1
|
Kumar A, Ye C, Nkansah A, Decoville T, Fogo GM, Sajjakulnukit P, Reynolds MB, Zhang L, Quaye O, Seo YA, Sanderson TH, Lyssiotis CA, Chang CH. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl Acad Sci U S A 2024; 121:e2318420121. [PMID: 38621136 PMCID: PMC11047099 DOI: 10.1073/pnas.2318420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Afia Nkansah
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Thomas Decoville
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Garrett M. Fogo
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Peter Sajjakulnukit
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Li Zhang
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI48109
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
2
|
Wideman SK, Frost JN, Richter FC, Naylor C, Lopes JM, Viveiros N, Teh MR, Preston AE, White N, Yusuf S, Draper SJ, Armitage AE, Duarte TL, Drakesmith H. Cellular iron governs the host response to malaria. PLoS Pathog 2023; 19:e1011679. [PMID: 37812650 PMCID: PMC10586691 DOI: 10.1371/journal.ppat.1011679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and adaptive immune response, marked by decreased cell proliferation and cytokine production. Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron supplementation fully recovered CD4+ T cell and B cell function. Despite the inhibited immune response and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic tissue damage during malaria infection. These divergent effects shed light on the role of iron in the complex balance between protection and pathology in malaria.
Collapse
Affiliation(s)
- Sarah K. Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Joe N. Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Felix C. Richter
- Kennedy Institute of Rheumatology, Roosevelt Drive, Oxford, United Kingdom
| | - Caitlin Naylor
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - José M. Lopes
- Faculty of Medicine (FMUP) and Institute of Molecular Pathology, Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nicole Viveiros
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Megan R. Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexandra E. Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shamsideen Yusuf
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tiago L. Duarte
- Faculty of Medicine (FMUP) and Institute of Molecular Pathology, Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Zhu L, Li G, Liang Z, Qi T, Deng K, Yu J, Peng Y, Zheng J, Song Y, Chang X. Microbiota-assisted iron uptake promotes immune tolerance in the intestine. Nat Commun 2023; 14:2790. [PMID: 37188703 PMCID: PMC10185671 DOI: 10.1038/s41467-023-38444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease. Transferrin receptor 1 is required for differentiation of c-Maf+ Treg, major constituents of intestinal Treg. Mechanistically, iron enhances the translation of HIF-2α mRNA, and HIF-2α in turn induces c-Maf expression. Importantly, microbiota-produced pentanoate promotes iron uptake and Treg differentiation in the intestine. This subsequently restores immune tolerance and ameliorated iron deficiencies in mice with colitis. Our results thus reveal an association between nutrient uptake and immune tolerance in the intestine.
Collapse
Affiliation(s)
- Lizhen Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Geng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhixin Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tuan Qi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kui Deng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiancheng Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Peng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jusheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yan Song
- School of Medicine, University of California San Diego, La Jolla, CA, US
| | - Xing Chang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Raynor A, Stefanescu C, Bruneel A, Puy H, Peoc’h K, Manceau H. Reversible atransferrinemia in a patient with chronic enteropathy: is transferrin mandatory for iron transport? Biochem Med (Zagreb) 2023; 33:010801. [PMID: 36627980 PMCID: PMC9807235 DOI: 10.11613/bm.2023.010801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
Herein, we report the case of a 42-year-old woman, hospitalized in a French tertiary hospital for a relapse of a chronic enteropathy, who was found on admission to have no detectable serum transferrin. Surprisingly, she only exhibited mild anaemia. This atransferrinemia persisted for two months throughout her hospitalization, during which her haemoglobin concentration remained broadly stable. Based on her clinical history and evolution, we concluded to an acquired atransferrinemia secondary to chronic undernutrition, inflammation and liver failure. We discuss the investigations performed in this patient, and hypotheses regarding the relative stability of her haemoglobin concentration despite the absence of detectable transferrin.
