1
|
Zhou X, Yin C, Lin Z, Yan Z, Wang J. Merkel Cell Polyomavirus Co-Infection in HIV/AIDS Individuals: Clinical Diagnosis, Consequences and Treatments. Pathogens 2025; 14:134. [PMID: 40005510 PMCID: PMC11858345 DOI: 10.3390/pathogens14020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Merkel cell polyomavirus (MCV) was named for its role as the causative agent of Merkel cell carcinoma (MCC), which is MCV positive in approximately 80% of cases. MCV is classified as a Group 2A carcinogen, which promotes carcinogenesis by integrating T-antigen into the cell genome. The prevalence of anti-MCV antibodies in the general population can be as high as 90%. MCV typically promotes cancer by integrating T-antigen genes into the host cell genome, and 80% of MCC cases are attributed to MCV activation. In immunocompetent individuals, MCV usually remains latent after infection. However, the incidence of MCC increases significantly in immunocompromised or immunodeficient patients, such as those who have undergone organ transplantation, have chronic lymphocytic leukemia, or are living with human immunodeficiency virus (HIV) infection. Acquired immunodeficiency is a particular feature of people living with HIV. Currently, research on HIV/AIDS patients with MCV infection, clinical outcomes, and treatments is quite limited. This paper reviews previous research and systematically examines the relationship between HIV/AIDS and MCV-associated diseases, with the aim of providing valuable information for the prevention, diagnosis, and treatment of MCV in vulnerable populations.
Collapse
Affiliation(s)
- Xianfeng Zhou
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.Z.); (Z.L.)
- Public Health Education and Health Service Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chenxue Yin
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Ziqi Lin
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.Z.); (Z.L.)
| | - Zhangren Yan
- Jiangxi University of Chinese Medicine Affiliated Hospital, Nanchang 330006, China
| | - Jiangang Wang
- Jiangxi University of Chinese Medicine Affiliated Hospital, Nanchang 330006, China
| |
Collapse
|
2
|
Biffi R, Benoit SW, Sariyer IK, Safak M. JC virus small tumor antigen promotes S phase entry and cell cycle progression. Tumour Virus Res 2024; 18:200298. [PMID: 39586476 DOI: 10.1016/j.tvr.2024.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The early coding region of JC virus (JCV) encodes several regulatory proteins including large T antigen (LT-Ag), small t antigen (Sm t-Ag) and T' proteins because of the alternative splicing of the pre-mRNA. LT-Ag plays a critical role in cell transformation by targeting the key cell cycle regulatory proteins including p53 and pRb, however, the role of Sm t-Ag in this process remains elusive. Here, we investigated the effect of Sm t-Ag on the cell cycle progression and demonstrated that it facilitates S phase entry and exit when cells are released from G0/G1 growth arrest. Examination of the cell cycle stage specific expression profiles of the selected cyclins and cyclin-dependent kinases, including those active at the G1/S and G2/M transition state, demonstrated a higher level of early expression of these regulators such as cyclin B, cycling E, and Cdk2. In addition, analysis of the effect of Sm t-Ag on the growth promoting pathways including those active in the PI3K/Akt/mTOR axis showed substantially higher levels of the phosphorylated-Akt, -Gsk3-β and -S6K1 in Sm t-Ag-positive cells. Collectively, our results demonstrate that Sm t-Ag promotes cell cycle progression by activating the growth promoting pathways through which it may contribute to LT-Ag-mediated cell transformation.
Collapse
Affiliation(s)
- Renato Biffi
- Eurofins Biolabs S.R.L, Via Brubno Buozzi 2, Vimodrone, MI, 20055, Italy
| | - Stefanie W Benoit
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Burnet Campus, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ilker K Sariyer
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Katona M, Jeles K, Takács P, Csoma E. Prevalence and in vitro study of human polyomavirus 9. Sci Rep 2024; 14:29313. [PMID: 39592793 PMCID: PMC11599758 DOI: 10.1038/s41598-024-80806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Little is known about human polyomavirus 9 (HPyV9). The mode of transmission and the site of replication are unknown, and seroprevalence data have been published with a wide range. A total of 1038 serum samples from individuals aged 0.7-93 years were used for seroprevalence study. We observed that seropositivity increased with age among children and young adults, and a 36.2% adult seroprevalence was detected. The prevalence was examined in samples from the respiratory tract: cancerous and non-cancerous lung tissues, tonsils, adenoids, throat swabs, middle ear discharge and nasopharyngeal samples collected from children and adults. HPyV9 was detected in 5.2% of nasopharyngeal samples and 1% of tonsils. Upon a viral infection, the interaction of viral promoters and cellular factors may determine whether a virus productively replicates in a cell. The early and late promoter activity of HPyV9 and the effect of the large T antigen (LTAg) on it was investigated in respiratory, kidney, endothelial and colon cell lines, fibroblast and primary airway epithelial cells. The highest promoter activity was measured in A549 lung cell line. LTAg expression significantly increased the late promoter activity. Based on our results, the respiratory cells may be suitable for HPyV9 replication.
Collapse
Grants
- FK 128533 National Research, Development and Innovation Office
- FK 128533 National Research, Development and Innovation Office
- FK 128533 National Research, Development and Innovation Office
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- ÚNKP-23-4-I-DE-178 New National Excellence Program of The Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund
- BO/00212/18/5 János Bolyai Research Scholarship from the Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Melinda Katona
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Krisztina Jeles
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Péter Takács
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno u. 3, Tihany, 8237, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
4
|
Moest WT, de Vries APJ, Roelen DL, Kers J, Moes DAR, van der Helm D, Mallat MJK, Meziyerh S, van Rijn AL, Feltkamp MCW, Rotmans JI. BK Polyomavirus DNAemia With a High DNA Load Is Associated With De Novo Donor-Specific HLA Antibodies in Kidney Transplant Recipients. J Med Virol 2024; 96:e70084. [PMID: 39601133 PMCID: PMC11600387 DOI: 10.1002/jmv.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
BK polyomavirus-associated nephropathy (BKPyVAN) is a well-known complication of kidney transplantation (KTx). The mainstay of prevention is the reduction of immunosuppression upon detection of BK polyomavirus (BKPyV) DNAemia, which precedes BKPyVAN. However, this reduction may inadvertently increase the risk of alloimmunity particularly in patients with a high BKPyV DNA load, where significant immunosuppression reduction is often necessary. This single-center, retrospective cohort study assesses the risk of de novo donor-specific antibodies (dnDSA) development and biopsy-proven acute rejection (BPAR) following high and low BKPyV DNAemia. All patients who underwent KTx at Leiden University Medical Center between 2011 and 2020 were included. Patients were grouped according to high (maximum BKPyV DNA load > 4log10 copies/mL), low (maximum serum BKPyV DNA load ≤ 10E4 copies/mL), and absent BKPyV DNAemia, and analyzed for the development of dnDSA and BPAR, using Cox regression. Of 1076 KTx recipients included, 108 (10%) developed a BKPyV DNAemia with a maximum DNA load below 4log10 copies/mL, whereas 121 (11.2%) developed a BKPyV DNAemia exceeding 4log10 copies/mL. The risk of dnDSA development was higher in patients with a high BKPyV DNAemia, compared to patients without DNAemia (adjusted hazard ratio of 1.9 (95% CI 1.1-3.2, p = 0.017). No significant difference in dnDSA risk was observed between patients with low and absent BKPyV DNAemia. Risk of BPAR did not differ between groups. Our study shows that higher BKPyV DNA loads in KTx patients are associated with a higher risk for dnDSA development, highlighting the importance of exploring additional strategies for the prevention and treatment of BKPyV infections in KTx recipients.
