1
|
Xu D, Yang L. Regeneration and defense: unveiling the molecular interplay in plants. THE NEW PHYTOLOGIST 2025. [PMID: 40289473 DOI: 10.1111/nph.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
In both plants and animals, tissue or organ regeneration typically follows wounding, which also activates defense responses against pathogenic microbes and herbivores. Both intrinsic and environmental cues guide the molecular decisions between regeneration and defense. In animal studies, extensive research has highlighted the role of various microbes - including pathogenic, commensal, and beneficial species - in influencing the signaling interplay between immunity and regeneration. Conversely, most plant regeneration studies are conducted under sterile conditions, which leaves a gap in our understanding of how plant innate immunity influences regeneration pathways. Recent findings have begun to elucidate the roles of key defense pathways in modulating plant regeneration and the crosstalk between these two processes. These studies also explore how microbes might influence the molecular choice between defense and regeneration in plants. This review examines the molecular mechanisms governing the balance between plant regeneration and innate immunity, with a focus on the emerging role of aging and microbial interactions in shaping these processes.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
- The Plant Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Zhang D, Wang Y, Gu Q, Liu L, Wang Z, Zhang J, Meng C, Yang J, Zhang Z, Ma Z, Wang X, Zhang Y. Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA. MOLECULAR PLANT PATHOLOGY 2025; 26:e70052. [PMID: 39841622 PMCID: PMC11753439 DOI: 10.1111/mpp.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes. Here, we discovered a species-diversified structural variation (SV) in the promoter of receptor-like protein 6 (RLP6) that caused distinctly higher expression level of RLP6 in G. barbadense with the SV than G. hirsutum without the SV. Functional experiments showed that RLP6 is an important regulator in mediating VW resistance. Overexpressing RLP6 significantly enhanced resistance and root growth, whereas the opposite phenotype appeared in RLP6-silenced cotton. A series of experiments indicated that RLP6 regulated reactive oxygen species (ROS) and salicylic acid (SA) signalling, which induced diversified defence-related gene expression with pathogenesis-related (PR) proteins and cell wall proteins enrichments for resistance improvement. These findings could be valuable for the transfer of the G. barbadense SV locus to improve G. hirsutum VW resistance in future crop disease resistance breeding.
Collapse
Affiliation(s)
- Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zixu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| |
Collapse
|
3
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Masudi WL, Titilawo Y, Keshinro TA, Cowan AK. Isolation of bacteria with plant growth-promoting properties from microalgae-bacterial flocs produced in high-rate oxidation ponds. ENVIRONMENTAL TECHNOLOGY 2024; 45:4003-4016. [PMID: 37469005 DOI: 10.1080/09593330.2023.2238928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Exploring plant growth-promoting (PGP) bacterial activity of microbial components aggregated by wastewater treatment can reduce dependence on fossil fuel-derived fertilisers. This study describes the isolation and identification of bacteria from microalgae-bacteria flocs (MaB-flocs) generated in high-rate algal oxidation ponds (HRAOP) of an integrated algal pond system (IAPS) remediating municipal wastewater. Amplified 16S rRNA gene sequence analysis determined the molecular identity of the individual strains. Genetic relatedness to known PGP rhizobacteria in the NCBI GenBank database was by metagenomics. Isolated strains were screened for the production of indoles (measured as indole-3-acetic acid; IAA) and an ability to mineralise NH 4 + , PO 4 3 - , and K + . Of the twelve bacterial strains isolated from HRAOP MaB-flocs, four produced indoles, nine mineralised NH 4 + , seven solubilised P, and one K. Potential of isolated strains for PGP activity according to one-way ANOVA on ranks was: ECCN 7b > ECCN 4b > ECCN 6b > ECCN 3b = ECCN 10b > ECCN 1b = ECCN 5b > ECCN 8b > ECCN 2b > ECCN 12b > ECCN 9b = ECCN 11b. Further study revealed that cell-free filtrate from indole-producing cultures of Aeromonas strain ECCN 4b, Enterobacter strain ECCN 7b, and Arthrobacter strain ECCN 6b promoted mung bean adventitious root formation suggestive of the presence of auxin-like biological activity.
Collapse
Affiliation(s)
- Wiya L Masudi
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Yinka Titilawo
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Taobat A Keshinro
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - A Keith Cowan
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| |
Collapse
|
5
|
Yan J, Song Y, Li M, Hu T, Hsu YF, Zheng M. IRR1 contributes to de novo root regeneration from Arabidopsis thaliana leaf explants. PHYSIOLOGIA PLANTARUM 2023; 175:e14047. [PMID: 37882290 DOI: 10.1111/ppl.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plants are capable of regenerating adventitious roots (ARs), which is important for plant response to stress and survival. Although great advances in understanding AR formation of leaf explants have been made, the regulatory mechanisms of AR formation still need to be investigated. In this study, irr1-1 (impaired root regeneration) was isolated with the inhibition of adventitious rooting from Arabidopsis leaf explants. The β-glucuronidase (GUS) signals of IRR1pro::GUS in detached leaves could be detected at 2-6 days after culture. IRR1 is annotated to encode a Class III peroxidase localized in the cell wall. The total peroxidase (POD) activity of irr1 mutants was significantly lower than that of the wild type. Detached leaves of irr1 mutants showed enhanced reactive oxygen species (ROS) accumulation 4 days after leaves were excised from seedlings. Moreover, thiourea, a ROS scavenger, was able to rescue the adventitious rooting rate in leaf explants of irr1 mutants. Addition of 0.1 μM indole-3-acetic acid (IAA) improved the adventitious rooting from leaf explants of irr1 mutants. Taken together, these results indicated that IRR1 was involved in AR formation of leaf explants, which was associated with ROS homeostasis to some extent.
Collapse
Affiliation(s)
- Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Meng Li
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Hu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wen Z, Chen Z, Liu X, Sun J, Zhang F, Zhang M, Dong C. 24-Epibrassinolide Facilitates Adventitious Root Formation by Coordinating Cell-Wall Polyamine Oxidase- and Plasma Membrane Respiratory Burst Oxidase Homologue-Derived Reactive Oxygen Species in Capsicum annuum L. Antioxidants (Basel) 2023; 12:1451. [PMID: 37507989 PMCID: PMC10376213 DOI: 10.3390/antiox12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.
