1
|
García-Crespo C, Vázquez-Sirvent L, Somovilla P, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Durán-Pastor A, Domingo E, Perales C. Efficacy decrease of antiviral agents when administered to ongoing hepatitis C virus infections in cell culture. Front Microbiol 2022; 13:960676. [PMID: 35992670 PMCID: PMC9382109 DOI: 10.3389/fmicb.2022.960676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
We report a quantification of the decrease of effectiveness of antiviral agents directed to hepatitis C virus, when the agents are added during an ongoing infection in cell culture vs. when they are added at the beginning of the infection. Major determinants of the decrease of inhibitory activity are the time post-infection of inhibitor administration and viral replicative fitness. The efficacy decrease has been documented with antiviral assays involving the combination of the direct-acting antiviral agents, daclatasvir and sofosbuvir, and with the combination of the lethal mutagens, favipiravir and ribavirin. The results suggest that strict antiviral effectiveness assays in preclinical trials may involve the use of high fitness viral populations and the delayed administration of the agents, relative to infection onset.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Abstract
Complement C4, a key molecule in the complement system that is one of chief constituents of innate immunity for immediate recognition and elimination of invading microbes, plays an essential role for the functions of both classical (CP) and lectin (LP) complement pathways. Complement C4 is the most polymorphic protein in complement system. A plethora of research data demonstrated that individuals with C4 deficiency are prone to microbial infections and autoimmune disorders. In this review, we will discuss the diversity of complement C4 proteins and its genetic structures. In addition, the current development of the regulation of complement C4 activation and its activation derivatives will be reviewed. Moreover, the review will provide the updates on the molecule interactions of complement C4 under the circumstances of bacterial and viral infections, as well as autoimmune diseases. Lastly, more evidence will be presented to support the paradigm that links microbial infections and autoimmune disorders under the condition of the deficiency of complement C4. We provide such an updated overview that would shed light on current research of complement C4. The newly identified targets of molecular interaction will not only lead to novel hypotheses on the study of complement C4 but also assist to propose new strategies for targeting microbial infections, as well as autoimmune disorders.
Collapse
Affiliation(s)
- Hongbin Wang
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Mengyao Liu
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
3
|
Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses 2021; 13:v13040616. [PMID: 33916702 PMCID: PMC8067247 DOI: 10.3390/v13040616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium—revealed by the changing composition of the mutant spectrum—may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.
Collapse
|
4
|
Jeong H, Kim DH, Choi YM, Choi H, Kim D, Kim BJ. rt269I Type of Hepatitis B Virus (HBV) Polymerase versus rt269L Is More Prone to Mutations within HBV Genome in Chronic Patients Infected with Genotype C2: Evidence from Analysis of Full HBV Genotype C2 Genome. Microorganisms 2021; 9:601. [PMID: 33803998 PMCID: PMC7999911 DOI: 10.3390/microorganisms9030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
Recently, it has been reported that the rt269I type of hepatitis B virus (HBV) polymerase (Pol) versus the rt269L type is more significantly related to lower viral replication and HBeAg negative infections in chronic hepatitis B (CHB) patients of genotype C2. In this study, we compared mutation rates within HBV genomes between rt269L and rt269I using a total of 234 HBV genotype C2 full genome sequences randomly selected from the HBV database (115 of rt269L and 119 of rt269I type). When we applied the Benjamini and Hochberg procedure for multiple comparisons, two parameters, dN and d, at the amino acids level in the Pol region were significantly higher in the rt269I type than in the rt269L type. Although it could not reach statistical significance from the Benjamini and Hochberg procedure, nonsynonymous (NS) mutations in the major hydrophilic region (MHR) or "a" determinant in the surface antigens (HBsAg ORF) related to host immune escape or vaccine escape are more frequently generated in rt269I strains than in rt269L. We also found that there are a total of 19 signature single nucleotide polymorphisms (SNPs), of which 2 and 17 nonsynonymous mutation types were specific to rt269L and rt269I, respectively: Of these, most are HBeAg negative infections (preC-W28*, X-V5M and V131I), lowered HBV DNA or virion production (C-I97F/L, rtM204I/V) or preexisting nucleot(s)ide analog resistance (NAr) (rtN139K/H, rtM204I/V and rtI224V) or disease severity (preC-W28*, C-I97F/L, C-Q182K/*, preS2-F141L, S-L213I/S, V/L5M, T36P/S/A, V131I, rtN139K/H, rtM204I/V and rtI224V). In conclusion, our data showed that rt269I types versus rt269L types are more prone to overall genome mutations, particularly in the Pol region and in the MHR or "a" determinant in genotype C2 infections and are more prevalent in signature NS mutations related to lowered HBV DNA replication, HBsAg and HBeAg secretion and potential NAr variants and hepatocellular carcinoma (HCC), possibly via type I interferon (IFN-I)-mediated enhanced inflammation. Our data suggest that rt269L types could contribute to liver disease progression via the generation of immune escape or enhanced persistent infection in chronic patients of genotype C2.