Collapse
Affiliation(s)
- Wouter T. Moest
- Department of Internal MedicineLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Aiko P. J. de Vries
- Department of Internal MedicineLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Dave L. Roelen
- Department of ImmunologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Jesper Kers
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Department of PathologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - DirkJan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Danny van der Helm
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Marko J. K. Mallat
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Soufian Meziyerh
- Department of Internal MedicineLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Aline L. van Rijn
- Department of Medical Microbiology & Infection PreventionLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology & Infection PreventionLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Leiden Transplant CenterLeiden University Medical Center (LUMC)LeidenThe Netherlands
| |
Collapse
|
5
|
Mazziotta C, Badiale G, Cervellera CF, Tonnini G, Oimo M, Touzé A, Arnold F, Zanussi S, Schioppa O, Fanetti G, Tognon M, Martini F, Rotondo JC. Serum antibodies against mimotopes of Merkel cell polyomavirus oncoproteins detected by a novel immunoassay in healthy individuals and Merkel cell carcinoma patients. Microb Biotechnol 2024; 17:e14536. [PMID: 39460382 PMCID: PMC11511775 DOI: 10.1111/1751-7915.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 10/28/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%-5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Center for Studies on Gender Medicine, Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Giada Badiale
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | | | - Giulia Tonnini
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Milena Oimo
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Antoine Touzé
- “Biologie Des Infections à Polyomavirus” TeamUMR INRAE 1282 ISP, University of ToursToursFrance
| | - Françoise Arnold
- “Biologie Des Infections à Polyomavirus” TeamUMR INRAE 1282 ISP, University of ToursToursFrance
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico (CRO) AvianoIRCCS, National Cancer InstituteAvianoItaly
| | - Ornella Schioppa
- Infectious Diseases and Tumors Unit, Department of Medical Oncology, Centro di Riferimento Oncologico (CRO)IRCCS, National Cancer InstituteAvianoItaly
| | - Giuseppe Fanetti
- Division of RadiotherapyCentro di Riferimento Oncologico (CRO), IRCCSAvianoItaly
| | - Mauro Tognon
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Fernanda Martini
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Center for Studies on Gender Medicine, Department of Medical SciencesUniversity of FerraraFerraraItaly
- Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - John Charles Rotondo
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Center for Studies on Gender Medicine, Department of Medical SciencesUniversity of FerraraFerraraItaly
| |
Collapse
|
6
|
Bellott TR, Luz FB, Silva AKFD, Varella RB, Rochael MC, Pantaleão L. Merkel cell polyomavirus and its etiological relationship with skin tumors. An Bras Dermatol 2023; 98:737-749. [PMID: 37407331 PMCID: PMC10589487 DOI: 10.1016/j.abd.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 07/07/2023] Open
Abstract
Viruses have been frequently identified in several human neoplasms, but the etiological role of these viruses in some tumors is still a matter of controversy. Polyomaviruses stand out among the main viruses with oncogenic capacity, specifically the Merkel cell polyomavirus (MCPyV). Recent revisions in the taxonomy of polyomaviruses have divided the Polyomaviridae family into six genera, including 117 species, with a total of 14 currently known human-infecting species. Although the oncogenicity of polyomaviruses has been widely reported in the literature since 1950, the first description of a polyomavirus as an etiological agent of a neoplasm in humans was made only in 2008 with the description of MCPyV, present in approximately 80% of cases of Merkel cell carcinoma (MCC), with the integration of its genome to that of the tumor cells and tumor-specific mutations, and it is considered the etiological agent of this neoplasm since then. MCPyV has also been detected in keratinocyte carcinomas, such as basal cell carcinoma and squamous cell carcinoma of the skin in individuals with and without immunosuppression. Data on the occurrence of oncogenic viruses potentially involved in oncogenesis, which cause persistence and tissue injury, related to the Merkel cell polyomavirus are still scarce, and the hypothesis that the Merkel cell polyomavirus may play a relevant role in the genesis of other cutaneous carcinomas in addition to MCC remains debatable. Therefore, the present study proposes to explore the current knowledge about the presence of MCPyV in keratinocyte carcinomas.
Collapse
Affiliation(s)
- Thiago Rubim Bellott
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Flávio Barbosa Luz
- Department of Dermatology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Rafael Brandão Varella
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mayra Carrijo Rochael
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luciana Pantaleão
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
7
|
Kitamura N, Hashida Y, Higuchi T, Ohno S, Sento S, Sasabe E, Murakami I, Yamamoto T, Daibata M. Detection of Merkel cell polyomavirus in multiple primary oral squamous cell carcinomas. Odontology 2023; 111:971-981. [PMID: 36964865 PMCID: PMC10492774 DOI: 10.1007/s10266-023-00807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Oral microbiome studies have mainly focussed on bacteria, with the relationship between viruses and oral cancers remaining poorly understood. Oral cancers can develop even in the absence of any history of daily smoking or drinking. Oral cancer patients frequently have multiple primary cancers in the oral cavity and other organs, such as the upper gastrointestinal tract. Merkel cell polyomavirus (MCPyV) is a novel oncovirus identified from a subtype of skin cancer in 2008. In this study, we investigated the potential involvement of MCPyV in the pathogenesis of oral squamous cell carcinoma (OSCC). Participants comprised 115 Japanese patients with OSCC (single primary: 109 tumours in 109 patients; multiple primaries: 16 tumours in 6 patients) treated in our department between 2014 and 2017. DNA was extracted from formalin-fixed paraffin-embedded specimens of primary lesions. MCPyV DNA copy counts were analysed by quantitative real-time polymerase chain reaction. Twenty-four of the 115 patients (20.9%) were positive for MCPyV DNA. No association was found between presence or absence of MCPyV DNA and clinical characteristics other than number of primary lesions. The MCPyV DNA-positive rate was significantly higher for multiple primary OSCCs (62.5%, 10/16 tumours) than for single primary OSCCs (16.5%, 18/109 tumours; P < 0.001). Furthermore, MCPyV DNA load was significantly higher for patients with multiple primaries (P < 0.05). MCPyV was observed more frequently and DNA load was significantly higher with multiple primary OSCCs than with single primary OSCC. MCPyV may play some role as an oncovirus for multiple primary OSCCs.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Seiji Ohno
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Shinya Sento
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Ichiro Murakami
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505 Japan
| |
Collapse
|
8
|
Mazziotta C, Lanzillotti C, Govoni M, Falzoni S, Tramarin ML, Mazzoni E, Tognon M, Martini F, Rotondo JC. Immunological evidence of an early seroconversion to oncogenic Merkel cell polyomavirus in healthy children and young adults. Immunology 2023; 168:671-683. [PMID: 36321356 DOI: 10.1111/imm.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, Rheumatology Unit, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elisa Mazzoni
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Peretti A, Scorpio DG, Kong WP, Pang YYS, McCarthy MP, Ren K, Jackson M, Graham BS, Buck CB, McTamney PM, Pastrana DV. A multivalent polyomavirus vaccine elicits durable neutralizing antibody responses in macaques. Vaccine 2023; 41:1735-1742. [PMID: 36764908 PMCID: PMC9992340 DOI: 10.1016/j.vaccine.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of ≥ 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.
Collapse
Affiliation(s)
- Alberto Peretti
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Diana G Scorpio
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Yuk-Ying S Pang
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Michael P McCarthy
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Kuishu Ren
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Moriah Jackson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Christopher B Buck
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Patrick M McTamney
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| |
Collapse
|
10
|
Donà MG, Gheit T, Chiantore MV, Vescio MF, Luzi F, Rollo F, Accardi L, Cota C, Galati L, Romeo G, Giuliani M, Tommasino M, Di Bonito P. Prevalence of 13 polyomaviruses in actinic keratosis and matched healthy skin samples of immunocompetent individuals. Infect Agent Cancer 2022; 17:59. [PMID: 36457033 PMCID: PMC9714215 DOI: 10.1186/s13027-022-00472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Actinic keratosis (AK) is a precursor of cutaneous squamous cell carcinoma (cSCC). UV radiation is the major risk factor for AK, but certain human papillomaviruses (HPVs) of the beta genus are also involved in its development. Differently, the role of polyomaviruses (PyVs) in skin carcinogenesis is still debated. Fiftheen PyVs have been isolated from human tissues so far, including Merkel cell polyomavirus (MCPyV), the aetiological agent of Merkel cell carcinoma. METHODS The presence of 13 PyVs was assessed in skin samples from AK patients (n = 342). Matched fresh-frozen scrapings from healthy skin (HS) and AK lesions from 242 patients, and formalin-fixed paraffin-embedded AK biopsies from a different cohort of 100 patients were analyzed by multiplex PyVs genotyping assay. RESULTS The most frequent lesion site was the scalp in men (27.3%), and the cheek area in women (29.0%). Differences between men and women were significant for the scalp, the cheek area and the lips. Almost all the scrapings were PyV-positive (HS: 89.7%, AK: 94.6%; p = 0.04). The three most frequent PyVs were MCPyV, HPyV6 and JCPyV (HS: 87.2%, 58.7%, 6.6%, respectively; AK: 88.8%, 51.2%, 9.9%, respectively). HPyV9, TSPyV, BKPyV, HPyV7, LIPyV and SV40 were detected in < 2% of the scrapings. In most cases, matched HS and AK scrapings were both positive (MCPyV: 78.1%, HPyV6: 41.7%), or both negative for the individual genotypes (for the remaining PyVs). PyV prevalence in AK biopsies was 22.0%. Only MCPyV (21.0%) and HPyV6 (3.0%) were detected in these samples. CONCLUSIONS PyV prevalence in HS and AK scrapings was high, but detection of PyVs exclusively in AK scrapings was rare. PyV positivity rate in AK biopsies was modest. Further research is need to reach firm conclusions regarding the role of these viruses in AK development.