Collapse
Affiliation(s)
- Zhengyang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingbo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunjuan Dong
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| |
Collapse
|
7
|
Niu L, Tang Y, Zhu B, Huang Z, Wang D, Chen Q, Yu J. Nitric oxide promotes adventitious root formation in cucumber under cadmium stress through improving antioxidant system, regulating glycolysis pathway and polyamine homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1126606. [PMID: 36968381 PMCID: PMC10033535 DOI: 10.3389/fpls.2023.1126606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) as a potentially toxic heavy metal that not only pollutes the environment but also interferes with plant growth. Nitric oxide (NO) regulates plant growth and development as well as abiotic stress response. However, the mechanism underpinning NO-induced adventitious root development under Cd stress remains unclear. In this study, cucumber (Cucumis sativus 'Xinchun No. 4') was used as the experimental material to investigate the effect of NO on the development of adventitious roots in cucumber under Cd stress. Our results revealed that, as compared to Cd stress, 10 μM SNP (a NO donor) could considerably increase the number and length of adventitious roots by 127.9% and 289.3%, respectively. Simultaneously, exogenous SNP significantly increased the level of endogenous NO in cucumber explants under Cd stress. Our results revealed that supplementation of Cd with SNP significantly increased endogenous NO content by 65.6% compared with Cd treatment at 48 h. Furthermore, our study indicated that SNP treatment could improve the antioxidant capacity of cucumber explants under Cd stress by up-regulating the gene expression level of antioxidant enzymes, as well as reducing the levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion ( O 2 · - ) to alleviate oxidative damage and membrane lipid peroxidation. Application of NO resulted in a decrease of the O 2 · - , MDA, and H2O2 level by 39.6%, 31.4% and 60.8% as compared to Cd-alone treatment, respectively. Besides that, SNP treatment significantly increased the expression level of related genes involved in glycolysis processes and polyamine homeostasis. However, application of NO scavenger 2-(4-carboxy -2-phenyl)-4, 4, 5, 5-tetramethy limidazoline -1-oxyl -3-oxide (cPTIO) and the inhibitor tungstate significantly reversed the positive role of NO in promoting the adventitious root formation under Cd stress. These results suggest that exogenous NO can increase the level of endogenous NO, improve antioxidation ability, promote glycolysis pathway and polyamine homeostasis to enhance the occurrence of adventitious roots in cucumber under Cd stress. In summary, NO can effectively alleviate the damage of Cd stress and significantly promote the development of adventitious root of cucumber under Cd stress.
Collapse
|
8
|
Tran S, Ison M, Ferreira Dias NC, Ortega MA, Chen YFS, Peper A, Hu L, Xu D, Mozaffari K, Severns PM, Yao Y, Tsai CJ, Teixeira PJPL, Yang L. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLoS Genet 2023; 19:e1010636. [PMID: 36857386 PMCID: PMC10010561 DOI: 10.1371/journal.pgen.1010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/13/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
Collapse
Affiliation(s)
- Sorrel Tran
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Madalene Ison
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Maria Andrea Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yun-Fan Stephanie Chen
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Alan Peper
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Lanxi Hu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Khadijeh Mozaffari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Paul M. Severns
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yao Yao
- Department of Animal and Diary Sciences, College of Agricultural & Environmental Sciences, University of Georgia, Georgia, United States of America
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Sao Paulo, Brazil
- * E-mail: (PJPLT); (LY)
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (PJPLT); (LY)
| |
Collapse
|
9
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
10
|
Zhang Y, Fu X, Feng Y, Zhang X, Bi H, Ai X. Abscisic Acid Mediates Salicylic Acid Induced Chilling Tolerance of Grafted Cucumber by Activating H 2O 2 Biosynthesis and Accumulation. Int J Mol Sci 2022; 23:ijms232416057. [PMID: 36555697 PMCID: PMC9783703 DOI: 10.3390/ijms232416057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Grafting is widely applied to enhance the tolerance of some vegetables to biotic and abiotic stress. Salicylic acid (SA) is known to be involved in grafting-induced chilling tolerance in cucumber. Here, we revealed that grafting with pumpkin (Cucurbita moschata, Cm) as a rootstock improved chilling tolerance and increased the accumulation of SA, abscisic acid (ABA) and hydrogen peroxide (H2O2) in grafted cucumber (Cucumis sativus/Cucurbita moschata, Cs/Cm) leaves. Exogenous SA improved the chilling tolerance and increased the accumulation of ABA and H2O2 and the mRNA abundances of CBF1, COR47, NCED, and RBOH1. However, 2-aminoindan-2-phosphonic acid (AIP) and L-a-aminooxy-b-phenylpropionic acid (AOPP) (biosynthesis inhibitors of SA) reduced grafting-induced chilling tolerance, as well as the synthesis of ABA and H2O2, in cucumber leaves. ABA significantly increased endogenous H2O2 production and the resistance to chilling stress, as proven by the lower electrolyte leakage (EL) and chilling injury index (CI). However, application of the ABA biosynthesis inhibitors sodium tungstate (Na2WO4) and fluridone (Flu) abolished grafting or SA-induced H2O2 accumulation and chilling tolerance. SA-induced plant response to chilling stress was also eliminated by N,N'-dimethylthiourea (DMTU, an H2O2 scavenger). In addition, ABA-induced chilling tolerance was attenuated by DMTU and diphenyleneiodonium (DPI, an H2O2 inhibitor) chloride, but AIP and AOPP had little effect on the ABA-induced mitigation of chilling stress. Na2WO4 and Flu diminished grafting- or SA-induced H2O2 biosynthesis, but DMTU and DPI did not affect ABA production induced by SA under chilling stress. These results suggest that SA participated in grafting-induced chilling tolerance by stimulating the biosynthesis of ABA and H2O2. H2O2, as a downstream signaler of ABA, mediates SA-induced chilling tolerance in grafted cucumber plants.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Tai’an Academy of Agricultural Sciences, Tai’an 271000, China
| | - Xin Fu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yiqing Feng
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaowei Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| |
Collapse
|
11
|
Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers. Mol Biol Rep 2022; 49:1955-1971. [PMID: 34993725 DOI: 10.1007/s11033-021-07010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
Collapse
|
12
|
Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. Salicylic Acid in Root Growth and Development. Int J Mol Sci 2022; 23:ijms23042228. [PMID: 35216343 PMCID: PMC8875895 DOI: 10.3390/ijms23042228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
Collapse
Affiliation(s)
- Zulfira Z. Bagautdinova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Aleksandr V. Tyapkin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vasilina V. Kovrizhnykh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Viktoriya V. Lavrekha
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
13
|
Koramutla MK, Tuan PA, Ayele BT. Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions. Int J Mol Sci 2022; 23:ijms23031243. [PMID: 35163167 PMCID: PMC8835647 DOI: 10.3390/ijms23031243] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots that originate from basal stem nodes, but inhibits their elongation, leading to the formation of a shallow root system. The treatment also enhanced axile root formation in non-waterlogged plants but with only slight reductions in their length and branch root formation. Exogenous SA enhanced the formation of root aerenchyma, a key anatomical adaptive response of plants to waterlogging. Consistent with these results, waterlogging enhanced SA content in the root via expression of specific isochorismate synthase (ICS; ICS1 and ICS2) and phenylalanine ammonia lyase (PAL; PAL4, PAL5 and PAL6) genes and in the stem nodes via expression of specific PAL (PAL5 and PAL6) genes. Although not to the same level observed in waterlogged plants, exogenous SA also induced aerenchyma formation in non-waterlogged plants. The findings of this study furthermore indicated that inhibition of ethylene synthesis in SA treated non-waterlogged and waterlogged plants does not have any effect on SA-induced emergence of axile and/or surface adventitious roots but represses SA-mediated induction of aerenchyma formation. These results highlight that the role of SA in promoting the development of axile and surface adventitious roots in waterlogged wheat plants is ethylene independent while the induction of aerenchyma formation by SA requires the presence of ethylene.
