1
|
Jaruga P, Kant M, Luzadder MM, Lloyd RS, Boldogh I, Dizdaroglu M. Inhibition by 4-(4-Bromo-2-oxo-3 H-benzimidazol-1-yl)- N-(4-iodophenyl)piperidine-1-carboxamide (TH5487) of the Activity of Human 8-Oxoguanine DNA Glycosylase-1 (OGG1) for the Excision of 2,6-Diamino-4-hydroxy-5-formamidopyrimidine, 4,6-Diamino-5-formamidopyrimidine, and 8-Oxoguanine from Oxidatively Damaged DNA. Biochemistry 2025; 64:1788-1796. [PMID: 40179276 PMCID: PMC12004446 DOI: 10.1021/acs.biochem.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
DNA glycosylases of the base excision repair pathway have become clinically validated drug targets for the treatment of several diseases. Human OGG1 (hOGG1) is specific for the removal of the highly mutagenic 8-oxoguanine (8-oxo-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from damaged DNA. To develop clinically approved drugs, various small-molecule inhibitors of hOGG1 have been developed to inhibit its glycosylase and lyase activities, with 4-(4-bromo-2-oxo-3H-benzimidazol-1-yl)-N-(4-iodophenyl)piperidine-1-carboxamide (TH5487) shown to be a potent inhibitor. The inhibition of hOGG1 by TH5487 has been shown to suppress cancer cell growth, pulmonary inflammation, and lung fibrosis and sensitize cancer cells to ionizing radiation, confirming hOGG1 as a target for pharmaceutical intervention. While the assays that identified TH5487 utilized an oligodeoxynucleotide with the target substrate being 8-hydroxyadenine mispaired with cytosine, measurements of TH5487-mediated inhibition of the release of 8-oxo-Gua and FapyGua have not been reported. In the present work, we investigated the inhibition of hOGG1 by TH5487 using genomic DNA with multiple lesions and gas chromatography-tandem mass spectrometry with isotope dilution to measure inhibition of hOGG1-catalyzed DNA base lesion removal from DNA. An oligodeoxynucleotide containing 8-oxo-Gua was also used to measure the half-maximal inhibitory concentration (IC50), which is 0.800 μmol/L ± 0.061 μmol/L. We show that TH5487 efficiently inhibits the excision of both 8-oxo-Gua and FapyGua, and a minor substrate 4,6-diamino-5-formamidopyrimidine (FapyAde) from DNA with the IC50 values of 1.6 μmol/L, 3.1 μmol/L, and 3.1 μmol/L, respectively. The results suggest that the approach used in the present work may be applied for future studies of hOGG1 inhibition by TH5487 on cellular and animal disease models.
Collapse
Affiliation(s)
- Pawel Jaruga
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Melis Kant
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael M. Luzadder
- Oregon
Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - R. Stephen Lloyd
- Oregon
Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
- Department
of Molecular and Medical Genetics, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Istvan Boldogh
- Department
of Microbiology and Immunology, University
of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
3
|
Thompson MK, Eggers MH, Benton RG, Johnsten T, Prakash A. Artificial targeting of the NEIL1 DNA glycosylase to the mitochondria. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:243-250. [PMID: 39324705 DOI: 10.1002/em.22632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
The human NEIL1 DNA glycosylase is one of 11 mammalian glycosylases that initiate base excision repair. While substrate preference, catalytic mechanism, and structural information of NEIL1's ordered residues are available, limited information on its subcellular localization, compounded by relatively low endogenous expression levels, have impeded our understanding of NEIL1. Here, we employed a previously developed computational framework to optimize the mitochondrial localization signal of NEIL1, enabling the visualization of its specific targeting to the mitochondrion via confocal microscopy. While we observed clear mitochondrial localization and increased glycosylase/lyase activity in mitochondrial extracts from low-moderate NEIL1 expression, high NEIL1 mitochondrial expression levels proved harmful, potentially leading to cell death.