Collapse
Affiliation(s)
| | - Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Maria Fenicia Vescio
- Epidemiology Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Francesca Rollo
- Pathology Department, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Luisa Accardi
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Cota
- Department of Dermopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luisa Galati
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, Latina, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | | | - Paola Di Bonito
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
11
|
Jeles K, Katona M, Csoma E. Seroprevalence of Four Polyomaviruses Linked to Dermatological Diseases: New Findings and a Comprehensive Analysis. Viruses 2022; 14:v14102282. [PMID: 36298837 PMCID: PMC9611179 DOI: 10.3390/v14102282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Our aim was to study the seroprevalence of human polyomaviruses (HPyV) linked to skin diseases. A total of 552 serum samples were analysed by the enzyme-linked immunosorbent assay to detect IgG antibodies against Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7 and Trichodysplasia spinulosa-associated polyomavirus (TSPyV) using recombinant major capsid proteins of these viruses. The individuals (age 0.8−85 years, median 33) were sorted into seven age groups: <6, 6−10, 10−14, 14−21, 21−40, 40−60 and >60 years. The adulthood seroprevalence was 69.3%, 87.7%, 83.8% and 85% for MCPyV, HPyV6, HPyV7 and TSPyV, respectively. For all four polyomaviruses, there was increasing seropositivity with age until reaching the adulthood level. There was a significant increase in seroreactivity for those age groups in which the rate of already-infected individuals also showed significant differences. The adulthood seropositvity was relatively stable with ageing, except for TSPyV, for which elevated seropositivity was observed for the elderly (>60 years) age group. Since seroepidemiological data have been published with wide ranges for all the viruses studied, we performed a comprehensive analysis comparing the published age-specific seropositivities to our data. Although the cohorts, methods and even the antigens were variable among the studies, there were similar results for all studied polyomaviruses. For MCPyV, geographically distinct genotypes might exist, which might also result in the differences in the seroprevalence data. Additional studies with comparable study groups and methods are required to clarify whether there are geographical differences.
Collapse
Affiliation(s)
- Krisztina Jeles
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Melinda Katona
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
12
|
Kamminga S, Sidorov IA, Tadesse M, van der Meijden E, de Brouwer C, Zaaijer HL, Feltkamp MC, Gorbalenya AE. Translating genomic exploration of the family Polyomaviridae into confident human polyomavirus detection. iScience 2022; 25:103613. [PMID: 35036862 PMCID: PMC8749223 DOI: 10.1016/j.isci.2021.103613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The Polyomaviridae is a family of ubiquitous dsDNA viruses that establish persistent infection early in life. Screening for human polyomaviruses (HPyVs), which comprise 14 diverse species, relies upon species-specific qPCRs whose validity may be challenged by accelerating genomic exploration of the virosphere. Using this reasoning, we tested 64 published HPyV qPCR assays in silico against the 1781 PyV genome sequences that were divided in targets and nontargets, based on anticipated species specificity of each qPCR. We identified several cases of problematic qPCR performance that were confirmed in vitro and corrected through using degenerate oligos. Furthermore, our study ranked 8 out of 52 tested BKPyV qPCRs as remaining of consistently high quality in the wake of recent PyV discoveries and showed how sensitivity of most other qPCRs could be rescued by annealing temperature adjustment. This study establishes an efficient framework for ensuring confidence in available HPyV qPCRs in the genomic era.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Department of Blood-borne Infections, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Igor A. Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michaël Tadesse
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Caroline de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hans L. Zaaijer
- Department of Blood-borne Infections, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Mariet C.W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Pedersen MW, Antunes C, De Cahsan B, Moreno-Mayar JV, Sikora M, Vinner L, Mann D, Klimov PB, Black S, Michieli CT, Braig HR, Perotti MA. Ancient human genomes and environmental DNA from the cement attaching 2,000 year-old head lice nits. Mol Biol Evol 2021; 39:6481551. [PMID: 34963129 PMCID: PMC8829908 DOI: 10.1093/molbev/msab351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500–2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.
Collapse
Affiliation(s)
- Mikkel W Pedersen
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Catia Antunes
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Binia De Cahsan
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Sikora
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lasse Vinner
- GLOBE Institute, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Darren Mann
- Oxford University Museum of Natural History, Oxford, United Kingdom
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Department of Ecology and Evolutionary Biology, University of Michigan, Museum of Zoology, Ann Arbor, USA
| | - Stuart Black
- Department of Geography and Environmental Science, Wager Building, University of Reading, Reading, United Kingdom
| | - Catalina Teresa Michieli
- Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier", Universidad Nacional de San Juan, San Juan, Argentina
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom.,Institute and Museum of Natural Sciences, Faculty of Exact, Physical and Natural Sciences, National University of San Juan, San Juan, Argentina
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
14
|
Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly Low Levels of IgG Antibodies Against Oncogenic Merkel Cell Polyomavirus in Sera From Females Affected by Spontaneous Abortion. Front Microbiol 2021; 12:789991. [PMID: 34970247 PMCID: PMC8712937 DOI: 10.3389/fmicb.2021.789991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Zanella MC, Pastor D, Feltkamp MCW, Hadaya K, Cordey S, Toutous Trellu L. Sustained Trichodysplasia Spinulosa Polyomavirus Viremia Illustrating a Primary Disseminated Infection in a Kidney Transplant Recipient. Microorganisms 2021; 9:microorganisms9112298. [PMID: 34835424 PMCID: PMC8624465 DOI: 10.3390/microorganisms9112298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023] Open
Abstract
Novel human polyomaviruses (HPyV) have been recently identified in solid organ transplant recipients. Trichodysplasia spinulosa (TS) is a rare disease associated with immunosuppression and induced by a polyomavirus (TSPyV). We report here a case of primary and disseminated TSPyV infection after kidney transplantation with extensive skin lesions, sustained viremia, and high viral loads in urine specimens, anal, nasal and throat swabs, assessed via specific real-time PCR for TSPyV during a follow-up period of 32 months after transplantation. The detection of TSPyV with a high viral load in respiratory and anal swab samples is compatible with viral replication and thus may suggest potential respiratory and oro-fecal routes of transmission.
Collapse
Affiliation(s)
- Marie-Céline Zanella
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland;
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence:
| | - Damien Pastor
- Department of Dermatology, Geneva University Hospitals, 1205 Geneva, Switzerland; (D.P.); (L.T.T.)
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Karine Hadaya
- Department of Nephrology and Hypertension, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland;
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Laurence Toutous Trellu
- Department of Dermatology, Geneva University Hospitals, 1205 Geneva, Switzerland; (D.P.); (L.T.T.)
| |
Collapse
|
16
|
Bopp L, Wieland U, Hellmich M, Kreuter A, Pfister H, Silling S. Natural History of Cutaneous Human Polyomavirus Infection in Healthy Individuals. Front Microbiol 2021; 12:740947. [PMID: 34733257 PMCID: PMC8558461 DOI: 10.3389/fmicb.2021.740947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Several human polyomaviruses (HPyVs) were recently discovered. Merkel cell polyomavirus (MCPyV) induces Merkel cell carcinoma. HPyV6, HPyV7, and TSPyV have been associated with rare skin lesions in immunosuppressed patients. HPyV9, HPyV10, and Saint Louis Polyomavirus (STLPyV) have not been convincingly associated with any disease. The aim of this prospective study was to evaluate the cutaneous prevalence, persistence and viral load of HPyVs in healthy individuals. Eight hundred seventy forehead and hand swabs were collected from 109 volunteers 4-6 weeks apart (collection period-1). Fifty-nine participants were available for follow-up a decade later (collection period-2). HPyV-DNA prevalence and viral loads of MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, and STLPyV were determined by virus-specific real-time PCRs. Risk factors for HPyV prevalence, short- and long-term persistence were explored by logistic regression analyses. Baseline prevalence rates were similar for forehead and hand: MCPyV 67.9/67.0%, HPyV6 31.2/25.7%, HPyV7 13.8/11.0%, HPyV10 11.9/15.6%, STLPyV 7.3/8.3%, TSPyV 0.9/0.9%, and HPyV9 0.9/0.9%. Short-term persistence in period-1 was found in 59.6% (MCPyV), 23.9% (HPyV6), 10.1% (HPyV7), 6.4% (HPyV10), 5.5% (STLPyV), and 0% (TSPyV and HPyV9) on the forehead, with similar values for the hand. Long-term persistence for 9-12 years occurred only for MCPyV (forehead/hand 39.0%/44.1% of volunteers), HPyV6 (16.9%/11.9%), and HPyV7 (3.4%/5.1%). Individuals with short-term persistence had significantly higher viral loads at baseline compared to those with transient DNA-positivity (p < 0.001 for MCPyV, HPyV6, HPyV7, and HPyV10, respectively). This was also true for median viral loads in period-1 of MCPyV, HPyV6, and HPyV7 of volunteers with long-term persistence. Multiplicity (two or more different HPyVs) was a risk factor for prevalence and persistence for most HPyVs. Further risk factors were older age for HPyV6 and male sex for MCPyV on the forehead. Smoking was not a risk factor. In contrast to MCPyV, HPyV6, HPyV7, and rarely STLPyV, polyomaviruses TSPyV, HPyV9, and HPyV10 do not seem to be long-term constituents of the human skin virome of healthy individuals. Furthermore, this study showed that higher viral loads are associated with both short- and long-term persistence of HPyVs on the skin. HPyV multiplicity is a risk factor for prevalence, short-term and/or long-term persistence of MCPyV, HPyV6, HPyV7, and HPyV10.