Collapse
|
14
|
Anjum NA, Gill SS, Corpas FJ, Ortega-Villasante C, Hernandez LE, Tuteja N, Sofo A, Hasanuzzaman M, Fujita M. Editorial: Recent Insights Into the Double Role of Hydrogen Peroxide in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:843274. [PMID: 35154236 PMCID: PMC8831544 DOI: 10.3389/fpls.2022.843274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 05/07/2023]
Affiliation(s)
- Naser A. Anjum
- Department of Botany, Aligarh Muslim University, Aligarh, India
- *Correspondence: Naser A. Anjum
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak, India
- Sarvajeet Singh Gill
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Experimental Station of Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Cristina Ortega-Villasante
- Fisiología Vegetal (Plant Physiology Laboratory), Dpto. Biología (Biology Department), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis E. Hernandez
- Laboratory of Plant Physiology, Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Madrid, Spain
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, and Cultural Heritage (DICEM), University of Basilicata, Potenza, Italy
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| |
Collapse
|
15
|
Subramaniam S, Zainudin NAIM, Aris A, Hasan ZAE. Role of Trichoderma in Plant Growth Promotion. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
17
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
18
|
Chen K, Guo B, Yu C, Chen P, Chen J, Gao G, Wang X, Zhu A. Comparative Transcriptome Analysis Provides New Insights into the Molecular Regulatory Mechanism of Adventitious Root Formation in Ramie ( Boehmeria nivea L.). PLANTS 2021; 10:plants10010160. [PMID: 33467608 PMCID: PMC7830346 DOI: 10.3390/plants10010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.
Collapse
|
19
|
Bannoud F, Bellini C. Adventitious Rooting in Populus Species: Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:668837. [PMID: 34093625 PMCID: PMC8174304 DOI: 10.3389/fpls.2021.668837] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 05/11/2023]
Abstract
Populus spp. are among the most economically important species worldwide. These trees are used not only for wood and fiber production, but also in the rehabilitation of degraded lands. Since they are clonally propagated, the ability of stem cuttings to form adventitious roots is a critical point for plant establishment and survival in the field, and consequently for the forest industry. Adventitious rooting in different Populus clones has been an agronomic trait targeted in breeding programs for many years, and many factors have been identified that affect this quantitative trait. A huge variation in the rooting capacity has been observed among the species in the Populus genus, and the responses to some of the factors affecting this trait have been shown to be genotype-dependent. This review analyses similarities and differences between results obtained from studies examining the role of internal and external factors affecting rooting of Populus species cuttings. Since rooting is the most important requirement for stand establishment in clonally propagated species, understanding the physiological and genetic mechanisms that promote this trait is essential for successful commercial deployment.
Collapse
Affiliation(s)
- Florencia Bannoud
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- *Correspondence: Florencia Bannoud,
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Catherine Bellini,
| |
Collapse
|
20
|
Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. PLANTA 2020; 252:75. [PMID: 33026530 DOI: 10.1007/s00425-020-03467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xin-Yan Liu
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu-Lu Xie
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Shen Y, Cong W, Zhang AH, Meng X. Complexity of active medicinal ingredients in radix scutellariae with sodium hydrosulfite exposure. PLoS One 2020; 15:e0238927. [PMID: 32956425 PMCID: PMC7505437 DOI: 10.1371/journal.pone.0238927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Both plants and animals are living things made up of similar cells as well as organelles, and their essence of life is the same. However, plants face more environmental stress than animals and generate excessive reactive oxygen species (ROS), a group of small molecules that can harm proteins, necessitating distinctive metabolic processes. Secondary metabolites in plants are a group of chemical components that can eliminate ROS and can also exhibit medicinal properties; therefore, herbal medicines are often closely linked to the ecological significance of secondary metabolites. Why plants contain so many, not few, active medicinal ingredients is unknown. The root of Scutellaria baicalensis, a popular herbal medicine, is rich in various flavonoids with diverse structural features. Sodium hydrosulfite (Na2S2O4) can produce O˙-2 radicals and induce physical conditions under environmental stress. Using UHPLC-ESI-Q-TOF-MS/MS analysis, a total of 25 different compounds were identified in the roots of S. baicalensis between the Na2S2O4 groups and suitable conditions. Based on the results of the t-test (P<0.05) performed for the groups and ions with values of VIP ≥ 2, the most significantly different chemical markers with Na2S2O4 treatment were shikimic acid, citric acid, baicalin, wogonoside, baicalein, wogonin, 3,5,7,2',6'-pentahydroxyflavanone, 5,2',6'-trihydroxy-7,8-dimethoxy flavone, chrysin, eriodictyol, 5,8-dihydroxy-6,7 -dimethoxy flavone, skullcapflavone Ⅱ, and 5,7-dihydroxy-6,8,2',3'-tetrame thoxyflavone, and most of them were free flavonoids with many phenolic hydroxyl or methoxyl groups and characteristically high antioxidant activities. S. baicalensis roots modified their ability to eliminate ROS and maintained the equilibrium of ROS through the multitudinous biosynthesis and conversion of flavonoids, which is similar to the equilibrium established by an intricate buffer solution and perfectly explains the diversity and complexity of medicinal plant ingredients.