Collapse
Affiliation(s)
- Alexandre Raynor
- Department of Biochemistry, Bichat University Hospital, APHP.Nord, Paris, France
| | - Carmen Stefanescu
- Department of Gastroenterology, Beaujon University Hospital, APHP. Nord, Clichy, France
| | - Arnaud Bruneel
- Department of Biochemistry, Bichat University Hospital, APHP.Nord, Paris, France
| | - Hervé Puy
- Department of Biochemistry, Bichat University Hospital, APHP.Nord, Paris, France,French Porphyria Center, Louis Mourier University Hospital, Colombes, France,Université Paris Cité, INSERM U1149, HIROS Heme Iron and Oxidative Stress, Inflammation Research Center, Paris, France
| | - Katell Peoc’h
- Department of Biochemistry, Bichat University Hospital, APHP.Nord, Paris, France,Department of Biochemistry, Beaujon University Hospital, APHP. Nord, Clichy, France,Université Paris Cité, INSERM U1149, HIROS Heme Iron and Oxidative Stress, Inflammation Research Center, Paris, France
| | - Hana Manceau
- Department of Biochemistry, Beaujon University Hospital, APHP. Nord, Clichy, France,Université Paris Cité, INSERM U1149, HIROS Heme Iron and Oxidative Stress, Inflammation Research Center, Paris, France,Corresponding author:
| |
Collapse
|
5
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
6
|
Li XF, Fu WF, Zhang J, Song CG. An iron metabolism and immune related gene signature for the prediction of clinical outcome and molecular characteristics of triple-negative breast cancer. BMC Cancer 2022; 22:619. [PMID: 35668369 PMCID: PMC9172128 DOI: 10.1186/s12885-022-09679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An imbalance of intracellular iron metabolism can lead to the occurrence of ferroptosis. Ferroptosis can be a factor in the remodeling of the immune microenvironment and can affect the efficacy of cancer immunotherapy. How to combine ferroptosis-promoting modalities with immunotherapy to suppress triple-negative breast cancer (TNBC) has become an issue of great interest in cancer therapy. However, potential biomarkers related to iron metabolism and immune regulation in TNBC remain poorly understand. METHODS We constructed an optimal prognostic TNBC-IMRGs (iron metabolism and immune-related genes) signature using least absolute shrinkage and selection operator (LASSO) cox regression. Survival analysis and ROC curves were analyzed to identify the predictive value in a training cohort and external validation cohorts. The correlations of gene signature with ferroptosis regulators and immune infiltration are also discussed. Finally, we combined the gene signature with the clinical model to construct a combined model, which was further evaluated using a calibration curve and decision curve analysis (DCA). RESULTS Compared with the high-risk group, TNBC patients with low-risk scores had a remarkably better prognosis in both the training set and external validation sets. Both the IMRGs signature and combined model had a high predictive capacity, 1/3/5- year AUC: 0.866, 0.869, 0.754, and 1/3/5-yaer AUC: 0.942, 0.934, 0.846, respectively. The calibration curve and DCA also indicate a good predictive performance of the combined model. Gene set enrichment analysis (GSEA) suggests that the high-risk group is mainly enriched in metabolic processes, while the low-risk group is mostly clustered in immune related pathways. Multiple algorithms and single sample GSEA further show that the low-risk score is associated with a high tumor immune infiltration level. Differences in expression of ferroptosis regulators are also observed among different risk groups. CONCLUSIONS The IMRGs signature based on a combination of iron metabolism and immune factors may contribute to evaluating prognosis, understanding molecular characteristics and selecting treatment options in TNBC.
Collapse
Affiliation(s)
- Xiao-Fen Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Wen-Fen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chuan-Gui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
7
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
8
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
9
|
Carrilho P. Intravenous iron in heart failure and chronic kidney disease. Nefrologia 2021; 41:403-411. [PMID: 36165109 DOI: 10.1016/j.nefroe.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/25/2020] [Indexed: 06/16/2023] Open
Abstract
Intravenous iron therapy is increasingly being used worldwide to treat anemia in chronic kidney disease and more recently iron deficiency in heart failure. Promising results were obtained in randomized clinical trials in the latter, showing symptomatic and functional capacity improvement with intravenous iron therapy. Meanwhile, confirmation of clinical benefit in hard-endpoints such as mortality and hospitalization is expected in large clinical trials that are already taking place. In chronic kidney disease, concern about iron overload is being substituted by claims of direct cardiovascular benefit of iron supplementation, as suggested by preliminary studies in heart failure. We discuss the pitfalls of present studies and gaps in knowledge, stressing the known differences between iron metabolism in heart and renal failure. Systemic and cellular iron handling and the role of hepcidin are reviewed, as well as the role of iron in atherosclerosis, especially in view of its relevance to patients undergoing dialysis. We summarize the evidence available concerning iron overload, availability and toxicity in CKD, that should be taken into account before embracing aggressive intravenous iron supplementation.