Collapse
Affiliation(s)
- Marlo K Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mark H Eggers
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ryan G Benton
- Department of Computer Science, University of South Alabama, Mobile, Alabama, USA
| | - Tom Johnsten
- Department of Computer Science, University of South Alabama, Mobile, Alabama, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
4
|
Zuckerman JT, Jackson AS, Minko IG, Kant M, Jaruga P, Stone MP, Dizdaroglu M, McCullough AK, Lloyd RS. Functional characterization of single nucleotide polymorphic variants of DNA repair enzyme NEIL1 in South Asian populations. DNA Repair (Amst) 2024; 139:103695. [PMID: 38795603 PMCID: PMC11218669 DOI: 10.1016/j.dnarep.2024.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
The base excision repair (BER) pathway is a precise and versatile mechanism of DNA repair that is initiated by DNA glycosylases. Endonuclease VIII-like 1 (NEIL1) is a bifunctional glycosylase/abasic site (AP) lyase that excises a damaged base and subsequently cleaves the phosphodiester backbone. NEIL1 is able to recognize and hydrolyze a broad range of oxidatively-induced base lesions and substituted ring-fragmented guanines, including aflatoxin-induced 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). Due to NEIL1's protective role against these and other pro-mutagenic lesions, it was hypothesized that naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 could increase human risk for aflatoxin-induced hepatocellular carcinoma (HCC). Given that populations in South Asia experience high levels of dietary aflatoxin exposures and hepatitis B viral infections that induce oxidative stress, investigations on SNP variants of NEIL1 that occur in this region may have clinical implications. In this study, the most common South Asian variants of NEIL1 were expressed, purified, and functionally characterized. All tested variants exhibited activities and substrate specificities similar to wild type (wt)-NEIL1 on high-molecular weight DNA containing an array of oxidatively-induced base lesions. On short oligodeoxynucleotides (17-mers) containing either a site-specific apurinic/apyrimidinic (AP) site, thymine glycol (ThyGly), or AFB1-FapyGua, P206L-NEIL1 was catalytically comparable to wt-NEIL1, while the activities of NEIL1 variants Q67K and T278I on these substrates were ≈2-fold reduced. Variant T103A had a greatly diminished ability to bind to 17-mer DNAs, limiting the subsequent glycosylase and lyase reactions. Consistent with this observation, the rate of excision by T103A on 17-mer oligodeoxynucleotides containing ThyGly or AFB1-FapyGua could not be measured. However, the ability of T103A to excise ThyGly was improved on longer oligodeoxynucleotides (51-mers), with ≈7-fold reduced activity compared to wt-NEIL1. Our studies suggest that NEIL1 variant T103A may present a pathogenic phenotype that is limited in damage recognition, potentially increasing human risk for HCC.
Collapse
Affiliation(s)
- Jamie T Zuckerman
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Asia Sage Jackson
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Math & Sciences, Corban University, Salem, OR 97317, United States
| | - Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
5
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
6
|
Zuckerman JT, Minko IG, Kant M, Jaruga P, Stone MP, Dizdaroglu M, McCullough AK, Lloyd RS. Functional analyses of single nucleotide polymorphic variants of the DNA glycosylase NEIL1 in sub-Saharan African populations. DNA Repair (Amst) 2023; 129:103544. [PMID: 37517321 PMCID: PMC10546947 DOI: 10.1016/j.dnarep.2023.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Nei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adduct, resulting from the alkylating agent aflatoxin B1 (AFB1) exo-8-9-epoxide. Naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 are hypothesized to be associated with an increased risk for development of early-onset hepatocellular carcinoma (HCC), especially in environments with high exposures to aflatoxins and chronic inflammation from viral infections and alcohol consumption. Given that AFB1 exposures and hepatitis B viral (HBV) infections represent a major problem in the developing countries of sub-Saharan Africa, it is pertinent to study SNP NEIL1 variants that are present in this geographic region. In this investigation, we characterized the three most common NEIL1 variants found in this region: P321A, R323G, and I182M. Biochemical analyses were conducted to determine the proficiencies of these variants in initiating the repair of DNA lesions. Our data show that damage recognition and excision activities of P321A and R323G were near that of wild-type (WT) NEIL1 for both thymine glycol (ThyGly) and AFB1-FapyGua. The substrate specificities of these variants with respect to various oxidatively-induced base lesions were also similar to that of WT. In contrast, the I182M variant was unstable, such that it precipitated under a variety of conditions and underwent rapid inactivation at a biologically relevant temperature, with partial stabilization being observed in the presence of undamaged DNA. This study provides insight regarding the potential increased risk for early-onset HCC in human populations carrying the NEIL1 I182M variant.