Collapse
Affiliation(s)
- Luisa Bopp
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University of Cologne, Cologne, Germany
| | - Ulrike Wieland
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology, and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten-Herdecke, Witten, Germany
| | - Herbert Pfister
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Mazziotta C, Lanzillotti C, Govoni M, Pellielo G, Mazzoni E, Tognon M, Martini F, Rotondo JC. Decreased IgG Antibody Response to Viral Protein Mimotopes of Oncogenic Merkel Cell Polyomavirus in Sera From Healthy Elderly Subjects. Front Immunol 2021; 12:738486. [PMID: 34733278 PMCID: PMC8558529 DOI: 10.3389/fimmu.2021.738486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Human Polyomaviruses (HPyV) in Wastewater and Environmental Samples from the Lisbon Metropolitan Area: Detection and Genetic Characterization of Viral Structural Protein-Coding Sequences. Pathogens 2021; 10:pathogens10101309. [PMID: 34684259 PMCID: PMC8540013 DOI: 10.3390/pathogens10101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the lack of reliable epidemiological information regarding the geographic distribution and genetic diversity of human polyomaviruses (HPyV) in Portugal, we addressed these issues in this initial study by focusing on the Lisbon Metropolitan area, the most populated and culturally diverse hub in the country. The HPyV structural protein-coding sequence was partially amplified using two touch-down PCR multiplex protocols, starting from water samples, collected between 2018 and 2020, where viral genomes were detected. The obtained results disclosed the frequent detection of HPyV1, HPyV2, HPyV5, and HPyV6 in 35.3% (n = 6), 29.4% (n = 5), 47.1% (n = 8) and 29.4% (n = 5), respectively, of the water samples analyzed. The sequences assigned to a given viral species did not segregate to a single genotype, this being especially true for HPyV2 for which five genotypes (including a putative new genotype 9) could be identified. The phylogenetic trees obtained for HPyV5 and HPyV6 had less resolving power than those obtained for HPyV1/HPyV2, but both viruses were shown to be genetically diverse. This analysis emphasizes the epidemiological helpfulness of these detection/genetic characterization studies in addition to being relevant tools for assessment of human waste contamination.
Collapse
|
19
|
Mazziotta C, Lanzillotti C, Torreggiani E, Oton-Gonzalez L, Iaquinta MR, Mazzoni E, Gaboriaud P, Touzé A, Silvagni E, Govoni M, Martini F, Tognon M, Rotondo JC. Serum Antibodies Against the Oncogenic Merkel Cell Polyomavirus Detected by an Innovative Immunological Assay With Mimotopes in Healthy Subjects. Front Immunol 2021; 12:676627. [PMID: 34168646 PMCID: PMC8217635 DOI: 10.3389/fimmu.2021.676627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, has been detected in Merkel cell carcinoma (MCC) and in normal tissues. Since MCPyV infection occurs in both MCC-affected patients and healthy subjects (HS), innovative immunoassays for detecting antibodies (abs) against MCPyV are required. Herein, sera from HS were analyzed with a novel indirect ELISA using two synthetic peptides mimicking MCPyV capsid protein epitopes of VP1 and VP2. Synthetic peptides were designed to recognize IgGs against MCPyV VP mimotopes using a computer-assisted approach. The assay was set up evaluating its performance in detecting IgGs anti-MCPyV on MCPyV-positive (n=65) and -negative (n=67) control sera. Then, the ELISA was extended to sera (n=548) from HS aged 18-65 yrs old. Age-specific MCPyV-seroprevalence was investigated. Performance evaluation indicated that the assay showed 80% sensitivity, 91% specificity and 83.9% accuracy, with positive and negative predictive values of 94.3% and 71%, respectively. The ratio expected/obtained data agreement was 86%, with a Cohen's kappa of 0.72. Receiver-operating characteristic (ROC) curves analysis indicated that the areas under the curves (AUCs) for the two peptides were 0.82 and 0.74, respectively. Intra-/inter-run variations were below 9%. The overall prevalence of serum IgGs anti-MCPyV in HS was 62.9% (345/548). Age-specific MCPyV-seroprevalence was 63.1% (82/130), 56.7% (68/120), 64.5% (91/141), and 66.2% (104/157) in HS aged 18-30, 31-40, 41-50 and 51-65 yrs old, respectively (p>0.05). Performance evaluation suggests that our indirect ELISA is reliable in detecting IgGs anti-MCPyV. Our immunological data indicate that MCPyV infection occurs asymptomatically, at a relatively high prevalence, in humans.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Ettore Silvagni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
20
|
Klufah F, Mobaraki G, Liu D, Alharbi RA, Kurz AK, Speel EJM, Winnepenninckx V, Zur Hausen A. Emerging role of human polyomaviruses 6 and 7 in human cancers. Infect Agent Cancer 2021; 16:35. [PMID: 34001216 PMCID: PMC8130262 DOI: 10.1186/s13027-021-00374-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently 12 human polyomaviruses (HPyVs) have been identified, 6 of which have been associated with human diseases, including cancer. The discovery of the Merkel cell polyomavirus and its role in the etiopathogenesis in the majority of Merkel cell carcinomas has drawn significant attention, also to other novel HPyVs. In 2010, HPyV6 and HPyV7 were identified in healthy skin swabs. Ever since it has been speculated that they might contribute to the etiopathogenesis of skin and non-cutaneous human cancers. MAIN BODY Here we comprehensively reviewed and summarized the current evidence potentially indicating an involvement of HPyV6 and HPyV7 in the etiopathogenesis of neoplastic human diseases. The seroprevalence of both HPyV6 and 7 is high in a normal population and increases with age. In skin cancer tissues, HPyV6- DNA was far more often prevalent than HPyV7 in contrast to cancers of other anatomic sites, in which HPyV7 DNA was more frequently detected. CONCLUSION It is remarkable to find that the detection rate of HPyV6-DNA in tissues of skin malignancies is higher than HPyV7-DNA and may indicate a role of HPyV6 in the etiopathogenesis of the respected skin cancers. However, the sheer presence of viral DNA is not enough to prove a role in the etiopathogenesis of these cancers.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Dan Liu
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Germany
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Egan KM, Kim Y, Bender N, Hodge JM, Coghill AE, Smith-Warner SA, Rollison DE, Teras LR, Grimsrud TK, Waterboer T. Prospective investigation of polyomavirus infection and the risk of adult glioma. Sci Rep 2021; 11:9642. [PMID: 33953301 PMCID: PMC8100283 DOI: 10.1038/s41598-021-89133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
Glioma is an aggressive primary tumor of the brain with a poorly understood etiology. We studied the association of 4 human polyomaviruses (HPyV)—JC virus (JCV), BK virus (BKV), human polyomavirus 6 (HPyV6), and Merkel cell polyomavirus (MCPyV) with glioma risk within the Cancer Prevention Study II in the US (CPS-II) and the Janus Serum Bank in Norway. Cohort participants subsequently diagnosed with glioma from the CPS-II (n = 37) and Janus Serum Bank (n = 323), a median of 6.9 and 15.4 years after blood collection, respectively, were matched to individual controls on age, sex, and date of blood draw. Serum antibodies to the major viral capsid protein (VP1) were used to establish infection history for each polyomavirus. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. In the Janus Serum Bank, MCPyV infection was associated with a higher risk of glioma overall (OR: 1.56; 95% CI 1.10, 2.19). A modest, nonsignificant positive association with MCPyV infection was also observed in CPS-II (OR: 1.29; 95% CI 0.54, 3.08). In both cohorts, glioma risk was not significantly related to infection with JCV, BKV or HPyV6. The present study suggests that MCPyV infection may increase glioma risk.
Collapse
Affiliation(s)
- Kathleen M Egan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Youngchul Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Noemi Bender
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), 69120, Heidelberg, Germany
| | - James M Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Anna E Coghill
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Stephanie A Smith-Warner
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Dana E Rollison
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, 0379, Oslo, Norway
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
23
|
Prezioso C, Van Ghelue M, Moens U, Pietropaolo V. HPyV6 and HPyV7 in urine from immunocompromised patients. Virol J 2021; 18:24. [PMID: 33482864 PMCID: PMC7821732 DOI: 10.1186/s12985-021-01496-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Human polyomavirus 6 (HPyV6) and HPyV7 are two of the novel polyomaviruses that were originally detected in non-diseased skin. Serological studies have shown that these viruses are ubiquitous in the healthy adult population with seroprevalence up to 88% for HPyV6 and 72% for HPyV7. Both viruses are associated with pruritic skin eruption in immunocompromised patients, but a role with other diseases in immunoincompetent patients or malignancies has not been established. Methods PCR was used to determine the presence of HPyV6 and HPyV7 DNA in urine samples from systemic lupus erythematosus (n = 73), multiple sclerosis (n = 50), psoriasis vulgaris (n = 15), arthritic psoriasis (n = 15) and HIV-positive patients (n = 66). In addition, urine from pregnant women (n = 47) and healthy blood donors (n = 20) was investigated. Results HPyV6 DNA was detected in 21 (28.8%) of the urine specimens from SLE patients, in 6 (9.1%) of the urine samples from the HIV-positive cohort, and in 19 (40.4%) samples from pregnant women. HPyV7 DNA was only found in 6 (8.2%) of the urine specimens from SLE patients and in 4 (8.5%) samples from pregnant women. No HPyV6 and HPyV7 viruria was detected in the urine samples from the other patients. Conclusions HPyV6, and to a lesser extend HPyV7, viruria seems to be common in SLE and HIV-positive patients, and pregnant women. Whether these viruses are of clinical relevance in these patients is not known.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.,Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Pisana, Rome, Italy
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Curman P, Näsman A, Brauner H. Trichodysplasia spinulosa: a comprehensive review of the disease and its treatment. J Eur Acad Dermatol Venereol 2021; 35:1067-1076. [PMID: 33559344 PMCID: PMC8247895 DOI: 10.1111/jdv.17081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Trichodysplasia spinulosa (TS) is a rare dermatological disease caused by TS‐associated polyomavirus (TSPyV) in immunosuppressed patients. The seroprevalence of TSPyV in immunocompetent adults is high and the number of immunosuppressed patients developing TS remains low, suggesting that TS is underdiagnosed and/or that additional unknown factors are needed in order to develop TS. There is no well‐established treatment for TS, and to date a majority of reported cases have consequently received ineffective therapies, likely due to the unavailability of reviews and recommendations of treatments for TS. The few treatments reported in case reports to be effective include topical cidofovir 3%, reduction of immunosuppression and oral valganciclovir. In this comprehensive review, we present all published cases to date, together with a summary of all treatments for TS categorized by overall clinical efficacy, thus addressing this rare disease and what appears to be its clinically efficacious treatment.