Collapse
|
10
|
Wlazlo E, Mehrad B, Morel L, Scindia Y. Iron Metabolism: An Under Investigated Driver of Renal Pathology in Lupus Nephritis. Front Med (Lausanne) 2021; 8:643686. [PMID: 33912577 PMCID: PMC8071941 DOI: 10.3389/fmed.2021.643686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Nephritis is a common manifestation of systemic lupus erythematosus, a condition associated with inflammation and iron imbalance. Renal tubules are the work horse of the nephron. They contain a large number of mitochondria that require iron for oxidative phosphorylation, and a tight control of intracellular iron prevents excessive generation of reactive oxygen species. Iron supply to the kidney is dependent on systemic iron availability, which is regulated by the hepcidin-ferroportin axis. Most of the filtered plasma iron is reabsorbed in proximal tubules, a process that is controlled in part by iron regulatory proteins. This review summarizes tubulointerstitial injury in lupus nephritis and current understanding of how renal tubular cells regulate intracellular iron levels, highlighting the role of iron imbalance in the proximal tubules as a driver of tubulointerstitial injury in lupus nephritis. We propose a model based on the dynamic ability of iron to catalyze reactive oxygen species, which can lead to an accumulation of lipid hydroperoxides in proximal tubular epithelial cells. These iron-catalyzed oxidative species can also accentuate protein and autoantibody-induced inflammatory transcription factors leading to matrix, cytokine/chemokine production and immune cell infiltration. This could potentially explain the interplay between increased glomerular permeability and the ensuing tubular injury, tubulointerstitial inflammation and progression to renal failure in LN, and open new avenues of research to develop novel therapies targeting iron metabolism.
Collapse
Affiliation(s)
- Ewa Wlazlo
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States.,Division of Nephrology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells 2021; 10:303. [PMID: 33540645 PMCID: PMC7913036 DOI: 10.3390/cells10020303] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into the field of iron metabolism within the tumor microenvironment have been uncovered in recent years. Iron promotes the production of reactive oxygen species, which may either trigger ferroptosis cell death or contribute to malignant transformation. Once transformed, cancer cells divert tumor-infiltrating immune cells to satisfy their iron demand, thus affecting the tumor immunosurveillance. In this review, we highlight how the bioavailability of this metal shapes complex metabolic pathways within the tumor microenvironment and how this affects both tumor-associated macrophages and tumor-infiltrating lymphocytes functions. Furthermore, we discuss the potentials as well as the current clinical controversies surrounding the use of iron metabolism as a target for new anticancer treatments in two opposed conditions: i) the "hot" tumors, which are usually enriched in immune cells infiltration and are extremely rich in iron availability within the microenvironment, and ii) the "cold" tumors, which are often very poor in immune cells, mainly due to immune exclusion.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Serafina Mancuso
- U.O. Biochimica Clinica, Azienda Ospedaliero Universitaria Mater Domini, 88100 Catanzaro, Italy;
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Tymoszuk P, Nairz M, Brigo N, Petzer V, Heeke S, Kircher B, Hermann-Kleiter N, Klepsch V, Theurl I, Weiss G, Pfeifhofer-Obermair C. Iron Supplementation Interferes With Immune Therapy of Murine Mammary Carcinoma by Inhibiting Anti-Tumor T Cell Function. Front Oncol 2020; 10:584477. [PMID: 33344239 PMCID: PMC7746876 DOI: 10.3389/fonc.2020.584477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Iron is both, an essential compound for many metabolic processes, and iron deficiency can impact on the proliferation of cells including lymphocytes but also tumor cells. On the other hand, excess iron-catalyzed radical formation can induce cellular toxicity which has been previously demonstrated for T cells in hereditary iron overload. Despite these interconnections, little is known on the effects of clinically approved intravenous iron supplements for curing cancer-related anemia, on T cell differentiation, tumor proliferation, anti-tumor T cell responses and, of clinical importance, on efficacy of cancer immunotherapies. Herein, we analyzed the effects of intravenous iron supplementation on T cell function and on the effectiveness of anti-cancer chemotherapy with IL-2/doxorubicin or immunotherapy with checkpoint-inhibitor anti-PD-L1 in C57Bl/6N female mice with implanted E0771 mammary carcinomas. We found that iron application resulted to an increased availability of iron in the tumor microenvironment and stimulation of tumor growth. In parallel, iron application inhibited the activation, expansion and survival of cytotoxic CD8+ T cells and of CD4+ T helper cells type 1 and significantly reduced the efficacy of the investigated anti-cancer treatments. Our results indicate that iron administration has a tumor growth promoting effect and impairs anti-cancer responses of tumor infiltrating T lymphocytes along with a reduced efficacy of anti-cancer therapies. Iron supplementation in cancer patients, especially in those treated with immunotherapies in a curative setting, may be thus used cautiously and prospective studies have to clarify the impact of such intervention on the outcome of patients.