Collapse
Affiliation(s)
- Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Cong
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
- GAP Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
- * E-mail:
| |
Collapse
|
22
|
Adhikari B, Adhikari M, Ghimire B, Adhikari BC, Park G, Choi EH. Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radic Biol Med 2020; 156:57-69. [PMID: 32561321 DOI: 10.1016/j.freeradbiomed.2020.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Seed germination and vegetative growth are two important plant growing stages that are vulnerable to physical and biological stress. Improvement in crop germination potential and seedling growth rate generally leads to high crop productivity. Cold plasma is a promising technology used to improve seed germination and growth. Structural changes on tomato seed surface exposed with cold air plasma jet for a different time period (1 min, 5 min, 10 min) was examined by SEM. For in-depth study, different physiological parameter such as seed germination and seedling growth, biochemical parameter such as reactive species status, antioxidants and phytohormone, and molecular analysis of various gene expression was also evaluated. Drought stress tolerance potential of cold plasma primed tomato seedling was also examined under 30% PEG stress. Cold plasma seed priming modulates tomato seed coat and improves the germination efficiency. It also induces growth, antioxidants, phytohormone, defense gene expression, and drought stress tolerance potential of tomato seedling. Cold plasma seeds priming augment the reactive species at a molecular level within seedlings, which changes the biochemistry and physiological parameters of plants by inducing different cellular signaling cascades.
Collapse
Affiliation(s)
- Bhawana Adhikari
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Manish Adhikari
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| | - Bhagirath Ghimire
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Bishwa Chandra Adhikari
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Gyungsoon Park
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
23
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
24
|
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genomics 2020; 21:339. [PMID: 32366323 PMCID: PMC7199342 DOI: 10.1186/s12864-020-6743-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
25
|
Kora D, Bhattacharjee S. The interaction of reactive oxygen species and antioxidants at the metabolic interface in salicylic acid-induced adventitious root formation in mung bean [Vigna radiata (L.) R. Wilczek]. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153152. [PMID: 32193034 DOI: 10.1016/j.jplph.2020.153152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Implications of the role of antioxidant buffering in reactive oxygen species (ROS)-antioxidant interactions and associated redox regulation during adventitious root formation (ARF) were assessed in redox-manipulated salicylic acid (SA)-treated hypocotyl explants of mung bean [Vigna radiata (L.) R. Wilczek]. Application of pro-oxidant H2O2 (500 μM) followed by SA (600 μM) was shown to stimulate ARF, whereas treatments combining 600 μM SA and 10 × 10-4 M DPI (diphenyleneiodonium, an inhibitor of NADPH-oxidase) and 600 μM and SA 10 × 10-4 M (dimethylthiourea, a free radical scavenger) were found to prevent ARF. The redox status of the experimental explants monitored under such treatment conditions (in terms of accumulation of pro-oxidants, in situ localization of O2- and H2O2, radical scavenging property and total thiol content) revealed significant changes in ROS-antioxidant interactions at the metabolic interface, causing alterations in the pattern of ARF. Further, the assessment of activities and transcript abundance of the enzymes of the H2O2 turnover pathway (mainly the ascorbate-glutathione system) supported the transcriptional regulation of genes such as vrrboh, vrAPX, vrGR, vrSOD, and vrCAT and the activities of the relevant enzymes necessary for the generation of endogenous redox cues during ARF. The present work provides an inventory in support of the importance of antioxidant buffering associated with redox regulation for the origin of the metabolic redox cue (redox signal) necessary for SA-induced ARF in mung bean.
Collapse
Affiliation(s)
- Durga Kora
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India.
| |
Collapse
|
26
|
Ye BB, Shang GD, Pan Y, Xu ZG, Zhou CM, Mao YB, Bao N, Sun L, Xu T, Wang JW. AP2/ERF Transcription Factors Integrate Age and Wound Signals for Root Regeneration. THE PLANT CELL 2020; 32:226-241. [PMID: 31649122 PMCID: PMC6961627 DOI: 10.1105/tpc.19.00378] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Age and wounding are two major determinants for regeneration. In plants, the root regeneration is triggered by wound-induced auxin biosynthesis. As plants age, the root regenerative capacity gradually decreases. How wounding leads to the auxin burst and how age and wound signals collaboratively regulate root regenerative capacity are poorly understood. Here, we show that the increased levels of three closely-related miR156-targeted Arabidopsis (Arabidopsis thaliana) SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL2, SPL10, and SPL11, suppress root regeneration with age by inhibiting wound-induced auxin biosynthesis. Mechanistically, we find that a subset of APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors including ABSCISIC ACID REPRESSOR1 and ERF109 is rapidly induced by wounding and serves as a proxy for wound signal to induce auxin biosynthesis. In older plants, SPL2/10/11 directly bind to the promoters of AP2/ERFs and attenuates their induction, thereby dampening auxin accumulation at the wound. Our results thus identify AP2/ERFs as a hub for integration of age and wound signal for root regeneration.