Collapse
Affiliation(s)
- Hyein Jeong
- Department of Biomedical Sciences, Microbiology and Immunology, and Liver Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.J.); (D.H.K.); (Y.-M.C.)
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Microbiology and Immunology, and Liver Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.J.); (D.H.K.); (Y.-M.C.)
| | - Yu-Min Choi
- Department of Biomedical Sciences, Microbiology and Immunology, and Liver Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.J.); (D.H.K.); (Y.-M.C.)
| | - HyeLim Choi
- Department of Biomedical Sciences, and Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.C.); (D.K.)
| | - Donghyun Kim
- Department of Biomedical Sciences, and Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.C.); (D.K.)
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology, and Liver Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.J.); (D.H.K.); (Y.-M.C.)
| |
Collapse
|
5
|
Soria ME, García-Crespo C, Martínez-González B, Vázquez-Sirvent L, Lobo-Vega R, de Ávila AI, Gallego I, Chen Q, García-Cehic D, Llorens-Revull M, Briones C, Gómez J, Ferrer-Orta C, Verdaguer N, Gregori J, Rodríguez-Frías F, Buti M, Esteban JI, Domingo E, Quer J, Perales C. Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. J Clin Microbiol 2020; 58:e01985-20. [PMID: 32999010 PMCID: PMC7685896 DOI: 10.1128/jcm.01985-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.
Collapse
Affiliation(s)
- María Eugenia Soria
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Qian Chen
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Damir García-Cehic
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorens-Revull
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Astrobiología (CAB, CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L., Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Biochemistry and Microbiology Departments, VHIR-HUVH, Barcelona, Spain
| | - María Buti
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Rodrigo C, Leung P, Lloyd AR, Bull RA, Luciani F, Grebely J, Dore GJ, Applegate T, Page K, Bruneau J, Cox AL, Osburn W, Kim AY, Shoukry NH, Lauer GM, Maher L, Schinkel J, Prins M, Hellard M, Eltahla AA. Genomic variability of within-host hepatitis C variants in acute infection. J Viral Hepat 2019; 26:476-484. [PMID: 30578702 PMCID: PMC6417964 DOI: 10.1111/jvh.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Interactions between the host immune system and the viral variants determine persistence of hepatitis C virus (HCV) infection after the acute phase of infection. This study describes the genetic variability of within-host HCV viral variants in acute infection and correlates it with host- and virus-related traits and infection outcome. Next generation sequence data (Illumina, MiSeq platform) of viral genomes from 116 incident acute infections (within 180 days of infection) were analysed to determine all the single nucleotide polymorphism (SNP) frequencies above a threshold of 0.1%. The variability of the SNPs for the full open reading frame of the genome as well as for each protein coding region were compared using mean standardized Shannon entropy (SE) values calculated separately for synonymous and nonsynonymous mutations. The envelope glycoproteins regions (E1 and E2) had the highest SE values (indicating greater variability) followed by the NS5B region. Nonsynonymous mutations rather than synonymous mutations were the main contributors to genomic variability in acute infection. The mean difference of Shannon entropy was also compared between subjects after categorizing the samples according to host and virus-related traits. Host IFNL3 allele CC polymorphism at rs12979860 (vs others) and viral genotype 1a (vs 3a) were associated with higher genomic variability across the viral open reading frame. Time since infection, host gender or continent of origin was not associated with the viral genomic variability. Viral genomic variability did not predict spontaneous clearance.