Collapse
Affiliation(s)
- Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Heeke
- Institute for Research on Cancer and Aging, Laboratory of Clinical and Experimental Pathology (LPCE), Hôpital Pasteur, Nice, France
| | - Brigitte Kircher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Victoria Klepsch
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
13
|
Abstract
Intravenous iron therapy is increasingly being used worldwide to treat anemia in chronic kidney disease and more recently iron deficiency in heart failure. Promising results were obtained in randomized clinical trials in the latter, showing symptomatic and functional capacity improvement with intravenous iron therapy. Meanwhile, confirmation of clinical benefit in hard-endpoints such as mortality and hospitalization is expected in large clinical trials that are already taking place. In chronic kidney disease, concern about iron overload is being substituted by claims of direct cardiovascular benefit of iron supplementation, as suggested by preliminary studies in heart failure. We discuss the pitfalls of present studies and gaps in knowledge, stressing the known differences between iron metabolism in heart and renal failure. Systemic and cellular iron handling and the role of hepcidin are reviewed, as well as the role of iron in atherosclerosis, especially in view of its relevance to patients undergoing dialysis. We summarize the evidence available concerning iron overload, availability and toxicity in CKD, that should be taken into account before embracing aggressive intravenous iron supplementation.
Collapse
|
14
|
Yarosz EL, Ye C, Kumar A, Black C, Choi EK, Seo YA, Chang CH. Cutting Edge: Activation-Induced Iron Flux Controls CD4 T Cell Proliferation by Promoting Proper IL-2R Signaling and Mitochondrial Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1708-1713. [PMID: 32122995 PMCID: PMC7329364 DOI: 10.4049/jimmunol.1901399] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023]
Abstract
Iron has long been established as a critical mediator of T cell development and proliferation. However, the mechanisms by which iron controls CD4 T cell activation and expansion remain poorly understood. In this study, we show that stimulation of CD4 T cells from C57BL/6 mice not only decreases total and labile iron levels but also leads to changes in the expression of iron homeostatic machinery. Additionally, restraining iron availability in vitro severely inhibited CD4 T cell proliferation and cell cycle progression. Although modulating cellular iron levels increased IL-2 production by activated T lymphocytes, CD25 expression and pSTAT5 levels were decreased, indicating that iron is necessary for IL-2R-mediated signaling. We also found that iron deprivation during T cell stimulation negatively impacts mitochondrial function, which can be reversed by iron supplementation. In all, we show that iron contributes to activation-induced T cell expansion by positively regulating IL-2R signaling and mitochondrial function.
Collapse
Affiliation(s)
- Emily L Yarosz
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Chauna Black
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Cheong-Hee Chang
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109;
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
15
|
Brissot E, Bernard DG, Loréal O, Brissot P, Troadec MB. Too much iron: A masked foe for leukemias. Blood Rev 2020; 39:100617. [DOI: 10.1016/j.blre.2019.100617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
16
|
Detanico T, Virgen-Slane R, Steen-Fuentes S, Lin WW, Rhode-Kurnow A, Chappell E, Correa RG, DiCandido MJ, Mbow ML, Li J, Ware CF. Co-expression Networks Identify DHX15 RNA Helicase as a B Cell Regulatory Factor. Front Immunol 2019; 10:2903. [PMID: 31921164 PMCID: PMC6915936 DOI: 10.3389/fimmu.2019.02903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Genome-wide co-expression analysis is often used for annotating novel gene functions from high-dimensional data. Here, we developed an R package with a Shiny visualization app that creates immuno-networks from RNAseq data using a combination of Weighted Gene Co-expression Network Analysis (WGCNA), xCell immune cell signatures, and Bayesian Network Learning. Using a large publicly available RNAseq dataset we generated a Gene Module-Immune Cell (GMIC) network that predicted causal relationships between DEAH-box RNA helicase (DHX)15 and genes associated with humoral immunity, suggesting that DHX15 may regulate B cell fate. Deletion of DHX15 in mouse B cells led to impaired lymphocyte development, reduced peripheral B cell numbers, and dysregulated expression of genes linked to antibody-mediated immune responses similar to the genes predicted by the GMIC network. Moreover, antigen immunization of mice demonstrated that optimal primary IgG1 responses required DHX15. Intrinsic expression of DHX15 was necessary for proliferation and survival of activated of B cells. Altogether, these results support the use of co-expression networks to elucidate fundamental biological processes.