Collapse
Affiliation(s)
- Jamie T Zuckerman
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
7
|
Sato Y, Takaku Y, Nakano T, Akamatsu K, Inamura D, Nishizawa S. Synthetic DNA binders for fluorescent sensing of thymine glycol-containing DNA duplexes and inhibition of endonuclease activity. Chem Commun (Camb) 2023; 59:6088-6091. [PMID: 37128964 DOI: 10.1039/d3cc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dimethyllumazine (DML)-thiazole orange (TO) conjugates were developed for fluorescence sensing of thymine glycol (Tg)-containing DNAs based on the selective recognition of the A nucleobase opposite the Tg residue. Additionally, this conjugate has demonstrated an inhibitory activity towards endonuclease III, a DNA repair enzyme, through its competitive binding to Tg-containing DNAs.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Toshiaki Nakano
- DNA damage chemistry research group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, 619-0215, Japan.
| | - Ken Akamatsu
- DNA damage chemistry research group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, 619-0215, Japan.
| | - Dai Inamura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
8
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
9
|
Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells. Proc Natl Acad Sci U S A 2021; 118:2016833118. [PMID: 33836581 DOI: 10.1073/pnas.2016833118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human clinical trials suggest that inhibition of enzymes in the DNA base excision repair (BER) pathway, such as PARP1 and APE1, can be useful in anticancer strategies when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. There is also evidence suggesting that inhibition of the BER enzyme 8-oxoguanine DNA glycosylase-1 (OGG1), which initiates repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-dG), could be useful in treating certain cancers. Specifically, in acute myeloid leukemia (AML), both the RUNX1-RUNX1T1 fusion and the CBFB-MYH11 subtypes have lower levels of OGG1 expression, which correlate with increased therapeutic-induced cell cytotoxicity and good prognosis for improved, relapse-free survival compared with other AML patients. Here we present data demonstrating that AML cell lines deficient in OGG1 have enhanced sensitivity to cytarabine (cytosine arabinoside [Ara-C]) relative to OGG1-proficient cells. This enhanced cytotoxicity correlated with endogenous oxidatively-induced DNA damage and Ara-C-induced DNA strand breaks, with a large proportion of these breaks occurring at common fragile sites. This lethality was highly specific for Ara-C treatment of AML cells deficient in OGG1, with no other replication stress-inducing agents showing a correlation between cell killing and low OGG1 levels. The mechanism for this preferential toxicity was addressed using in vitro replication assays in which DNA polymerase δ was shown to insert Ara-C opposite 8-oxo-dG, resulting in termination of DNA synthesis. Overall, these data suggest that incorporation of Ara-C opposite unrepaired 8-oxo-dG may be the fundamental mechanism conferring selective toxicity and therapeutic effectiveness in OGG1-deficient AML cells.
Collapse
|
10
|
Tomar R, Minko IG, Kellum AH, Voehler MW, Stone MP, McCullough AK, Lloyd RS. DNA Sequence Modulates the Efficiency of NEIL1-Catalyzed Excision of the Aflatoxin B 1-Induced Formamidopyrimidine Guanine Adduct. Chem Res Toxicol 2021; 34:901-911. [PMID: 33595290 DOI: 10.1021/acs.chemrestox.0c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.