Collapse
Affiliation(s)
| | | | | | - Rowena A. Bull
- School of Medical Sciences, UNSW, NSW, Australia
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences, UNSW, NSW, Australia
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | | | | | | | - Kimberly Page
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie Bruneau
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Andrea L. Cox
- Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | - Lisa Maher
- The Kirby Institute, UNSW Sydney, NSW, Australia
| | - Janke Schinkel
- Academic Medical Center, Amsterdam, The Netherlands
- GGD Public Health Service of Amsterdam
| | - Maria Prins
- Academic Medical Center, Amsterdam, The Netherlands
- GGD Public Health Service of Amsterdam
| | - Margaret Hellard
- Burnet Institute, Melbourne, VIC, Australia
- Monash University, Australia
- Alfred Hospital, Melbourne, Australia
- Doherty Institute and Melbourne School of Population and Global Health, University of Melbourne
| | - Auda A. Eltahla
- School of Medical Sciences, UNSW, NSW, Australia
- University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Kim JE, Lee SY, Kim H, Kim KJ, Choe WH, Kim BJ. Naturally occurring mutations in the reverse transcriptase region of hepatitis B virus polymerase from treatment-naïve Korean patients infected with genotype C2. World J Gastroenterol 2017; 23:4222-4232. [PMID: 28694662 PMCID: PMC5483496 DOI: 10.3748/wjg.v23.i23.4222] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/28/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To report naturally occurring mutations in the reverse transcriptase region (RT) of hepatitis B virus (HBV) polymerase from treatment naïve Korean chronic patients infected with genotype C2. METHODS Here, full-length HBV reverse transcriptase RT sequences were amplified and sequenced from 131 treatment naïve Korean patients chronically infected with hepatitis B genotype C2. The patients had two distinct clinical statuses: 59 patients with chronic hepatitis (CH) and 72 patients with hepatocellular carcinoma (HCC). The deduced amino acids (AAs) at 42 previously reported potential nucleos(t)ide analog resistance (NAr) mutation positions in the RT region were analyzed. RESULTS Potential NAr mutations involving 24 positions were found in 79 of the 131 patients (60.3%). Notably, AA substitutions at 2 positions (rt184 and rt204) involved in primary drug resistance and at 2 positions (rt80 and rt180) that functioned as secondary/compensatory mutations were detected in 10 patients (1 CH patient and 9 HCC patients) and 7 patients (1 CH and 6 HCC patients), respectively. The overall mutation frequencies in the HCC patients (3.17%, 96/3024 mutations) were significantly higher than the frequencies in the CH patients (2.09%, 52/2478 mutations) (P = 0.003). In addition, a total of 3 NAr positions, rt80, rt139 and rt204 were found to be significantly related to HCC from treatment naïve Korean patients. CONCLUSION Our data showed that naturally occurring NAr mutations in South Korea might contribute to liver disease progression (particularly HCC generation) in chronic patients with genotype C2 infections.
Collapse
|
8
|
Lee SY, Lee SH, Kim JE, Kim H, Kim K, Kook YH, Kim BJ. Identification of Novel A2/C2 Inter-Genotype Recombinants of Hepatitis B Virus from a Korean Chronic Patient Co-Infected with Both Genotype A2 and C2. Int J Mol Sci 2017; 18:737. [PMID: 28358313 PMCID: PMC5412322 DOI: 10.3390/ijms18040737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Nearly all cases of Hepatitis B virus (HBV) infections in South Korea have the C2 genotype. Here, we have identified a chronically infected patient who was co-infected with HBV of both the A2 and C2 genotypes by screening 135 Korean chronically infected patients using direct sequencing protocols targeting the 1032-bp polymerase reverse transcriptase (RT) region. Further polymerase chain reaction (PCR)-cloning analysis (22 clones) of the RT showed that this patient had genotype C2 (12 clones), genotype A2 (six clones) and A2/C2 inter-genotype HBV recombinants (four clones). BootScan analysis showed that three of the four recombinants have different types of recombination breakpoints in both the RT and overlapping hepatitis B surface antigen (HBsAg) region. Given the significance of HBsAg as a diagnostic or vaccination target against HBV infection, clinical implications of these identified recombinants should be studied in the future. To our knowledge, this is the first report on A2/C2 inter-genotype HBV recombinants.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Seung-Hee Lee
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Hong Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Kijeong Kim
- Department of Microbiology, School of Medicine, Chung-Ang University, Seoul 156-756, Korea.