Collapse
Affiliation(s)
- Thiago Detanico
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Virgen-Slane
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Seth Steen-Fuentes
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai W. Lin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Antje Rhode-Kurnow
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Elizabeth Chappell
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ricardo G. Correa
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Michael J. DiCandido
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - M. Lamine Mbow
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Jun Li
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Carl F. Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
17
|
HFE Related Hemochromatosis: Uncovering the Inextricable Link between Iron Homeostasis and the Immunological System. Pharmaceuticals (Basel) 2019; 12:ph12030122. [PMID: 31443397 PMCID: PMC6789554 DOI: 10.3390/ph12030122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The HFE gene (OMIM 235200), most commonly associated with the genetic iron overload disorder Hemochromatosis, was identified by Feder et al. in 1996, as a major histocompatibilty complex (MHC) class I like gene, first designated human leukocyte antigen-H (HLA-H). This discovery was thus accomplished 20 years after the realization of the first link between the then "idiopathic" hemochromatosis and the human leukocyte antigens (HLA). The availability of a good genetic marker in subjects homozygous for the C282Y variant in HFE (hereditary Fe), the reliability in serum markers such as transferrin saturation and serum ferritin, plus the establishment of noninvasive methods for the estimation of hepatic iron overload, all transformed hemochromatosis into a unique age related disease where prevention became the major goal. We were challenged by the finding of iron overload in a 9-year-old boy homozygous for the C282Y HFE variant, with two brothers aged 11 and 5 also homozygous for the mutation. We report a 20 year follow-up during which the three boys were seen yearly with serial determinations of iron parameters and lymphocyte counts. This paper is divided in three sections: Learning, applying, and questioning. The result is the illustration of hemochromatosis as an age related disease in the transition from childhood to adult life and the confirmation of the inextricable link between iron overload and the cells of the immune system.
Collapse
|
18
|
Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics 2019; 10:802-817. [PMID: 29808889 DOI: 10.1039/c8mt00055g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood contains a poorly characterized pool of labile iron called non-transferrin-bound iron (NTBI). In patients with iron-overload diseases such as hemochromatosis, NTBI accumulates in the liver, heart, and other organs. This material is probably nonproteinaceous and low molecular mass (LMM). However, the number, concentration, mass, and chemical composition of NTBI species remain unknown despite decades of effort. Here, solutions of plasma from humans, pigs, horses, and mice were passed through a 10 kDa cutoff membrane, affording flow-through solutions (FTSs) containing ∼1 μM iron. The FTSs were subjected to size-exclusion liquid chromatography at pH 8.5, 6.5, and 4.5. Iron was detected by an online inductively-coupled-plasma mass spectrometer. LC-ICP-MS chromatograms of the FTSs exhibited 2-6 iron-containing species with apparent masses between 400 and 2500 Da. Their approximate concentrations in plasma were 10-8-10-7 M. Not every FTS sample contained every LMM iron species, indicating individual variations. The most reproducible iron species had apparent masses of 400 and 500 Da. Chromatograms of the FTSs from established hemochromatosis patients exhibited no significant differences relative to controls. The peak positions and intensities depended on column pH. Some FTS iron adsorbed onto the column, especially at higher pH. Column-adsorbing-iron coordinated apo-transferrin whereas the more tightly coordinated iron species did not. Ferric citrate standards exhibited LMM iron peaks that were similar to but not the same as those obtained in FTSs. The results indicate that the LMM iron species in healthy blood plasma is not primarily ferric citrate; however, this may be one of many contributing complexes.