Collapse
Affiliation(s)
- Bin-Bin Ye
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
- University of Chinese Academy of Sciences, 200032 Shanghai, P. R. China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
- University of Chinese Academy of Sciences, 200032 Shanghai, P. R. China
| | - Yu Pan
- School of Life Sciences, Nantong University, Nantong, 226019 Jiangsu, P. R. China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
- University of Chinese Academy of Sciences, 200032 Shanghai, P. R. China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
| | - Ying-Bo Mao
- Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019 Jiangsu, P. R. China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, 226019 Jiangsu, P. R. China
| | - Tongda Xu
- Fujian Agriculture and Forestry University-University of California Riverside Joint Center, Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, P. R. China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, 200032 Shanghai, P. R. China
- ShanghaiTech University, Shanghai 200031, P. R. China
| |
Collapse
|
27
|
Cold Atmospheric Plasma-Activated Water Irrigation Induces Defense Hormone and Gene expression in Tomato seedlings. Sci Rep 2019; 9:16080. [PMID: 31695109 PMCID: PMC6834632 DOI: 10.1038/s41598-019-52646-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023] Open
Abstract
Plants are very vulnerable to pathogen attacks and environmental stress as they are exposed to harsh environments in natural conditions. However, they have evolved a self-defense system whereby reactive oxygen and nitrogen species (RONS) act as double-edged swords by imposing (at higher concentration) and mitigating (at lower concentration) environmental stress. Cold plasma is emerging as a feasible option to produce a variety of RONS in a controlled manner when amalgamate with water. Cold plasma activated/treated water (PAW) contains a variety of RONS at concentrations, which may help to activate the plant’s defense system components. In the present study, we examine the effect of cold atmospheric-air jet plasma exposure (15 min, 30 min, and 60 min) on the water’s RONS level, as well as the impact of PAW irrigation, (assigned as 15PAW, 30PAW, and 60PAW) on tomato seedlings growth and defense response. We found that PAW irrigation (priming) upregulate seedlings growth, endogenous RONS, defense hormone (salicylic acid and jasmonic acid), and expression of key pathogenesis related (PR) gene. 30 min PAW contains RONS at concentrations which can induce non-toxic signaling. The present study suggests that PAW irrigation can be beneficial for agriculture as it modulates plant growth as well as immune response components.
Collapse
|
28
|
Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M. Auxin regulates adventitious root formation in tomato cuttings. BMC PLANT BIOLOGY 2019; 19:435. [PMID: 31638898 PMCID: PMC6802334 DOI: 10.1186/s12870-019-2002-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/30/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.
Collapse
Affiliation(s)
- Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Zongming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Wendy Ann Peer
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA.
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA.
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| |
Collapse
|
29
|
Gonin M, Bergougnoux V, Nguyen TD, Gantet P, Champion A. What Makes Adventitious Roots? PLANTS (BASEL, SWITZERLAND) 2019; 8:E240. [PMID: 31336687 PMCID: PMC6681363 DOI: 10.3390/plants8070240] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Collapse
Affiliation(s)
- Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Thu D Nguyen
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| |
Collapse
|
30
|
Justamante MS, Acosta-Motos JR, Cano A, Villanova J, Birlanga V, Albacete A, Cano EÁ, Acosta M, Pérez-Pérez JM. Integration of Phenotype and Hormone Data during Adventitious Rooting in Carnation ( Dianthus caryophyllus L.) Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2019; 8:E226. [PMID: 31311180 PMCID: PMC6681402 DOI: 10.3390/plants8070226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 01/24/2023]
Abstract
The rooting of stem cuttings is a highly efficient procedure for the vegetative propagation of ornamental plants. In cultivated carnations, an increased auxin level in the stem cutting base produced by active auxin transport from the leaves triggers adventitious root (AR) formation from the cambium. To provide additional insight into the physiological and genetic basis of this complex trait, we studied AR formation in a collection of 159 F1 lines derived from a cross between two hybrid cultivars (2003 R 8 and 2101-02 MFR) showing contrasting rooting performances. In three different experiments, time-series for several stem and root architectural traits were quantified in detail in a subset of these double-cross hybrid lines displaying extreme rooting phenotypes and their parental genotypes. Our results indicate that the water content and area of the AR system directly contributed to the shoot water content and shoot growth. Moreover, morphometric data and rooting quality parameters were found to be associated with some stress-related metabolites such as 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor, and the conjugated auxin indol-3-acetic acid-aspartic acid (IAA-Asp).
Collapse
Affiliation(s)
| | - José Ramón Acosta-Motos
- Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, 30107 Guadalupe, Spain
- CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, 30100 Murcia, Spain
| | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Virginia Birlanga
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Alfonso Albacete
- CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | | | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
31
|
Pasternak T, Groot EP, Kazantsev FV, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova VV. Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. PLANT PHYSIOLOGY 2019; 180:1725-1739. [PMID: 31036755 PMCID: PMC6752920 DOI: 10.1104/pp.19.00130] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) is well known for its induction of pathogenesis-related proteins and systemic acquired resistance; SA also has specific effects on plant growth and development. Here we analyzed the effect of SA on Arabidopsis (Arabidopsis thaliana) root development. We show that exogenous SA treatment at low (below 50 µM) and high (greater than 50 µM) concentrations affect root meristem development in two different PR1-independent ways. Low-concentration SA promoted adventitious roots and altered architecture of the root apical meristem, whereas high-concentration SA inhibited all growth processes in the root. All exposures to exogenous SA led to changes in auxin synthesis and transport. A wide range of SA treatment concentrations activated auxin synthesis, but the effect of SA on auxin transport was dose dependent. Mathematical modeling of auxin synthesis and transport predicted auxin accumulation or depletion in the root tip following low- or high-concentration SA treatments, respectively. SA-induced auxin accumulation led to the formation of more layers of columella initials, an additional cortical cell layer (middle cortex), and extra files of epidermis, cortex, and endodermis cells. Suppression of SHORT ROOT and activation of CYCLIN D6;1 mediated the changes in radial architecture of the root. We propose that low-concentration SA plays an important role in shaping root meristem structure and root system architecture.