Collapse
Affiliation(s)
- P Curman
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - A Näsman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology (OnkPat), Karolinska Institutet, Stockholm, Sweden
| | - H Brauner
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Klufah F, Mobaraki G, Chteinberg E, Alharbi RA, Winnepenninckx V, Speel EJM, Rennspiess D, Olde Damink SW, Neumann UP, Kurz AK, Samarska I, zur Hausen A. High Prevalence of Human Polyomavirus 7 in Cholangiocarcinomas and Adjacent Peritumoral Hepatocytes: Preliminary Findings. Microorganisms 2020; 8:microorganisms8081125. [PMID: 32726909 PMCID: PMC7464213 DOI: 10.3390/microorganisms8081125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare biliary-duct malignancy with poor prognosis. Recently, the presence of the human polyomavirus 6 (HPyV6) has been reported in the bile of diverse hepatobiliary diseases, particularly in the bile of CCA patients. Here, we investigated the presence of novel HPyVs in CCA tissues using diverse molecular techniques to assess a possible role of HPyVs in CCA. Formalin-Fixed Paraffin-Embedded (FFPE) tissues of 42 CCA patients were included in this study. PCR-based screening for HPyVs was conducted using degenerated and HPyV-specific primers. Following that, we performed FISH, RNA in situ hybridization (RNA-ISH), and immunohistochemistry (IHC) to assess the presence of HPyVs in selected tissues. Of all 42 CCAs, 25 (59%) were positive for one HPyV, while 10 (24%) CCAs were positive for 2 HPyVs simultaneously, and 7 (17%) were negative for HPyVs. Of the total 35 positive CCAs, 19 (45%) were positive for HPyV7, 4 (9%) for HPyV6, 2 (5%) for Merkel cell polyomavirus (MCPyV), 8 (19%) for both HPyV7/MCPyV, and 2 (5%) for both HPyV6/HPyV7 as confirmed by sequencing. The presence of viral nucleic acids was confirmed by specific FISH, while the RNA-ISH confirmed the presence of HPyV6 on the single-cell level. In addition, expression of HPyV7, HPyV6, and MCPyV proteins were confirmed by IHC. Our results strongly indicate that HPyV7, HPyV6, and MCPyV infect bile duct epithelium, hepatocytes, and CCA cells, which possibly suggest an indirect role of these viruses in the etiopathogenesis of CCA. Furthermore, the observed hepatotropism of these novel HPyV, in particular HPyV7, might implicate a role of these viruses in other hepatobiliary diseases.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia;
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Emil Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia;
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Ernst Jan M. Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Dorit Rennspiess
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (S.W.O.D.); (U.P.N.)
- Department of General Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (S.W.O.D.); (U.P.N.)
- Department of General Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Iryna Samarska
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Correspondence: ; Tel.: +31-433-874-634
| |
Collapse
|
26
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
27
|
Molkara S, Sabourirad S, Molooghi K. Infectious differential diagnosis of chronic generalized pruritus without primary cutaneous lesions: a review of the literature. Int J Dermatol 2020; 59:30-36. [PMID: 31364165 DOI: 10.1111/ijd.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 01/24/2023]
Abstract
Pruritus is one of the most common complaints among patients referred to a dermatology clinic. "Chronic generalized pruritus" is described as the sensation of itching on the entire body surface, which lasts at least 6 or more weeks. This symptom can be a disabling phenomenon for patients and may sometimes interfere with daily activities such as sleep. If specific dermatological findings are observed, the physician easily comes to a diagnosis and treats the condition, whereas, when primary lesions are not detected, the diagnosis can become challenging, and some patients have to undergo extensive evaluations. The association between some systemic disorders and chronic generalized pruritus is widely known and confirmed. Many infections have been associated with pruritus, but few are considered to cause chronic generalized pruritus without any characteristic skin lesions. We aimed to gather all the available data on infectious causes of chronic generalized pruritus with no diagnostic cutaneous lesions to assist fellow physicians in the process of evaluation of these challenging cases.
Collapse
Affiliation(s)
- Sara Molkara
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Sabourirad
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kasra Molooghi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Nako T, Fukumoto H, Hasegawa H, Saeki H, Katano H. Functional Analysis of Trichodysplasia Spinulosa-Associated Polyomavirus-Encoded Large T Antigen. Jpn J Infect Dis 2019; 73:132-139. [PMID: 31787742 DOI: 10.7883/yoken.jjid.2019.391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trichodysplasia spinulosa-associated polyomavirus (TSPyV or human polyomavirus 8) was identified from patients with trichodysplasia spinulosa, a rare skin disease affecting the faces of immunocompromised patients. Like other polyomaviruses, the TSPyV genome encodes a large T antigen (LT). However, the expression and functions of TSPyV LT in infected cells remain largely unknown. In the present study, we cloned a full-length TSPyV LT cDNA from cells transfected with the full-length of TSPyV LT DNA. Transfection study using green fluorescence protein-tagged LT expression plasmids showed that TSPyV LT was expressed in the nucleus of transfected cells. Analysis of deletion mutants identified a nuclear localization signal in TSPyV LT. Recombinant TSPyV LT exhibited an ATPase activity. TSPyV LT has a chitinase-like domain; however, no chitinase activity was detected. Immunoprecipitation assays revealed that TSPyV LT bound to retinoblastoma 1, but not to p53 in transfected cells. Expression of TSPyV LT in NIH3T3 cells induced colony formation in soft agar, suggesting its transformation activity. These data indicate that TSPyV LT may be associated with the pathogenesis of trichodysplasia spinulosa, which is a hyperplasia of keratinocytes in inner hair follicles.
Collapse
Affiliation(s)
- Toshie Nako
- Department of Pathology, National Institute of Infectious Diseases.,Department of Dermatology, Nippon Medical School
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases
| | | | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases
| |
Collapse
|
29
|
Kamminga S, van der Meijden E, de Brouwer C, Feltkamp M, Zaaijer H. Prevalence of DNA of fourteen human polyomaviruses determined in blood donors. Transfusion 2019; 59:3689-3697. [PMID: 31633816 PMCID: PMC6916541 DOI: 10.1111/trf.15557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human polyomaviruses (HPyVs), like herpesviruses, cause persistent infection in a large part of the population. In immunocompromised and elderly patients, PyVs cause severe diseases such as nephropathy (BK polyomavirus [BKPyV]), progressive multifocal leukoencephalopathy (JC polyomavirus [JCPyV]), and skin cancer (Merkel cell polyomavirus [MCPyV]). Like cytomegalovirus, donor‐derived PyV can cause disease in kidney transplant recipients. Possibly blood components transmit PyVs as well. To study this possibility, as a first step we determined the presence of PyV DNA in Dutch blood donations. STUDY DESIGN AND METHODS Blood donor serum samples (n = 1016) were analyzed for the presence of DNA of 14 HPyVs using HPyV species‐specific quantitative polymerase chain reaction (PCR) procedures. PCR‐positive samples were subjected to confirmation by sequencing. Individual PCR findings were compared with the previously reported PyV serostatus. RESULTS MC polyomavirus DNA was detected in 39 donors (3.8%), JCPyV and TS polyomavirus (TSPyV) DNA in five donors (both 0.5%), and HPyV9 DNA in four donors (0.4%). BKPyV, WU polyomavirus (WUPyV), HPyV6, MW polyomavirus (MWPyV), and LI polyomavirus (LIPyV) DNA was detected in one or two donors. Amplicon sequencing confirmed the expected product for BKPyV, JCPyV, WUPyV, MCPyV, HPyV6, TSPyV, MWPyV, HPyV9, and LIPyV. For JCPyV a significant association was observed between detection of viral DNA and the level of specific IgG antibodies. CONCLUSION In 5.4% of Dutch blood donors PyV DNA was detected, including DNA from pathogenic PyVs such as JCPyV. As a next step, the infectivity of PyV in donor blood and transmission via blood components to immunocompromised recipients should be investigated.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Zaaijer
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
30
|
Pre-Transplantation Assessment of BK Virus Serostatus: Significance, Current Methods, and Obstacles. Viruses 2019; 11:v11100945. [PMID: 31615131 PMCID: PMC6833059 DOI: 10.3390/v11100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
The immunosuppression required for graft tolerance in kidney transplant patients can trigger latent BK polyomavirus (BKPyV) reactivation, and the infection can progress to nephropathy and graft rejection. It has been suggested that pre-transplantation BKPyV serostatus in donors and recipients is a predictive marker for post-transplantation BKPyV replication. The fact that research laboratories have used many different assay techniques to determine BKPyV serostatus complicates these data analysis. Even studies based on the same technique differed in their standard controls choice, the antigenic structure type used for detection, and the cut-off for seropositivity. Here, we review the different BKPyV VP1 antigens types used for detection and consider the various BKPyV serostatus assay techniques’ advantages and disadvantages. Lastly, we highlight the obstacles in the implementation of a consensual BKPyV serologic assay in clinics (e.g., the guidelines absence in this field).