Collapse
Affiliation(s)
- Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
19
|
Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL, Zoller H, Stauder R, Theurl I, Weiss G, Tymoszuk P. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:98867. [PMID: 30996139 PMCID: PMC6538345 DOI: 10.1172/jci.insight.98867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions. Human classical and intermediate monocytes mediate clearance of non-transferrin-bound iron and erythrophagocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Tara L Arvedson
- Department of Oncology, Amgen Inc., Thousand Oaks, California, USA
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
20
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
21
|
Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11:ph11030084. [PMID: 30200471 PMCID: PMC6161156 DOI: 10.3390/ph11030084] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana C Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Gonçalo Mesquita
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
22
|
The Impact of Iron Overload in Acute Leukemia: Chronic Inflammation, But Not the Presence of Nontransferrin Bound Iron is a Determinant of Oxidative Stress. J Pediatr Hematol Oncol 2017; 39:425-439. [PMID: 28731917 DOI: 10.1097/mph.0000000000000867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the literature, studies on the oxidant effects of nontransferrin bound iron [NTBI (eLPI assay)] during chemotherapy of acute lymphoblastic leukemia and acute myeloblastic leukemia are lacking. We established NTBI and oxidative stress determinants (OSD), iron parameters, high-sensitive C-reactive protein (hs-CRP) levels, liver tests, cumulative chemotherapeutic doses, and transfused blood in 36 children with acute leukemia throughout chemotherapy. These parameters were determined at the beginning and end of chemotherapy blocks (11 time points) and in 20 healthy children using enzyme-linked immunosorbent assay, and colorimetric and fluorometric enzymatic methods. In acute lymphoblastic leukemia, NTBI, OSD, and hs-CRP were higher than controls at 4/11, 7/11, and 9/11 time points (P<0.05). At 3 time points, NTBI and OSD concurrently increased. Ferritin, soluble transferrin receptor, serum iron, and transferrin saturation were higher than in controls at 5 to 11/11 time points (P<0.05). Those with NTBI had higher iron parameters than those without NTBI (P<0.05), but showed similar OSD, hs-CRP, liver enzymes, cumulative chemotherapeutics, and transfused blood (P>0.05). OSD did not correlate with NTBI, but correlated with hs-CRP. In conclusion, NTBI is a poor predictor of OSD in acute leukemia possibly because of the heterogeneity of NTBI and chronic inflammation. Further studies are needed to delineate the pathophysiology of these diseases.
Collapse
|
23
|
Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol 2017; 96:1085-1095. [DOI: 10.1007/s00277-017-2985-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
|
24
|
Iron overload enhances human mesenchymal stromal cell growth and hampers matrix calcification. Biochim Biophys Acta Gen Subj 2016; 1860:1211-23. [DOI: 10.1016/j.bbagen.2016.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 01/19/2023]
|
25
|
Marques O, Porto G, Rêma A, Faria F, Cruz Paula A, Gomez-Lazaro M, Silva P, Martins da Silva B, Lopes C. Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer 2016; 16:187. [PMID: 26944411 PMCID: PMC4779214 DOI: 10.1186/s12885-016-2228-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.
Collapse
Affiliation(s)
- Oriana Marques
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| | - Graça Porto
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Hematology Service, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal.
| | - Alexandra Rêma
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Fátima Faria
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Arnaud Cruz Paula
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| | - Maria Gomez-Lazaro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.
| | - Paula Silva
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal. .,Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| | - Berta Martins da Silva
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Carlos Lopes
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| |
Collapse
|
26
|
Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, Bainter W, Fraulino D, Rahimov F, Sieff C, Liu ZJ, Alshemmari SH, Al-Ramadi BK, Al-Dhekri H, Arnaout R, Abu-Shukair M, Vatsayan A, Silver E, Ahuja S, Davies EG, Sola-Visner M, Ohsumi TK, Andrews NC, Notarangelo LD, Fleming MD, Al-Herz W, Kunkel LM, Geha RS. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet 2016; 48:74-8. [PMID: 26642240 PMCID: PMC4696875 DOI: 10.1038/ng.3465] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 11/13/2015] [Indexed: 02/05/2023]
Abstract
Patients with a combined immunodeficiency characterized by normal numbers but impaired function of T and B cells had a homozygous p.Tyr20His substitution in transferrin receptor 1 (TfR1), encoded by TFRC. The substitution disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 expression on the cell surface. Iron citrate rescued the lymphocyte defects, and expression of wild-type but not mutant TfR1 rescued impaired transferrin uptake in patient-derived fibroblasts. Tfrc(Y20H/Y20H) mice recapitulated the immunological defects of patients. Despite the critical role of TfR1 in erythrocyte development and function, patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient-derived fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Anemia/genetics