Collapse
Affiliation(s)
- Taras Pasternak
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Edwin P Groot
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'An 271018, China
| | - Fedor V Kazantsev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - William Teale
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vasilina Kovrizhnykh
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Klaus Palme
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
- Center for Biosystems Analysis, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Torun H. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. PHYSIOLOGIA PLANTARUM 2019; 165:169-182. [PMID: 29984429 DOI: 10.1111/ppl.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 05/21/2023]
Abstract
Greater crop losses can result from simultaneous exposure to a combination of drought, heat and salinity in the field. Salicylic acid (SA), a phenolic phytohormone, can affect a range of physiological and biochemical processes in plants and significantly impacts their resistance to these abiotic stresses. Despite numerous reports involving the positive effects of SA by applying each abiotic stress separately, the mechanism of SA-mediated adaptation to combined stresses remains elusive. This study, via a time-course analysis, investigated the role of SA on the roots of hulled and hulless (naked) barley (Hordeum vulgare L. 'Tarm' and 'Özen', respectively), which differed in salt tolerance, under the combined stress of drought, heat and salt. The combined stress caused marked reductions in root length and increases in proline content in both genotypes; however, Tarm exhibited better adaptation to the triple stress. Under the first 24 h of stress, superoxide dismutase (SOD; EC.1.15.1.1) and peroxidase (POX; EC.1.11.1.7) activity in the Tarm roots increased remarkably, while decreasing in the Özen roots. Furthermore, the Tarm roots showed higher catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) activity than the Özen during the combined stresses. The sensitivity of hulless barley roots may be related to decreasing SOD, POX, CAT and GR activity under stress. Over 72 h of stress, the SA pretreatment improved the APX and GR activity in Tarm and that of POX and CAT in Özen, demonstrating that exogenously applied SA regulates antioxidant defense enzymes in order to detoxify reactive oxygen species. The results of this study suggest that SA treatment may improve the triple-stress combination tolerance in hulled and hulless barley cultivars by increasing the level of antioxidant enzyme activity and promoting the accumulation of proline. Thus, SA alleviated the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture and Natural Science, Düzce University, 81620, Düzce, Turkey
| |
Collapse
|
33
|
Kim Y, Seo CW, Khan AL, Mun BG, Shahzad R, Ko JW, Yun BW, Park SK, Lee IJ. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC PLANT BIOLOGY 2018; 18:254. [PMID: 30348086 PMCID: PMC6198449 DOI: 10.1186/s12870-018-1457-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Waterlogging (WL) is a key factor hindering soybean crop productivity worldwide. Plants utilize various hormones to avoid various stress conditions, including WL stress; however, the physiological mechanisms are still not fully understood. RESULTS To identify physiological mechanisms during WL stress, different phytohormones, such as ethephon (ETP; donor source of ethylene), abscisic acid, gibberellins, indole-3-acetic acid, kinetin, jasmonic acid, and salicylic acid were exogenously applied to soybean plants. Through this experiment, we confirmed the beneficial effects of ETP treatment. Thus, we selected ETP as a candidate hormone to mitigate WL. Further mechanistic investigation of the role of ETP in waterlogging tolerance was carried out. Results showed that ETP application mitigated WL stress, significantly improved the photosynthesis pigment, and increased the contents of endogenous GAs compared to those in untreated plants. The amino acid contents during WL stress were significantly activated by EPT treatments. The amino acid contents were significantly higher in the 100 μM ETP-treated soybean plants than in the control. ETP application induced adventitious root initiation, increased root surface area, and significantly increased the expressions of glutathione transferases and relative glutathione activity compared to those of non-ETP-treated plants. ETP-treated soybeans produced a higher up-regulation of protein content and glutathione S-transferase (GSTs) than did soybeans under the WL only treatment. CONCLUSIONS In conclusion, the current results suggest that ETP application enabled various biochemical and transcriptional modulations. In particular, ETP application could stimulate the higher expression of GST3 and GST8. Thus, increased GST3 and GST8 induced 1) increased GSH activity, 2) decreased reactive oxygen species (ROS), 3) mitigation of cell damage in photosynthetic apparatus, and 4) improved phenotype consecutively.
Collapse
Affiliation(s)
- Yoonha Kim
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Chang-Woo Seo
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Abdul Latif Khan
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, 616 Nizwa, Oman
| | - Bong-Gyu Mun
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Raheem Shahzad
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Jeung-Woo Ko
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Byung-Wook Yun
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Soon-Ki Park
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| |
Collapse
|
34
|
Yan Y, Pan C, Du Y, Li D, Liu W. Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate-glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:577-589. [PMID: 30042614 PMCID: PMC6041230 DOI: 10.1007/s12298-018-0540-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 05/21/2023]
Abstract
The effect of 0.5-1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate-glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200-400 mM NaCl compared to the control. Superoxide anion (O2·-), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100-400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O2·- accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.
Collapse
Affiliation(s)
- Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030 China
| | - Chenhui Pan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030 China
| | - Yuling Du
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030 China
| | - Danyang Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030 China
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030 China
| |
Collapse
|
35
|
Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK. Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J Pineal Res 2018; 64. [PMID: 29149453 DOI: 10.1111/jpi.12452] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.
Collapse
Affiliation(s)
- Lauren A E Erland
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Mukund R Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Amritpal S Singh
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Praveen K Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Wang W, Wang X, Huang M, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1137. [PMID: 30123235 PMCID: PMC6085453 DOI: 10.3389/fpls.2018.01137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 05/02/2023]
Abstract
Salicylic acid (SA) can induce plant resistance to biotic and abiotic stresses through cross talk with other signaling molecules, whereas the interaction between hydrogen peroxide (H2O2) and abscisic acid (ABA) in response to SA signal is far from clear. Here, we focused on the roles and interactions of H2O2 and ABA in SA-induced freezing tolerance in wheat plants. Exogenous SA pretreatment significantly induced freezing tolerance of wheat via maintaining relatively higher dark-adapted maximum photosystem II quantum yield, electron transport rates, less cell membrane damage. Exogenous SA induced the accumulation of endogenous H2O2 and ABA. Endogenous H2O2 accumulation in the apoplast was triggered by both cell wall peroxidase and membrane-linked NADPH oxidase. The pharmacological study indicated that pretreatment with dimethylthiourea (H2O2 scavenger) completely abolished SA-induced freezing tolerance and ABA synthesis, while pretreatment with fluridone (ABA biosynthesis inhibitor) reduced H2O2 accumulation by inhibiting NADPH oxidase encoding genes expression and partially counteracted SA-induced freezing tolerance. These findings demonstrate that endogenous H2O2 and ABA signaling may form a positive feedback loop to mediate SA-induced freezing tolerance in wheat.