Collapse
Affiliation(s)
- Rachana Tomar
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B, Box 351822, Nashville, Tennessee 37235, United States
| | - Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Andrew H Kellum
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B, Box 351822, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B, Box 351822, Nashville, Tennessee 37235, United States
| | - Michael P Stone
- Department of Chemistry and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B, Box 351822, Nashville, Tennessee 37235, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States.,Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States.,Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
11
|
Kant M, Tahara YK, Jaruga P, Coskun E, Lloyd RS, Kool ET, Dizdaroglu M. Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chem Biol 2021; 16:45-51. [PMID: 33331782 DOI: 10.1021/acschembio.0c00877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA glycosylases involved in the first step of the DNA base excision repair pathway are promising targets in cancer therapy. There is evidence that reduction of their activities may enhance cell killing in malignant tumors. Recently, two tetrahydroquinoline compounds named SU0268 and SU0383 were reported to inhibit OGG1 for the excision of 8-hydroxyguanine. This DNA repair protein is one of the major cellular enzymes responsible for excision of a number of oxidatively induced lesions from DNA. In this work, we used gas chromatography-tandem mass spectrometry with isotope-dilution to measure the excision of not only 8-hydroxyguanine but also that of the other major substrate of OGG1, i.e., 2,6-diamino-4-hydroxy-5-formamidopyrimidine, using genomic DNA with multiple purine- and pyrimidine-derived lesions. The excision of a minor substrate 4,6-diamino-5-formamidopyrimidine was also measured. Both SU0268 and SU0383 efficiently inhibited OGG1 activity for these three lesions, with the former being more potent than the latter. Dependence of inhibition on concentrations of SU0268 and SU0383 from 0.05 μmol/L to 10 μmol/L was also demonstrated. The approach used in this work may be applied to the investigation of OGG1 inhibition by SU0268 and SU0383 and other small molecule inhibitors in further studies including cellular and animal models of disease.
Collapse
Affiliation(s)
- Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yu-ki Tahara
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
13
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020; 59:7450-7455. [PMID: 32109332 PMCID: PMC7180134 DOI: 10.1002/anie.202001516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Indexed: 11/10/2022]
Abstract
Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase-induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real-time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small-molecule inhibitor with sub-micromolar potency.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - David L Wilson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged‐Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Woong Jun
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - David L. Wilson
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of ChemistryStanford University Stanford CA 94305 USA
| | | | - Savannah G. Conlon
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Sheila S. David
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Eric T. Kool
- Department of ChemistryStanford University Stanford CA 94305 USA
| |
Collapse
|
16
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
17
|
Rieux C, Goffinont S, Coste F, Tber Z, Cros J, Roy V, Guérin M, Gaudon V, Bourg S, Biela A, Aucagne V, Agrofoglio L, Garnier N, Castaing B. Thiopurine Derivative-Induced Fpg/Nei DNA Glycosylase Inhibition: Structural, Dynamic and Functional Insights. Int J Mol Sci 2020; 21:ijms21062058. [PMID: 32192183 PMCID: PMC7139703 DOI: 10.3390/ijms21062058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Rieux
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Zahira Tber
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Julien Cros
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Martine Guérin
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Artur Biela
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Correspondence: (V.R.); (N.G.); (B.C.)
| |
Collapse
|
18
|
Quiñones JL, Thapar U, Wilson SH, Ramsden DA, Demple B. Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair. DNA Repair (Amst) 2020; 87:102773. [PMID: 31945542 PMCID: PMC7065521 DOI: 10.1016/j.dnarep.2019.102773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023]
Abstract
Free radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polβ) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polβ-DPC in cells challenged with oxidants generating significant levels of dL. Proteasome inhibition under 1,10-copper-ortho-phenanthroline (CuOP) treatment significantly increased Polβ-DPC accumulation and trapped ubiquitin in the DPC, with Polβ accounting for 60-70 % of the total ubiquitin signal. However, the identity of the remaining oxidative ubiquityl-DPC remained unknown. In this report, we surveyed whether additional AP lyases are trapped in oxidative DPC in mammalian cells in culture. Poly(ADP-ribose) polymerase 1 (PARP1), Ku proteins, DNA polymerase λ (Polλ), and the bifunctional 8-oxoguanine DNA glycosylase 1 (OGG1), were all trapped in oxidative DPC in mammalian cells. We also observed significant trapping of Polλ, PARP1, and OGG1 in cells treated with the alkylating agent methylmethane sulfonate (MMS), in addition to dL-inducing agents. Ku proteins, in contrast, followed a pattern of trapping similar to that for Polβ: MMS failed to produce Ku-DPC, while treatment with CuOP or (less effectively) H2O2 gave rise to significant Ku-DPC. Unexpectedly, NEIL1 and NEIL3 were trapped following H2O2 treatment, but not detectably in cells exposed to CuOP. The half-life of all the AP lyase-DPC ranged from 15-60 min, consistent with their active repair. Accordingly, CuOP treatment under proteasome inhibition significantly increased the observed levels of DPC in cultured mammalian cells containing PARP1, Ku protein, Polλ, and OGG1 proteins. As seen for Polβ, blocking the proteasome led to the accumulation of DPC containing ubiquitin. Thus, the ubiquitin-dependent proteolytic mechanisms that control Polβ-DPC removal may also apply to a broad array of oxidative AP lyase-DPC, preventing their toxic accumulation in cells.