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Cycle Proteins
- Cells, Cultured
- Endocytosis
- Female
- Fibroblasts/physiology
- Humans
- Immunologic Deficiency Syndromes/genetics
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mutation, Missense
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Oxidoreductases
- Pedigree
- Receptors, Transferrin/genetics
- Receptors, Transferrin/immunology
- Receptors, Transferrin/metabolism
Collapse
Affiliation(s)
- Haifa H Jabara
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven E Boyden
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Halli Benson
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David Fraulino
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Fedik Rahimov
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Colin Sieff
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zhi-Jian Liu
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Neonatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Salem H Alshemmari
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hasan Al-Dhekri
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rand Arnaout
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Abu-Shukair
- Immunology, Allergy and Rheumatology Division, Queen Rania Hospital for Children, Amman, Jordan
| | - Anant Vatsayan
- Department of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eli Silver
- Division of Pulmonology and Sleep Medicine, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Ahuja
- Department of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio, USA
| | - E Graham Davies
- Centre for Immunodeficiency, Great Ormond Street Hospital and Institute of Child Health, London, UK
| | - Martha Sola-Visner
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Neonatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Toshiro K Ohsumi
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nancy C Andrews
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Louis M Kunkel
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Levina A, McLeod AI, Gasparini SJ, Nguyen A, De Silva WGM, Aitken JB, Harris HH, Glover C, Johannessen B, Lay PA. Reactivity and Speciation of Anti-Diabetic Vanadium Complexes in Whole Blood and Its Components: The Important Role of Red Blood Cells. Inorg Chem 2015; 54:7753-66. [PMID: 26230577 DOI: 10.1021/acs.inorgchem.5b00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (<50 μM), this role of RBC may promote the formation of V(III)-transferrin as a major V carrier in the blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro-drugs that have broad applications across medicine.
Collapse
Affiliation(s)
- Aviva Levina
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Andrew I McLeod
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Sylvia J Gasparini
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Annie Nguyen
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | - Jade B Aitken
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia.,‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Hugh H Harris
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Chris Glover
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Bernt Johannessen
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Peter A Lay
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
28
|
Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metab 2015; 22:138-50. [PMID: 26028554 PMCID: PMC4497937 DOI: 10.1016/j.cmet.2015.05.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 01/07/2023]
Abstract
Nearly all forms of hereditary hemochromatosis are characterized by pathological iron accumulation in the liver, pancreas, and heart. These tissues preferentially load iron because they take up non-transferrin-bound iron (NTBI), which appears in the plasma during iron overload. Yet, how tissues take up NTBI is largely unknown. We report that ablation of Slc39a14, the gene coding for solute carrier SLC39A14 (also called ZIP14), in mice markedly reduced the uptake of plasma NTBI by the liver and pancreas. To test the role of SLC39A14 in tissue iron loading, we crossed Slc39a14(-/-) mice with Hfe(-/-) and Hfe2(-/-) mice, animal models of type 1 and type 2 (juvenile) hemochromatosis, respectively. Slc39a14 deficiency in hemochromatotic mice greatly diminished iron loading of the liver and prevented iron deposition in hepatocytes and pancreatic acinar cells. The data suggest that inhibition of SLC39A14 may mitigate hepatic and pancreatic iron loading and associated pathologies in iron overload disorders.
Collapse
Affiliation(s)
- Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Yu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Richard Coffey
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Alan Chan
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Biel
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Shintaro Hojyo
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Deutsches Rheuma-Forschungszentrum Berlin, Osteoimmunology, Charitéplatz, 10117 Berlin, Germany
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa 142-8666, Japan; Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8055, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Costa M, Cruz E, Oliveira S, Benes V, Ivacevic T, Silva MJ, Vieira I, Dias F, Fonseca S, Gonçalves M, Lima M, Leitão C, Muckenthaler MU, Pinto J, Porto G. Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo. PLoS One 2015; 10:e0124246. [PMID: 25880808 PMCID: PMC4399836 DOI: 10.1371/journal.pone.0124246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH.