Collapse
Affiliation(s)
| | - Xiao Wang
- *Correspondence: Xiao Wang, ; Dong Jiang,
| | | | | | | | | | | | - Dong Jiang
- *Correspondence: Xiao Wang, ; Dong Jiang,
| |
Collapse
|
37
|
Wang W, Wang X, Huang M, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1137. [PMID: 30123235 DOI: 10.3389/fpls.2018.01137/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) can induce plant resistance to biotic and abiotic stresses through cross talk with other signaling molecules, whereas the interaction between hydrogen peroxide (H2O2) and abscisic acid (ABA) in response to SA signal is far from clear. Here, we focused on the roles and interactions of H2O2 and ABA in SA-induced freezing tolerance in wheat plants. Exogenous SA pretreatment significantly induced freezing tolerance of wheat via maintaining relatively higher dark-adapted maximum photosystem II quantum yield, electron transport rates, less cell membrane damage. Exogenous SA induced the accumulation of endogenous H2O2 and ABA. Endogenous H2O2 accumulation in the apoplast was triggered by both cell wall peroxidase and membrane-linked NADPH oxidase. The pharmacological study indicated that pretreatment with dimethylthiourea (H2O2 scavenger) completely abolished SA-induced freezing tolerance and ABA synthesis, while pretreatment with fluridone (ABA biosynthesis inhibitor) reduced H2O2 accumulation by inhibiting NADPH oxidase encoding genes expression and partially counteracted SA-induced freezing tolerance. These findings demonstrate that endogenous H2O2 and ABA signaling may form a positive feedback loop to mediate SA-induced freezing tolerance in wheat.
Collapse
Affiliation(s)
- Weiling Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Yastreb TO, Kolupaev YE, Lugovaya AA, Dmitriev AP. Hydrogen peroxide-induced salt tolerance in the Arabidopsis salicylate-deficient transformants NahG. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s000368381706014x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Jia XL, Chen YK, Xu XZ, Shen F, Zheng QB, Du Z, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Sci Rep 2017; 7:14223. [PMID: 29079841 PMCID: PMC5660156 DOI: 10.1038/s41598-017-14671-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
In higher plants, miR156 regulates the vegetative phase change via the target SBP/SPL genes. The regulation of miR156 during ontogenetic processes is not fully understood. In the apple genome, of 31 putative MdMIR156 genes that encode pre-miR156, seven were dominantly expressed. However, the transcript levels of only MdMIR156a5 and MdMIR156a12 decreased significantly during the vegetative phase change, which was consistent with the mature miR156 level, indicating that miR156 is under transcriptional regulation. Leaf H2O2 content was higher in the adult phase than in the juvenile phase because of excess H2O2 accumulation in chloroplasts. When in vitro shoots were treated with menadione, diphenyleneiodonium, L-2-oxothiazolidine-4-carboxylic acid or buthionine sulphoximine, the expressions of MdMIR156a5, MdMIR156a12, and as well miR156 were coordinated with reduced glutathione (GSH) contents and glutathione/glutathione disulfide ratio but not H2O2 contents. Alteration of miR156 expression level by MdMIR156a6-overexpressing or miR156-mimetic transgenic Nicotiana benthamiana did not cause a corresponding change in reactive oxygen species or GSH status. Collectively, the results indicate that the vegetative phase change in apple is controlled by the MdMIR156a5 and MdMIR156a12 transcriptional regulatory network in response to the plastid–nucleus redox signals, such as GSH.
Collapse
Affiliation(s)
- Xiao Lin Jia
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ya Kun Chen
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao Zhao Xu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fei Shen
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qing Bo Zheng
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhen Du
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xue Feng Xu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhen Hai Han
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xin Zhong Zhang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
40
|
Shin H, Min K, Arora R. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 2017; 81:192-200. [PMID: 29061524 DOI: 10.1016/j.cryobiol.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023]
Abstract
Salicylic acid (SA)-treatment has been reported to improve plant tolerance to various abiotic stresses. However, its effect on freezing tolerance has not been well investigated. We investigated the effect of exogenous SA on freezing tolerance of spinach (Spinacia oleracea L.) leaves. We also explored if nitric oxide (NO) and/or hydrogen peroxide (H2O2)-mediation was involved in this response, since these are known as primary signaling molecules involved in many physiological processes. A micro-centrifuge tube-based system used to apply SA to petiolate spinach leaves (0.5 mM over 4-d) was effective, as evident by SA content of leaf tissues. SA-treatment did not hamper leaf growth (fresh and dry weight; equatorial and longitudinal length) and was also not significantly different from 25% Hoagland controls vis-à-vis growth. SA application significantly improved freezing tolerance as evidenced by reduced ion-leakage and alleviated oxidative stress (lower accumulation of O2·- and H2O2) following freeze-thaw stress treatments (-6.5, -7.5, and -8.5 °C). Improved freezing tolerance of SA-treated leaves was paralleled by increased proline and ascorbic acid (AsA) accumulation. A 9-d cold acclimation (CA) treatment also improved leaf freezing tolerance (compared to non-acclimated control) and was accompanied by accumulation of SA and proline. Our results indicate that increased freezing tolerance may be associated with accumulation of compatible solutes (proline) and antioxidants (AsA). Notably, the beneficial effect of SA on freezing tolerance was abolished when either H2O2- or NO-scavenger (1 μM N-acetylneuraminic acid, NANA or 100 μM hemoglobin, HB, respectively) was added to SA as pretreatment. Our data suggest that SA-induced freezing tolerance in spinach may be mediated by NO and H2O2 signaling.
Collapse
Affiliation(s)
- Hyunsuk Shin
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Kyungwon Min
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
41
|
Niu L, Yu J, Liao W, Yu J, Zhang M, Dawuda MM. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1684. [PMID: 29021804 PMCID: PMC5623940 DOI: 10.3389/fpls.2017.01684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/13/2017] [Indexed: 05/07/2023]
Abstract
Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca2+) on the process of adventitious rooting in cucumber (Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca2+. The application of Ca2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca2+/CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na2WO4) and sodium azide (NaN3). This gives an indication that Ca2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca2+/CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic stress through improving the photosynthetic performance of leaves and activating antioxidative system in plants.
