterhaus ADME, van den Brand JMA, Kuiken T, Koopmans MPG. Norovirus Infection in Harbor Porpoises. Emerg Infect Dis 2017; 23:87-91. [PMID: 27983498 PMCID: PMC5176230 DOI: 10.3201/eid2301.161081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea.
Collapse
|
13
|
Rosales SM, Vega Thurber RL. Brain transcriptomes of harbor seals demonstrate gene expression patterns of animals undergoing a metabolic disease and a viral infection. PeerJ 2016; 4:e2819. [PMID: 28028481 PMCID: PMC5182994 DOI: 10.7717/peerj.2819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022] Open
Abstract
Diseases of marine mammals can be difficult to diagnose because of their life history and protected status. Stranded marine mammals have been a particularly useful resource to discover and comprehend the diseases that plague these top predators. Additionally, advancements in high-throughput sequencing (HTS) has contributed to the discovery of novel pathogens in marine mammals. In this study, we use a combination of HTS and stranded harbor seals (Phoca vitulina) to better understand a known and unknown brain disease. To do this, we used transcriptomics to evaluate brain tissues from seven neonatal harbor seals that expired from an unknown cause of death (UCD) and compared them to four neonatal harbor seals that had confirmed phocine herpesvirus (PhV-1) infections in the brain. Comparing the two disease states we found that UCD animals showed a significant abundance of fatty acid metabolic transcripts in their brain tissue, thus we speculate that a fatty acid metabolic dysregulation contributed to the death of these animals. Furthermore, we were able to describe the response of four young harbor seals with PhV-1 infections in the brain. PhV-1 infected animals showed a significant ability to mount an innate and adaptive immune response, especially to combat viral infections. Our data also suggests that PhV-1 can hijack host pathways for DNA packaging and exocytosis. This is the first study to use transcriptomics in marine mammals to understand host and viral interactions and assess the death of stranded marine mammals with an unknown disease. Furthermore, we show the value of applying transcriptomics on stranded marine mammals for disease characterization.
Collapse
Affiliation(s)
- Stephanie M Rosales
- Department of Microbiology, Oregon State University , Corvallis , OR , United States
| | | |
Collapse
|
14
|
Kluge M, Campos FS, Tavares M, de Amorim DB, Valdez FP, Giongo A, Roehe PM, Franco AC. Metagenomic Survey of Viral Diversity Obtained from Feces of Subantarctic and South American Fur Seals. PLoS One 2016; 11:e0151921. [PMID: 26986573 PMCID: PMC4795697 DOI: 10.1371/journal.pone.0151921] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
The Brazilian South coast seasonally hosts numerous marine species, observed particularly during winter months. Some animals, including fur seals, are found dead or debilitated along the shore and may harbor potential pathogens within their microbiota. In the present study, a metagenomic approach was performed to evaluate the viral diversity in feces of fur seals found deceased along the coast of the state of Rio Grande do Sul. The fecal virome of two fur seal species was characterized: the South American fur seal (Arctocephalus australis) and the Subantarctic fur seal (Arctocephalus tropicalis). Fecal samples from 10 specimens (A. australis, n = 5; A. tropicalis, n = 5) were collected and viral particles were purified, extracted and amplified with a random PCR. The products were sequenced through Ion Torrent and Illumina platforms and assembled reads were submitted to BLASTx searches. Both viromes were dominated by bacteriophages and included a number of potentially novel virus genomes. Sequences of picobirnaviruses, picornaviruses and a hepevirus-like were identified in A. australis. A rotavirus related to group C, a novel member of the Sakobuvirus and a sapovirus very similar to California sea lion sapovirus 1 were found in A. tropicalis. Additionally, sequences of members of the Anelloviridae and Parvoviridae families were detected in both fur seal species. This is the first metagenomic study to screen the fecal virome of fur seals, contributing to a better understanding of the complexity of the viral community present in the intestinal microbiota of these animals.