Collapse
Affiliation(s)
- Jason L Quiñones
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA
| | - Upasna Thapar
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA
| | - Samuel H Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC, 27709-2233, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA.
| |
Collapse
|
19
|
Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem 2020; 12:339-355. [PMID: 32031026 DOI: 10.4155/fmc-2019-0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.
Collapse
|
20
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
21
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
22
|
Minko IG, Vartanian VL, Tozaki NN, Linde OK, Jaruga P, Coskun SH, Coskun E, Qu C, He H, Xu C, Chen T, Song Q, Jiao Y, Stone MP, Egli M, Dizdaroglu M, McCullough AK, Lloyd RS. Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair (Amst) 2019; 79:32-39. [PMID: 31100703 PMCID: PMC6677271 DOI: 10.1016/j.dnarep.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
The combination of chronic dietary exposure to the fungal toxin, aflatoxin B1 (AFB1), and hepatitis B viral (HBV) infection is associated with an increased risk for early onset hepatocellular carcinomas (HCCs). An in-depth knowledge of the mechanisms driving carcinogenesis is critical for the identification of genetic risk factors affecting the susceptibility of individuals who are HBV infected and AFB1 exposed. AFB1-induced mutagenesis is characterized by G to T transversions. Hence, the DNA repair pathways that function on AFB1-induced DNA adducts or base damage from HBV-induced inflammation are anticipated to have a strong role in limiting carcinogenesis. These pathways define the mutagenic burden in the target tissues and ultimately limit cellular progression to cancer. Murine data have demonstrated that NEIL1 in the DNA base excision repair pathway was significantly more important than nucleotide excision repair relative to elevated risk for induction of HCCs. These data suggest that deficiencies in NEIL1 could contribute to the initiation of HCCs in humans. To investigate this hypothesis, publicly-available data on variant alleles of NEIL1 were analyzed and compared with genome sequencing data from HCC tissues derived from individuals residing in Qidong County (China). Three variant alleles were identified and the corresponding A51V, P68H, and G245R enzymes were characterized for glycosylase activity on genomic DNA containing a spectrum of oxidatively-induced base damage and an oligodeoxynucleotide containing a site-specific AFB1-formamidopyrimidine guanine adduct. Although the efficiency of the P68H variant was modestly decreased, the A51V and G245R variants showed nearly wild-type activities. Consistent with biochemical findings, molecular modeling of these variants demonstrated only slight local structural alterations. However, A51V was highly temperature sensitive suggesting that its biological activity would be greatly reduced. Overall, these studies have direct human health relevance pertaining to genetic risk factors and biochemical pathways previously not recognized as germane to induction of HCCs.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Naoto N Tozaki
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Oskar K Linde
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Sanem Hosbas Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, 226200, Jiangsu Province, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
23
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
24
|
Abstract
DNA repair is now understood to play a key role in a variety of disease states, most notably cancer. Tools for studying DNA have typically relied on traditional biochemical methods which are often laborious and indirect. Efforts to study the biology and therapeutic relevance of DNA repair pathways can be limited by such methods. Recently, specific fluorescent probes have been developed to aid in the study of DNA repair. Fluorescent probes offer the advantage of being able to directly assay for DNA repair activity in a simple, mix-and-measure format. This review will summarize the distinct classes of probe designs and their potential utility in varied research and preclinical settings.