Collapse
Affiliation(s)
- Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Mohammed M. Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Department of Horticulture, Faculty of Agriculture, University for Development Studies, Tamale, Ghana
| |
Collapse
|
42
|
Li SW, Leng Y, Shi RF. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 2017; 18:188. [PMID: 28212614 PMCID: PMC5316208 DOI: 10.1186/s12864-017-3576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H2O2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H2O2-induced adventitious rooting. RESULTS RNA-Seq data revealed that H2O2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H2O2 treatment and that H2O2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H2O2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H2O2 treatments, the expression levels of ARFs, IAAs, AUXs, NACs, RD22, AHKs, MYBs, PIN1, AUX15A, LBD29, LBD41, ADH1b, and QORL were significantly up-regulated at the 6- and/or 24-h time points. In contrast, PER1 and PER2 were significantly down-regulated by H2O2 treatment. These qRT-PCR results strongly correlated with the RNA-Seq data. CONCLUSIONS Using RNA-Seq and qRT-PCR techniques, we analysed the global changes in gene expression and functional profiling during H2O2-induced adventitious rooting in mung bean seedlings. These results strengthen the current understanding of H2O2-induced adventitious rooting and the molecular traits of H2O2 priming in plants.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Rui-Fang Shi
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
43
|
Kim HW, Amirsadeghi S, McKenzie-Gopsill A, Afifi M, Bozzo G, Lee EA, Lukens L, Swanton CJ. Changes in light quality alter physiological responses of soybean to thiamethoxam. PLANTA 2016; 244:639-50. [PMID: 27114265 DOI: 10.1007/s00425-016-2531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The interaction between neighboring weed-induced far-red enriched light and thiamethoxam can significantly alter soybean seedling morphology, nodulation, isoflavone levels, UV-absorbing phenolics, and carbon and nitrogen content. Neonicotinoid insecticides that are widely used on major crop plants can enhance plant growth and yield. Although the underlying mechanism of this enhanced growth and yield is not clear, recent studies suggest that neonicotinoids such as thiamethoxam (TMX) may exert their effects at least in part via signals that involve salicylic acid (SA) and jasmonic acid (JA). In the current research, effects of TMX on morphological and physiological responses of soybean have been compared under far-red-depleted (FR-D) and far-red-enriched (FR-E) light reflected by neighboring weeds. TMX significantly enhanced shoot and root growth but did not prevent stem elongation under FR-E light. Also, TMX did not prevent reductions in shoot carbon content and shoot carbon to nitrogen ratio under FR-E light. Despite similarities between these TMX effects in soybean and those known for SA and JA in other plant species, TMX significantly enhanced root-nodule numbers per plant and levels of root isoflavones malonyl-daidzin and malonyl-genistin under FR-E light only. These results suggest that the combined effect of FR-E light and TMX triggers a mechanism that operates concomitantly to enhance root isoflavones and nodulation in soybean.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Andrew McKenzie-Gopsill
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Maha Afifi
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Gale Bozzo
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Elizabeth A Lee
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Clarence J Swanton
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
44
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 PMCID: PMC4848386 DOI: 10.3389/fpls.2016.00570] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/18/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
45
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/ffpls.2016.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
46
|
Qi S, Wu-Lin C, Hua J, Ai-Hua Z, Xiang-Cai M. H2O2 Improves Quality of Radix scutellariae Through Anti-oxidant Effect. Pharmacogn Mag 2016; 12:84-90. [PMID: 27019566 PMCID: PMC4787343 DOI: 10.4103/0973-1296.176063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction: The correlation between the quality and geographical origin of herbal medicine was traced back to Tang Dynasty in China, more than 1200 years, and the effects of ecological environments on the secondary metabolites such as flavonoids have been confirmed. However, little is known about how the adversity impacts on the quality. Reactive oxygen species (ROS) may be medium between the ecological environment and the secondary metabolism. Materials and Methods: The fresh roots of Scutellaria baicalensis Georgi were treated with 0.002 μmol/L, 0.2 μmol/L, and 20 μmol/L H2O2, respectively. A stress model was established to elucidate the change of secondary metabolism, anti-oxidant enzyme system, and enzymes relating to flavonoids. Results: The activities of superoxide dismutase, catalase and peroxidase decreased. Too much H2O2, firstly, boosted transformation of flavonoids glycoside into aglucon with the most remarkable activities through UDP-glucuronate baicalein 7-O-glucuronosyltransferase (UBGAT), and β-glucuronidase (GUS), then regulated the gene expression of phenylalanine ammonialyase, GUS, and UBGAT, and increased the contents of flavones, motivated the flavonoid glycoside converting into aglucon. With this action, the flavones displaced the anti-oxidant enzymes. The higher the dosage, the more baicalein and wogonin increased, the later they took action. Conclusion: The plant secondary metabolites to keep ROS constant are identical to the effective materials in clinic. They are closely linked. H2O2 can improve flavones, especially the aglucon, and further increased the quality of herbal medicine, which possesses very important value in medical practice. SUMMARY H2O2 decreasing the activities of CAT and POD lead to accumulation of more H2O2. Excess of H2O2 up-regulated PAL, BUG, promote biosynthesis of flavones, and enhance the nonenzyme system. “↑” and “↓” represent activity or content “up” and “down” respectively.
Collapse
Affiliation(s)
- Song Qi
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Cao Wu-Lin
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiang Hua
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhang Ai-Hua
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Meng Xiang-Cai
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
47
|
Li SW, Shi RF, Leng Y, Zhou Y. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 2016; 17:43. [PMID: 26755210 PMCID: PMC4709940 DOI: 10.1186/s12864-016-2372-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. RESULTS The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. CONCLUSIONS The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P. R. China.
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yuan Zhou
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| |
Collapse
|
48
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/fpls.2016.00570/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
49
|
Li SW, Shi RF, Leng Y. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq. PLoS One 2015; 10:e0132969. [PMID: 26177103 PMCID: PMC4503682 DOI: 10.1371/journal.pone.0132969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Yan Leng
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| |
Collapse
|
50
|
Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:714. [PMID: 26442028 PMCID: PMC4585003 DOI: 10.3389/fpls.2015.00714] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/26/2015] [Indexed: 05/20/2023]
Abstract
Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL.
Collapse
Affiliation(s)
- Yoon-Ha Kim
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Sun-Joo Hwang
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Waqas
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Department of Agriculture, Government of Khyber PakhtunkhwaPakistan
| | - Abdul L. Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Joon-Hee Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Jeong-Dong Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- *Correspondence: In-Jung Lee, Crop Physiology Laboratory, Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|