Collapse
|
31
|
Aints A, Mölder S, Salumets A. EXTL3-interacting endometriosis-specific serum factors induce colony formation of endometrial stromal cells. Sci Rep 2019; 9:12562. [PMID: 31467315 PMCID: PMC6715673 DOI: 10.1038/s41598-019-48840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022] Open
Abstract
Endometriosis is a benign chronic condition characterized by the existence of endometrial-like stroma and glandular tissue in extrauterine locations. The molecular mechanisms of its pathogenesis have not been elucidated. We have studied the role of EXTL3 (exostosin-like 3) in endometriosis and found that it is expressed in endometrial tissue as well as endometriosis lesions. We have found that serum from endometriosis patients contains a factor or factors, which interact with EXTL3 resulting in strongly increased colony formation in regenerating cell culture. We also found increased anti-EXTL3 antibodies in endometriosis patients’ sera. EXTL3 is an N-acetyl glucosamine (GlcNAc) transferase, performing a key step in heparan sulfate (HS) glucosaminoglycan synthesis. Many viruses replicate in regenerating epithelial cells and use HS as a receptor for cell entry. We measured antibody titres to viruses, which use HS as a receptor for cell entry, and found rarely increased titres for these viruses in endometriosis sera, whereas titres to viruses using other receptors were equally distributed in study groups. The data indicate that perturbation of HS metabolism is associated with endometriosis.
Collapse
Affiliation(s)
- Alar Aints
- Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, 51014, Estonia. .,Kvintest OÜ, Tartu, 50410, Estonia.
| | - Signe Mölder
- Competence Centre on Health Technologies AS, Tartu, 50410, Estonia
| | - Andres Salumets
- Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, 51014, Estonia.,Competence Centre on Health Technologies AS, Tartu, 50410, Estonia.,Institute of Bio- and Translational Medicine, University of Tartu, Tartu, 50411, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
| |
Collapse
|
32
|
Garbutcheon‐Singh KB, Curchin DJ, McCormack CJ, Smith SD. Trends in the incidence of Merkel cell carcinoma in Victoria, Australia, between 1986 and 2016. Australas J Dermatol 2019; 61:e34-e38. [DOI: 10.1111/ajd.13131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - David J. Curchin
- Northern Clinical School University of Sydney Sydney NSW Australia
| | | | - Saxon D. Smith
- Royal North Shore Hospital Sydney NSW Australia
- Northern Clinical School University of Sydney Sydney NSW Australia
| |
Collapse
|
33
|
Pierrotti LC, Urbano PRP, Nali LHDS, Romano CM, Bicalho CDS, Arnone M, Valente NS, Pannuti CS, David-Neto E, Azevedo LS. Viremia and viruria of trichodysplasia spinulosa-associated polyomavirus before the development of clinical disease in a kidney transplant recipient. Transpl Infect Dis 2019; 21:e13133. [PMID: 31233669 DOI: 10.1111/tid.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/13/2019] [Accepted: 05/12/2019] [Indexed: 12/01/2022]
Abstract
Trichodysplasia spinulosa (TS) is a rare disease associated with immunosuppression and induced by a polyomavirus denominated Tricodisplasia Polyomavirus (TSPyV). We report a case of TS 6 months after kidney transplantation in a 65 years-old woman under immunosuppression therapy with prednisone, mycophenolate and tacrolimus. The patient developed follicular papules on the face with a thickening of the skin and alopecia of the eyebrows, leading to distortion of the face and a leonine appearance characteristic of the disease. The skin biopsy confirmed the clinical diagnosis and the presence of TSPyV DNA in the skin was detected. Staining for SV40 was positive. Immunosuppression was changed: mycophenolate was withdrawn, tacrolimus reduced and everolimus added. Intravenous cidofovir and later on leflunomide were added. Although the literature has reported clinical success with topical cidofovir, we were unable to use it because this drug is not available. There was an improvement of skin lesions and on cosmetic appearance. The patient had three rejections (one clinically diagnosed and two other biopsy proven), progressed with renal failure and graft loss. Retrospective analysis of stored urine and blood samples detected TSPyV DNA in some of those samples two months before the TS clinical development. This case highlights the TSPyV detection in blood and urine samples before the development of skin lesions.
Collapse
Affiliation(s)
- Ligia Camera Pierrotti
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Camila da Silva Bicalho
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Arnone
- Departamento de Dermatologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Neusa Sakai Valente
- Departamento de Dermatologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudio Sérgio Pannuti
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Elias David-Neto
- Divisão de Clínica Urológica, Faculdade de Medicina, Serviço de Transplante Renal, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Sérgio Azevedo
- Divisão de Clínica Urológica, Faculdade de Medicina, Serviço de Transplante Renal, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Borgogna C, Albertini S, Zavattaro E, Veronese F, Peruzzi L, van der Meijden E, Feltkamp MCW, Tosoni A, Volpe A, Boldorini R, Gariglio M. Primary trichodysplasia spinulosa polyomavirus infection in a kidney transplant child displaying virus-infected decoy cells in the urine. J Med Virol 2019; 91:1896-1900. [PMID: 31209897 DOI: 10.1002/jmv.25519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023]
Abstract
We report a case of primary trichodysplasia spinulosa (TS) infection in a kidney transplant child and describe for the first time the presence of degenerated TS-associated polyomavirus (TSPyV)-infected cells in a TS patient's urine that are morphologically different from BK or JC polyomavirus-infected decoy cells.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Silvia Albertini
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Elisa Zavattaro
- Dermatology Unit, Department of Translational Medicine, Novara Medical School, and "Maggiore della Carità" University Hospital, Novara, Italy
| | - Federica Veronese
- Dermatology Unit, Department of Translational Medicine, Novara Medical School, and "Maggiore della Carità" University Hospital, Novara, Italy
| | - Licia Peruzzi
- Department of Pediatric Sciences, Pediatric Nephrology, "Regina Margherita" Children's Hospital, Torino, Italy
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonella Tosoni
- Pathology Unit, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandro Volpe
- Urology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| |
Collapse
|
35
|
Ciotti M, Prezioso C, Pietropaolo V. An Overview On Human Polyomaviruses Biology and Related Diseases. Future Virol 2019; 14:487-501. [DOI: 10.2217/fvl-2019-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Ciotti
- Laboratory of Virology Polyclinic Tor Vergata Foundation Viale Oxford 81
Rome
00133
Italy
| | - Carla Prezioso
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| | - Valeria Pietropaolo
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| |
Collapse
|
36
|
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, primary neuroendocrine cancer of the skin. The majority of MCC cases are associated with the recently discovered Merkel cell polyomavirus (MCPyV), while the remaining are caused by ultraviolet (UV) light-induced mutations from excessive sunlight exposure. The risk of developing MCC is much higher in the white population relative to all other races. Approximately 10% of all patients with MCC have some form of immunosuppression including HIV-1/AIDS, chronic inflammatory conditions, solid organ transplantation, or hematological malignancies. The age of onset of MCC is lower and the mortality is higher in immunosuppressed individuals than in immune-competent patients. It is plausible that HIV-1/AIDS predisposes to virus-positive MCC, but it should be noted that HIV-1/AIDS increases the risk for developing of UV-induced skin cancers such as cutaneous squamous cell carcinoma and basal cell carcinoma and therefore may also increase the risk for virus-negative MCC. Surgical management is considered standard of care for localized Merkel cell carcinoma with current recommendations advising a wide local excision of the lesion. Most international guidelines support the use of local adjuvant radiotherapy coupled with tumor staging to improve the frequency of cure. For advanced, metastatic, and recurrent MCC, checkpoint blockade inhibitors targeting PD-1 and PD-L1 have shown remarkable activity including durable long-term. MCC in patients living with HIV-1/AIDS are treated with similar modalities as HIV-1 uninfected individuals with MCC.