Collapse
Affiliation(s)
- Mónica Costa
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Doctoral Program in Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Eugénia Cruz
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Susana Oliveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tomi Ivacevic
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria João Silva
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Inês Vieira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Francisco Dias
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Sónia Fonseca
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Marta Gonçalves
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Margarida Lima
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
| | - Catarina Leitão
- Advanced Flow Cytometry Unit, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Martina U. Muckenthaler
- Departments of Pediatric Hematology, Oncology and Immunology, University of Heidelberg and Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Jorge Pinto
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graça Porto
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Basic and Clinical Research on Iron Biology, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital—Centro Hospitalar do Porto, Porto, Portugal
- Molecular Immunology and Pathology, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
30
|
Abstract
DMT1 (divalent metal transporter 1) is the main iron importer found in animals, and ferrous iron is taken up by cells via DMT1. Once ferrous iron reaches the cytosol, it is subjected to subcellular distribution and delivered to various sites where iron is required for a variety of biochemical reactions in the cell. Until now, the mechanism connecting the transporter and cytosolic distribution had not been clarified. In the present study, we have identified PCBP2 [poly(rC)-binding protein 2] as a DMT1-binding protein. The N-terminal cytoplasmic region of DMT1 is the binding domain for PCBP2. An interaction between DMT1 and PCBP1, which is known to be a paralogue of PCBP2, could not be demonstrated in vivo or in vitro. Iron uptake and subsequent ferritin expression were suppressed by either DMT1 or PCBP2 knockdown. Iron-associated DMT1 could interact with PCBP2 in vitro, whereas iron-chelated DMT1 could not. These results indicate that ferrous iron imported by DMT1 is transferred directly to PCBP2. Moreover, we demonstrated that PCBP2 could bind to ferroportin, which exports ferrous iron out of the cell. These findings suggest that PCBP2 can transfer ferrous iron from DMT1 to the appropriate intracellular sites or ferroportin and could function as an iron chaperone.
Collapse
|
31
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
32
|
Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 2014; 5:45. [PMID: 24659969 PMCID: PMC3952030 DOI: 10.3389/fphar.2014.00045] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/26/2014] [Indexed: 12/25/2022] Open
Abstract
In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI) composition varies with metal concentration and substances with chelating groups but also with pH and the medium redox potential. Although physiologically in the lower μM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS) formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (Tf; that renders iron essentially non-labile), in systemic iron overload (IO), the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma Tf approaches iron saturation, labile plasma iron (LPI) emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of IO, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in intravenous iron formulations per se as well as in plasma (LPI) following parenteral iron administration.
Collapse
Affiliation(s)
- Zvi Ioav Cabantchik
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
33
|
Pinto JP, Arezes J, Dias V, Oliveira S, Vieira I, Costa M, Vos M, Carlsson A, Rikers Y, Rangel M, Porto G. Physiological implications of NTBI uptake by T lymphocytes. Front Pharmacol 2014; 5:24. [PMID: 24616700 PMCID: PMC3935319 DOI: 10.3389/fphar.2014.00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
In iron overload disorders a significant fraction of the total iron circulates in the plasma as low molecular weight complexes not bound to transferrin, known as non-transferrin-bound iron (NTBI). By catalyzing the formation of free radicals, NTBI accumulation results in oxidative stress and cellular damage, being a major cause of organ toxicity. NTBI is rapidly and preferentially cleared from circulation by the liver and the myocardium, the main disease targets in iron overload conditions. We have recently demonstrated that human peripheral blood T lymphocytes take up NTBI in vitro, with a pattern that resembles that of hepatocytes. Since T lymphocytes constitute a numerically important component of the circulating cell pool, these findings support a putative role for this cell type in the systemic protection against iron toxicity. Here we tested the hypothesis that the circulating peripheral blood T lymphocyte pool constitutes an important storage compartment for NTBI and is thus a modifier of NTBI deposition in target organs. First we show that NTBI uptake by human T lymphocytes increases the expression of the iron-storage protein ferritin and of the iron exporter ferroportin via an IRE-dependent mechanism. NTBI retention by T lymphocytes is shown to be critically controlled by the hepcidin-mediated modulation of ferroportin both in vitro and in vivo. Finally, the protective effect of T lymphocytes was tested by analyzing the patterns of iron accumulation in the T lymphocyte-deficient mouse model Foxn1nu before and after reconstitution with T lymphocytes by adoptive transfer. The results confirmed a significant increase of liver and pancreas iron accumulation in T lymphocyte-deficient mice. NTBI accumulation in the liver and spleen was prevented by reconstitution with syngeneic T lymphocytes. Altogether, our results demonstrate that T lymphocytes are important components of a circulating “NTBI storage compartment” and show its physiological relevance as a modifier of tissue iron overload.
Collapse
Affiliation(s)
- Jorge P Pinto
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - João Arezes
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Vera Dias
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Susana Oliveira
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Inês Vieira
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Mónica Costa
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Faculdade de Medicina, Universidade do Porto Porto, Portugal
| | | | | | | | - Maria Rangel
- Chemistry Department, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Graça Porto
- Molecular and Cellular Biology Division, Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal ; Clinical Hematology, CHP-HSA - Santo António General Hospital Porto, Portugal ; Molecular Immunology and Pathology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| |
Collapse
|