Collapse
Affiliation(s)
- Mariana Kluge
- Virology Laboratory, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, UFRGS (Federal University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Souza Campos
- Virology Laboratory, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, UFRGS (Federal University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maurício Tavares
- CECLIMAR (Center for Coastal, Limnology and Marine Studies), UFRGS (Federal University of Rio Grande do Sul), Imbé, Rio Grande do Sul, Brazil
| | - Derek Blaese de Amorim
- CECLIMAR (Center for Coastal, Limnology and Marine Studies), UFRGS (Federal University of Rio Grande do Sul), Imbé, Rio Grande do Sul, Brazil
| | - Fernanda Pedone Valdez
- Genomic and Molecular Biology Laboratory, PUCRS (Pontifical Catholic University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Giongo
- IPR (Institute of Petroleum and Natural Resources), PUCRS (Pontifical Catholic University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, UFRGS (Federal University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Claudia Franco
- Virology Laboratory, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, UFRGS (Federal University of Rio Grande do Sul), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
15
|
van Elk C, van de Bildt M, van Run P, de Jong A, Getu S, Verjans G, Osterhaus A, Kuiken T. Central nervous system disease and genital disease in harbor porpoises (Phocoena phocoena) are associated with different herpesviruses. Vet Res 2016; 47:28. [PMID: 26861818 PMCID: PMC4748569 DOI: 10.1186/s13567-016-0310-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we examined harbor porpoises that stranded alive in the Netherlands, Belgium, and Germany between 2000 and 2014 for herpesvirus infection and associated disease. Porpoises that died or had to be euthanized were autopsied, and samples were collected for virological and pathological analyses. We found one known herpesvirus (Phocoena phocoena herpesvirus type 1, PPHV-1)—a gammaherpesvirus—and two novel herpesviruses (PPHV-2 and PPHV-3)—both alphaherpesviruses—in these porpoises. A genital plaque, in which PPHV-1 was detected, occurred in 1% (1/117) of porpoises. The plaque was characterized by epithelial hyperplasia and intranuclear inclusion bodies that contained herpesvirus-like particles, and that stained positive by a PPHV-1-specific in situ hybridization test. PPHV-2 occurred in the brain of 2% (1/74) of porpoises. This infection was associated with lymphocytic encephalitis, characterized by neuronal necrosis and intranuclear inclusion bodies containing herpesvirus-like particles. PPHV-3 had a prevalence of 5% (4/74) in brain tissue, 5% (2/43) in blowhole swabs, and 2% (1/43) in genital swabs, but was not associated with disease. Phylogenetically, PPHV-1 was identical to a previously reported herpesvirus from a harbor porpoise, PPHV-2 showed closest identity with two herpesviruses from dolphins, and PPHV-3 showed closest identity with a cervid herpesvirus. In conclusion, harbor porpoises may be infected with at least three different herpesviruses, one of which can cause clinically severe neurological disease.
Collapse
Affiliation(s)
- Cornelis van Elk
- Dolfinarium Harderwijk, Strandboulevard Oost 1, 3841 AB, Harderwijk, The Netherlands.
| | - Marco van de Bildt
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Peter van Run
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Anton de Jong
- Department of Pathology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Sarah Getu
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Georges Verjans
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, 30559, Hannover, Germany.
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Bodewes R, Contreras GJS, García AR, Hapsari R, van de Bildt MWG, Kuiken T, Osterhaus ADME. Identification of DNA sequences that imply a novel gammaherpesvirus in seals. J Gen Virol 2015; 96:1109-1114. [DOI: 10.1099/vir.0.000029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Ana Rubio García
- Seal Rehabilitation and Research Centre, Pieterburen, the Netherlands
| | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Centre for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany
- Artemis Research Institute for Wildlife Health, Utrecht, the Netherlands
- Viroclinics Biosciences BV, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Bodewes R, Hapsari R, Rubio García A, Sánchez Contreras GJ, van de Bildt MWG, de Graaf M, Kuiken T, Osterhaus ADME. Molecular epidemiology of seal parvovirus, 1988-2014. PLoS One 2014; 9:e112129. [PMID: 25390639 PMCID: PMC4229121 DOI: 10.1371/journal.pone.0112129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/13/2014] [Indexed: 01/30/2023] Open
Abstract
A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00 × 10(-4) for the partial NS gene and 1.15 × 10(-4) for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Ana Rubio García
- Seal Rehabilitation and Research Centre, Pieterburen, the Netherlands
| | | | | | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Viroclinics Biosciences BV, Rotterdam, the Netherlands
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
- Artemis One Health, Utrecht, the Netherlands
| |
Collapse
|