Collapse
Affiliation(s)
- Robert H Goldstein
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
37
|
Hashida Y, Higuchi T, Matsuzaki S, Nakajima K, Sano S, Daibata M. Prevalence and Genetic Variability of Human Polyomaviruses 6 and 7 in Healthy Skin Among Asymptomatic Individuals. J Infect Dis 2019; 217:483-493. [PMID: 29161422 DOI: 10.1093/infdis/jix516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background Despite the pathogenetic potential of human polyomavirus 6 (HPyV6) and human polyomavirus 7 (HPyV7), they have been found in the normal skin of healthy individuals. However, little is known about the prevalence, infection levels, and geographical variations of these polyomaviruses in the skin. Methods Using skin swabs from 470 participants aged 2-98 years, we estimated the prevalence of copy numbers of HPyV6 and HPyV7 with respect to age and ethnicity. Phylogenetic analyses were conducted based on viral sequences obtained from Asian and white populations. Results This study provides the first analyses of the age-specific prevalence and levels of HPyV6 and HPyV7 infections in normal skin. Comparisons of age groups revealed that the prevalence and viral loads were significantly higher in elderly persons. Phylogenetic analyses demonstrated the existence of Asian/Japanese-specific strains genetically distinct from strains prevalent in the skin of the white population studied. Conclusions This large study suggests that HPyV6 and HPyV7 infections in the skin are highly prevalent in elderly adults. Further research is warranted to understand whether persistent infection with high viral loads in the skin could be a risk factor for the development of HPyV6- and HPyV7-associated skin disorders.
Collapse
Affiliation(s)
- Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| |
Collapse
|
38
|
Sheu JC, Tran J, Rady PL, Dao H, Tyring SK, Nguyen HP. Polyomaviruses of the skin: integrating molecular and clinical advances in an emerging class of viruses. Br J Dermatol 2019; 180:1302-1311. [PMID: 30585627 DOI: 10.1111/bjd.17592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human polyomaviruses (HPyVs) are small, nonenveloped, double-stranded DNA viruses that express tumour antigen proteins. Fourteen species of polyomaviruses have been discovered in humans, and since the 2008 discovery of the first cutaneous polyomavirus - Merkel cell polyomavirus (MCPyV) - six more species have been detected in the skin: trichodysplasia spinulosa-associated polyomavirus (TSPyV), HPyV6, HPyV7, HPyV9, HPyV10 and HPyV13. Of these cutaneous species, only MCPyV, TSPyV, HPyV6 and HPyV7 have been definitively associated with diseases of the skin, most commonly in immunocompromised individuals. MCPyV is a predominant aetiology in Merkel cell carcinomas. TSPyV is one of the aetiological factors of trichodysplasia spinulosa. HPyV6 and HPyV7 have been recently linked to pruritic skin eruptions. The roles of HPyV9, HPyV10 and HPyV13 in pathogenesis, if any, are still unknown, but their molecular features have provided some insight into their functional biology. RESULTS In this review, we summarize the known molecular mechanisms, clinical presentation and targeted therapies of each of the eight cutaneous HPyVs. CONCLUSIONS We hope that heightened awareness and clinical recognition of HPyVs will lead to increased reports of HPyV-associated diseases and, consequently, a more robust understanding of how to diagnose and treat these conditions.
Collapse
Affiliation(s)
- J C Sheu
- Department of Dermatology, Baylor College of Medicine, Houston, TX, U.S.A
| | - J Tran
- Department of Dermatology, Baylor College of Medicine, Houston, TX, U.S.A
| | - P L Rady
- Department of Dermatology, McGovern Medical School, Houston, TX, U.S.A
| | - H Dao
- Department of Dermatology, Baylor College of Medicine, Houston, TX, U.S.A
| | - S K Tyring
- Department of Dermatology, McGovern Medical School, Houston, TX, U.S.A
| | - H P Nguyen
- Department of Dermatology, Baylor College of Medicine, Houston, TX, U.S.A.,Department of Dermatology, McGovern Medical School, Houston, TX, U.S.A.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA, U.S.A
| |
Collapse
|
39
|
Reduced Risk of BK Polyomavirus Infection in HLA-B51–positive Kidney Transplant Recipients. Transplantation 2019; 103:604-612. [DOI: 10.1097/tp.0000000000002376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Wunderink HF, De Brouwer CS, Gard L, De Fijter JW, Kroes ACM, Rotmans JI, Feltkamp MCW. Source and Relevance of the BK Polyomavirus Genotype for Infection After Kidney Transplantation. Open Forum Infect Dis 2019; 6:ofz078. [PMID: 30949528 PMCID: PMC6440680 DOI: 10.1093/ofid/ofz078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Background BK polyomavirus (BKPyV)–associated nephropathy (BKPyVAN) is a major threat for kidney transplant recipients (KTRs). The role of specific BKPyV genotypes/serotypes in development of BKPyVAN is poorly understood. Pretransplantation serotyping of kidney donors and recipients and posttransplantation genotyping of viremic recipients, could reveal the clinical relevance of specific BKPyV variants. Methods A retrospective cohort of 386 living kidney donor-recipient pairs was serotyped before transplantation against BKPyV genotype I–IV viral capsid protein 1 antigen, using a novel BKPyV serotyping assay. Replicating BKPyV isolates in viremic KTRs after transplantation were genotyped using real-time polymerase chain reaction and confirmed by means of sequencing. BKPyV serotype and genotype data were used to determine the source of infection and analyze the risk of viremia and BKPyVAN. Results Donor and recipient BKPyV genotype and serotype distribution was dominated by genotype I (>80%), especially Ib, over II, III and IV. Donor serotype was significantly correlated with the replicating genotype in viremic KTRs (P < .001). Individual donor and recipient serotype, serotype (mis)matching and the recipient replicating BKPyV genotype were not associated with development of viremia or BKPyVAN after transplantation. Conclusions BKPyV donor and recipient serotyping and genotyping indicates the donor origin of replicating BKPyV in viremic KTRs but provides no evidence for BKPyV genotype–specific virulence.
Collapse
Affiliation(s)
- H F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - C S De Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - L Gard
- Department of Medical Microbiology, University Medical Center Groningen, the Netherlands
| | - J W De Fijter
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - A C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - M C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
41
|
van Rijn AL, Wunderink HF, de Brouwer CS, van der Meijden E, Rotmans JI, Feltkamp MCW. Impact of HPyV9 and TSPyV coinfection on the development of BK polyomavirus viremia and associated nephropathy after kidney transplantation. J Med Virol 2019; 91:1142-1147. [PMID: 30624811 PMCID: PMC6590353 DOI: 10.1002/jmv.25397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 11/12/2022]
Abstract
Background BK polyomavirus (BKPyV) persistently infects the urinary tract and causes viremia and nephropathy in kidney transplantation (KTx), recipients. In a previous study, we observed an increased incidence and load of BKPyV viremia in KTx patients coinfected with human polyomavirus 9 (HPyV9). Here we sought confirmation of this observation and explored whether novel HPyVs that have been detected in urine (HPyV9 and trichodysplasia spinulosa polyomavirus [TSPyV]) potentially aggravate BKPyV infection. Methods A well‐characterized cohort of 209 KTx donor‐recipient pairs was serologically and molecularly analyzed for HPyV9 and TSPyV coinfection. These data were correlated with the occurrence of BKPyV viremia and BKPyVAN in the recipients within a year after KTx. Results Seropositivity for HPyV9 (19%) and TSPyV (89%) was comparable between donors and recipients and did not correlate with BKPyV viremia and BKPyVAN that developed in 25% and 3% of the recipients, respectively. Two recipients developed TSPyV viremia and none HPyV9 viremia. Modification of the predictive effect of donor BKPyV seroreactivity on recipient BKPyV viremia by HPyV9 and TSPyV was not observed. Conclusions Our data provide no evidence for a promoting effect of HPyV9 and TSPyV on BKPyV infection and BKPyVAN in renal allograft patients. Therefore, we do not recommend including HPyV9 and TSPyV screening in KTx patients.
Collapse
Affiliation(s)
- Aline L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Herman F Wunderink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Wunderink HF, de Brouwer CS, van der Meijden E, Pastrana DV, Kroes ACM, Buck CB, Feltkamp MCW. Development and evaluation of a BK polyomavirus serotyping assay using Luminex technology. J Clin Virol 2018; 110:22-28. [PMID: 30529638 DOI: 10.1016/j.jcv.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The BK polyomavirus (BKPyV) is subdivided into four genotypes. The consequences of each genotype and of donor-recipient genotype (mis)match for BKPyV-associated nephropathy (BKPyVAN) in kidney transplant recipients (KTRs) are unknown. OBJECTIVES To develop and evaluate a genotype-specific IgG antibody-based BKPyV serotyping assay, in order to classify kidney transplant donors and recipients accordingly. STUDY DESIGN VP1 antigens of six BKPyV variants (Ib1, Ib2, Ic, II, III and IV) were expressed as recombinant glutathione-s-transferase-fusion proteins and coupled to fluorescent Luminex beads. Sera from 87 healthy blood donors and 39 KTRs were used to analyze seroreactivity and serospecificity against the different BKPyV genotypes. Six sera with marked BKPyV serotype profiles were analyzed further for genotype-specific BKPyV pseudovirus neutralizing capacity. RESULTS Seroreactivity was observed against all genotypes, with seropositivity rates above 77% comparable for KTRs and blood donors. Strong cross-reactivity (r > 0.8) was observed among genotype I subtypes, and among genotypes II, III and IV. Seroresponses against genotypes I and IV seemed genuine, while those against II and III could be out(cross)competed. GMT (Luminex) and IC50 (neutralization assay) values showed good agreement in determining the genotype with the strongest seroresponse within an individual. CONCLUSIONS Despite some degree of cross-reactivity, this serotyping assay seems a useful tool to identify the main infecting BKPyV genotype within a given individual. This information, which cannot be obtained otherwise from nonviremic/nonviruric individuals, could provide valuable information regarding the prevalent BKPyV genotype in kidney donors and recipients and warrants further study.