Collapse
Affiliation(s)
- David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|
26
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
27
|
Ng HZ, Ng M, Eng CM, Gao Z. Deoxyribonucleic acid glycosylase assays: Progress and prospects. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Couto PG, Bastos-Rodrigues L, Carneiro JG, Guieiro F, Bicalho MA, Leidenz FB, Bicalho AJ, Friedman E, De Marco L. DNA Base-Excision Repair Genes OGG1 and NTH1 in Brazilian Lung Cancer Patients. Mol Diagn Ther 2016; 19:389-95. [PMID: 26400813 DOI: 10.1007/s40291-015-0164-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer is the leading global cause of cancer-related mortality and is associated with poor prognosis. To improve survival rates of lung cancer patients, better understanding of tumorigenic mechanisms is necessary, which may lead to development of new therapeutic strategies. The hOGG1 and NTH1 genes act in the DNA BER repair pathway and their involvement in lung cancer pathogenesis has been analyzed in several populations. METHODS We analyzed targeted regions of the hOGG1 and NTH1 genes in 96 Brazilian patients with non-small-cell lung cancer (NSCLC) and 89 cancer-free, ethnically matched controls. RESULTS The NTH1 c.98G>T polymorphism rs2302172 (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) and the 140-17C> T variant (rs2233518) (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) were detected in four lung cancer cases (4 %) while the NTH1 Q131K (C391A) polymorphism was found in seven lung cancer cases (7 %) (p = 0.001 and p = 0.008, for allele and genotype frequency between cases and controls, respectively). None of these sequence variants were detected in controls. The Ser326Cys (C1245G, rs1052133) polymorphism in the OGG1 gene was detected in 42 % of analyzed NSCLC patients and in 34 % of the controls (p = 0.11 and p = 0.25 for allele and genotype frequency between cases and controls, respectively). CONCLUSIONS Our study provides preliminary evidence that polymorphisms in OGG1 do not contribute to development of NSCLC in Brazilian patients and that NTH1 polymorphisms may be associated with NSCLC pathogenesis.
Collapse
Affiliation(s)
- Patricia G Couto
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Luciana Bastos-Rodrigues
- Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil
| | - Juliana G Carneiro
- Faculty of Medical Science, Centro de Ensino Superior e Desenvolvimento, Campina Grande, Brazil
| | - Fernanda Guieiro
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | | | - Franciele B Leidenz
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Ana J Bicalho
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil.
| |
Collapse
|
29
|
Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites. Sci Rep 2016; 6:28894. [PMID: 27363485 PMCID: PMC4929455 DOI: 10.1038/srep28894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 01/02/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring.
Collapse
|
30
|
Klumpp M. Non-stoichiometric inhibition in integrated lead finding - a literature review. Expert Opin Drug Discov 2015; 11:149-62. [PMID: 26653534 DOI: 10.1517/17460441.2016.1128892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Non-stoichiometric inhibition summarizes different mechanisms by which low-molecular weight compounds can reproducibly inhibit high-throughput screening (HTS) and other lead finding assays without binding to a structurally defined site on their molecular target. This disqualifies such molecules from optimization by medicinal chemistry, and therefore their rapid elimination from screening hit lists is essential for productive and effective drug discovery. AREAS COVERED This review covers recent literature that either investigates the various mechanisms behind non-stoichiometric inhibition or suggests assays and readouts to identify them. In addition, combination of the various methods to distill promising molecules out of raw primary hit lists step-by-step is considered. Emerging technologies to demonstrate target engagement in cells are also discussed. EXPERT OPINION Over the last few years, awareness of non-stoichiometric inhibitors within screening libraries and HTS hit lists has considerably increased, not only in the pharmaceutical industry but also in the academic drug discovery community. This has resulted in a variety of methods to detect and handle such compounds. These range from in silico approaches to flag suspicious compounds, and counterassays to measure non-stoichiometric inhibition, to biophysical methods that positively demonstrate stoichiometric binding. In addition, novel technologies to verify target engagement within cells are becoming available. While still a time- and resource-consuming nuisance, non-stoichiometric inhibitors therefore do not fundamentally jeopardize the discovery of low molecular weight lead and drug candidates. Rather, they should be viewed as a manageable issue that with appropriate expertise can be overcome through integration of the above-mentioned approaches.