Collapse
Affiliation(s)
- Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Aloysius C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
43
|
Kourieh A, Combes JD, Tommasino M, Dalstein V, Clifford GM, Lacau St Guily J, Clavel C, Franceschi S, Gheit T, For The Split Study Group. Prevalence and risk factors of human polyomavirus infections in non-malignant tonsils and gargles: the SPLIT study. J Gen Virol 2018; 99:1686-1698. [PMID: 30407150 DOI: 10.1099/jgv.0.001156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of 13 polyomaviruses (PyVs) in the tonsil brushings and gargles of immunocompetent children and adults was assessed. Patients undergoing tonsillectomy for benign indications were recruited in 19 centres in France. After resection, the entire outer surface of the right and left halves of the tonsils was brushed extensively. Gargles were also collected prior to surgery in selected adults. A species-specific multiplex assay was used to detect the DNA of 13 PyVs. In tonsil brushings (n=689), human PyV 6 (HPyV6) and Merkel cell PyV (MCPyV) were the most prevalent (≈15 %), followed by trichodysplasia spinulosa-associated PyV (TSPyV), BKPyV, Washington University PyV (WUPyV) and human PyV 9 (HPyV9) (1 to 5 %), and human PyV 7 (HPyV7), John Cunningham PyV (JCPyV) and Simian virus 40 (SV40) (<1 %), while no Karolinska Institute PyV (KIPyV), Malawi PyV (MWPyV), human PyV 12 (HPyV12) or Lyon IARC PyV (LIPyV) were detected. The prevalence of TSPyV and BKPyV was significantly higher in children versus adults, whereas for HPyV6 the opposite was found. HPyV6 and WUPyV were significantly more prevalent in men versus women. In gargles (n=139), MCPyV was the most prevalent (≈40 %), followed by HPyV6, HPyV9 and LIPyV (2 to 4 %), and then BKPyV (≈1 %), while other PyVs were not detected. MCPyV and LIPyV were significantly more prevalent in gargles compared to tonsil brushings, in contrast to HPyV6. We described differing patterns of individual PyV infections in tonsils and gargles in a large age-stratified population. Comparison of the spectrum of PyVs in paired tonsil samples and gargles adds to the current knowledge on PyV epidemiology, contributing towards a better understanding of PyV acquisition and transmission and its potential role in head and neck diseases.
Collapse
Affiliation(s)
- Aboud Kourieh
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean-Damien Combes
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Véronique Dalstein
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Gary M Clifford
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean Lacau St Guily
- 5Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Sorbonne University, Paris, France
- 6Tenon Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christine Clavel
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Silvia Franceschi
- 7Aviano Cancer Centre, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Tarik Gheit
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | | |
Collapse
|
44
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
45
|
Kamminga S, van der Meijden E, Feltkamp MCW, Zaaijer HL. Seroprevalence of fourteen human polyomaviruses determined in blood donors. PLoS One 2018; 13:e0206273. [PMID: 30352098 PMCID: PMC6198985 DOI: 10.1371/journal.pone.0206273] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022] Open
Abstract
The polyomavirus family currently includes thirteen human polyomavirus (HPyV) species. In immunocompromised and elderly persons HPyVs are known to cause disease, such as progressive multifocal leukoencephalopathy (JCPyV), haemorrhagic cystitis and nephropathy (BKPyV), Merkel cell carcinoma (MCPyV), and trichodysplasia spinulosa (TSPyV). Some recently discovered polyomaviruses are of still unknown prevalence and pathogenic potential. Because HPyVs infections persist and might be transferred by blood components to immunocompromised patients, we studied the seroprevalence of fourteen polyomaviruses in adult Dutch blood donors. For most polyomaviruses the observed seroprevalence was high (60–100%), sometimes slightly increasing or decreasing with age. Seroreactivity increased with age for JCPyV, HPyV6 and HPyV7 and decreased for BKPyV and TSPyV. The most recently identified polyomaviruses HPyV12, NJPyV and LIPyV showed low overall seroprevalence (~5%) and low seroreactivity, questioning their human tropism. Altogether, HPyV infections are common in Dutch blood donors, with an average of nine polyomaviruses per subject.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L. Zaaijer
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Purdie KJ, Proby CM, Rizvi H, Griffin H, Doorbar J, Sommerlad M, Feltkamp MC, der Meijden EV, Inman GJ, South AP, Leigh IM, Harwood CA. The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Front Microbiol 2018; 9:1806. [PMID: 30154763 PMCID: PMC6102365 DOI: 10.3389/fmicb.2018.01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies.
Collapse
Affiliation(s)
- Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Hasan Rizvi
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Heather Griffin
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mary Sommerlad
- Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| | - Mariet C Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irene M Leigh
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
47
|
Torres C, Barrios ME, Cammarata RV, Victoria M, Fernandez-Cassi X, Bofill-Mas S, Colina R, Blanco Fernández MD, Mbayed VA. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans. Mol Phylogenet Evol 2018; 126:210-220. [PMID: 29680507 DOI: 10.1016/j.ympev.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10-8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America.
Collapse
Affiliation(s)
- Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - Xavier Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
49
|
Development and Evaluation of a Broad Bead-Based Multiplex Immunoassay To Measure IgG Seroreactivity against Human Polyomaviruses. J Clin Microbiol 2018; 56:JCM.01566-17. [PMID: 29305551 DOI: 10.1128/jcm.01566-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023] Open
Abstract
The family of polyomaviruses, which cause severe disease in immunocompromised hosts, has expanded substantially in recent years. To accommodate measurement of IgG seroresponses against all currently known human polyomaviruses (HPyVs), including the Lyon IARC polyomavirus (LIPyV), we extended our custom multiplex bead-based HPyV immunoassay and evaluated the performance of this pan-HPyV immunoassay. The VP1 proteins of 15 HPyVs belonging to 13 Polyomavirus species were expressed as recombinant glutathione S-transferase (GST) fusion proteins and coupled to fluorescent Luminex beads. Sera from healthy blood donors and immunocompromised kidney transplant recipients were used to analyze seroreactivity against the different HPyVs. For BK polyomavirus (BKPyV), the GST-VP1 fusion protein-directed seroresponses were compared to those obtained against BKPyV VP1 virus-like particles (VLP). Seroreactivity against most HPyVs was common and generally high in both test populations. Low seroreactivity against HPyV9, HPyV12, New Jersey PyV, and LIPyV was observed. The assay was reproducible (Pearson's r2 > 0.84, P < 0.001) and specific. Weak but consistent cross-reactivity between the related viruses HPyV6 and HPyV7 was observed. The seroresponses measured by the GST-VP1-based immunoassay and a VP1 VLP-based enzyme-linked immunosorbent assay were highly correlated (Spearman's ρ = 0.823, P < 0.001). The bead-based pan-HPyV multiplex immunoassay is a reliable tool to determine HPyV-specific seroresponses with high reproducibility and specificity and is suitable for use in seroepidemiological studies.
Collapse
|
50
|
van der Meijden E, Feltkamp M. The Human Polyomavirus Middle and Alternative T-Antigens; Thoughts on Roles and Relevance to Cancer. Front Microbiol 2018; 9:398. [PMID: 29568287 PMCID: PMC5852106 DOI: 10.3389/fmicb.2018.00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately 15–20% of human cancer is related to infection, which renders them potentially preventable by antimicrobial or antiviral therapy. Human polyomaviruses (PyVs) are relevant in this regard, as illustrated by the involvement of Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma. The polyomavirus Small and Large tumor antigen (ST and LT) have been extensively studied with respect to their role in oncogenesis. Recently it was shown that a number of human PyVs, including MCPyV and the trichodysplasia spinulosa polyomavirus (TSPyV), express additional T-antigens called Middle T (MT) and alternative T (ALT). ALT is encoded by ORF5, also known as the alternative T open reading frame (ALTO), which also encodes the second exon of MT, and overlaps out-of-frame with the second exon of LT. Previously, MT was considered unique for oncogenic rodent polyomaviruses, and ALT was still unknown. In this mini-review, we want to point out there are important reasons to explore the involvement of MT and ALT in human cellular transformation. First, just like their rodent equivalents, MT and ALT probably disrupt cellular pathways that control signaling and proliferation. Second, expression of the MT and ALT-encoding ORF5/ALTO characterizes a monophyletic polyomavirus clade that includes human and animal PyVs with known oncogenic potential. And third, ORF5/ALTO is subject to strong positive selection aimed specifically at a short linear motif within MT and ALT that overlaps completely with the RB-binding motif in LT. The latter suggests tight interplay between these T-antigens with possible consequences for cell transformation.
Collapse
Affiliation(s)
- Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|