Collapse
Affiliation(s)
- Martin Klumpp
- a Novartis Institute of Biomedical Research Basel, Novartis Pharma AG , Basel , Switzerland
| |
Collapse
|
31
|
Donley N, Jaruga P, Coskun E, Dizdaroglu M, McCullough AK, Lloyd RS. Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chem Biol 2015. [PMID: 26218629 DOI: 10.1021/acschembio.5b00452] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest that inhibiting certain enzymes in the BER pathway can be a useful anticancer strategy when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. Despite this general validation of BER enzymes as drug targets, there are many enzymes that function in the BER pathway that have few, if any, specific inhibitors. There is a growing body of evidence that suggests inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) could be useful as a monotherapy or in combination therapy to treat certain types of cancer. To identify inhibitors of OGG1, a fluorescence-based screen was developed to analyze OGG1 activity in a high-throughput manner. From a primary screen of ∼50,000 molecules, 13 inhibitors were identified, 12 of which were hydrazides or acyl hydrazones. Five inhibitors with an IC50 value of less than 1 μM were chosen for further experimentation and verified using two additional biochemical assays. None of the five OGG1 inhibitors reduced DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate, but all five inhibited Schiff base formation during OGG1-mediated catalysis. All of these inhibitors displayed a >100-fold selectivity for OGG1 relative to several other DNA glycosylases involved in repair of oxidatively damaged bases. These inhibitors represent the most potent and selective OGG1 inhibitors identified to date.
Collapse
Affiliation(s)
- Nathan Donley
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Pawel Jaruga
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Amanda K. McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
32
|
Pal R, Ramdzan ZM, Kaur S, Duquette PM, Marcotte R, Leduy L, Davoudi S, Lamarche-Vane N, Iulianella A, Nepveu A. CUX2 protein functions as an accessory factor in the repair of oxidative DNA damage. J Biol Chem 2015. [PMID: 26221032 DOI: 10.1074/jbc.m115.651042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.
Collapse
Affiliation(s)
| | | | - Simran Kaur
- From the Goodman Cancer Research Centre and Departments of Biochemistry
| | - Philippe M Duquette
- Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Richard Marcotte
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada, and
| | - Lam Leduy
- From the Goodman Cancer Research Centre and
| | | | | | - Angelo Iulianella
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax B3H 4R2, Canada
| | - Alain Nepveu
- From the Goodman Cancer Research Centre and Departments of Biochemistry, Medicine, Oncology, and
| |
Collapse
|
33
|
Edwards SK, Ono T, Wang S, Jiang W, Franzini RM, Jung JW, Chan KM, Kool ET. In Vitro Fluorogenic Real-Time Assay of the Repair of Oxidative DNA Damage. Chembiochem 2015; 16:1637-46. [PMID: 26073452 PMCID: PMC4586133 DOI: 10.1002/cbic.201500184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/09/2023]
Abstract
The repair of oxidative damage to DNA is essential to avoid mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a main source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report the design and properties of fluorogenic probes that directly report on the activity of OGG1 (and its bacterial homologue Fpg) in real time as the oxidized base is excised. The probes are short, modified DNA oligomers containing fluorescent DNA bases and are designed to utilize 8-oxoguanine itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probes containing these fluorophores: the optimum probe, OGR1, yields a 60-fold light-up signal in vitro with OGG1 and Fpg. It can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes might prove useful in quantifying enzyme activity and performing competitive inhibition assays.
Collapse
Affiliation(s)
- Sarah K Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Toshikazu Ono
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan)
| | - Shenliang Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Wei Jiang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | | | - Jong Wha Jung
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701 (Republic of Korea)
| | - Ke Min Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA).
| |
Collapse
|
34
|
Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res 2015; 49:525-48. [PMID: 25812590 DOI: 10.3109/10715762.2015.1014814] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.
Collapse
Affiliation(s)
- M Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD , USA
| | | | | |
Collapse
|
35
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
36
|
Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization. Nucleic Acids Res 2014; 42:10748-61. [PMID: 25143530 PMCID: PMC4176347 DOI: 10.1093/nar/gku613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.
Collapse
Affiliation(s)
- Artur Biela
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Martine Guerin
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Karola Gasteiger
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Winczura
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB/UMR E3 CEA-UJF, INAC, CEA, Grenoble, France
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| |
Collapse
|