| | - Yoon-Hoh Kook
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea.
| |
Collapse
|
9
|
Kim H, Hong SH, Lee SA, Gong JR, Kim BJ. Development of Fok-I based nested polymerase chain reaction-restriction fragment length polymorphism analysis for detection of hepatitis B virus X region V5M mutation. World J Gastroenterol 2015; 21:13360-13367. [PMID: 26715821 PMCID: PMC4679770 DOI: 10.3748/wjg.v21.i47.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a Fok-I nested polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) method for the detection of hepatitis B virus X region (HBx) V5M mutation. METHODS Nested PCR was applied into DNAs from 198 chronic patients at 2 different stages [121 patients with hepatocellular carcinoma (HCC) and 77 carrier patients]. To identify V5M mutants, digestion of nested PCR amplicons by the restriction enzyme Fok-I (GGA TGN9↓) was done. For size comparison, the enzyme-treated products were analyzed by electrophoresis on 2.5% agarose gels, stained with ethidium bromide, and visualized on a UV transilluminator. RESULTS The assay enabled the identification of 69 patients (sensitivity of 34.8%; 46 HCC patients and 23 carrier patients). Our data also showed that V5M prevalence in HCC patients was significantly higher than in carrier patients (47.8%, 22/46 patients vs 0%, 0/23 patients, P < 0.001), suggesting that HBxAg V5M mutation may play a pivotal role in HCC generation in chronic patients with genotype C infections. CONCLUSION The Fok-I nested PRA developed in this study is a reliable and cost-effective method to detect HBxAg V5M mutation in chronic patients with genotype C2 infection.
Collapse
|
10
|
Kim H, Gong JR, Lee SA, Kim BJ. Discovery of a Novel Mutation (X8Del) Resulting in an 8-bp Deletion in the Hepatitis B Virus X Gene Associated with Occult Infection in Korean Vaccinated Individuals. PLoS One 2015; 10:e0139551. [PMID: 26437447 PMCID: PMC4593592 DOI: 10.1371/journal.pone.0139551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Universal infantile hepatitis B virus (HBV) vaccination may lead to an increase in vaccine escape variants, which may pose a threat to the long-term success of massive vaccination. To determine the prevalence of occult infections in Korean vaccinated individuals, 87 vaccinated subjects were screened for the presence of HBV DNA using both the nested PCR protocol and the VERSANT HBV DNA 3.0 assay. The mutation patterns of variants were analyzed in full-length HBV genome sequences. Their HBsAg secretion and replication capacities were investigated using both in vitro transient transfection and in vivo hydrodynamic injection. The presence of HBV DNA was confirmed in 6 subjects (6.9%). All six variants had a common mutation type (X8Del) composed of an 8-bp deletion in the C-terminal region of the HBV X gene (HBxAg). Our in vitro and in vivo analyses using the full-length HBV genome indicated that the X8Del HBxAg variant reduced the secretion of HBsAg and HBV virions compared to the wild type. In conclusion, our data suggest that a novel mutation (X8Del) may contribute to occult HBV infection in Korean vaccinated individuals via a reduced secretion of HBsAg and virions, possibly by compromising HBxAg's transacting capacity.
Collapse
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Ryeol Gong
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Lee H, Kim H, Lee SA, Won YS, Kim HI, Inn KS, Kim BJ. Upregulation of endoplasmic reticulum stress and reactive oxygen species by naturally occurring mutations in hepatitis B virus core antigen. J Gen Virol 2015; 96:1850-1854. [PMID: 25828947 DOI: 10.1099/vir.0.000134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is associated with a broad spectrum of clinical manifestations, including cirrhosis and hepatocellular carcinoma (HCC). Endoplasmic reticulum (ER) stress and subsequent oxidative stress have been implicated in liver carcinogenesis and disease progression with chronic inflammation. In our previous study, several mutations in the precore/core region of HBV genotype C were identified from 70 Korean chronic patients, and the mutations were associated with HCC and/or HBV e antigen serostatus. Here, we found that the naturally occurring mutations P5T/H/L of the HBV core antigen induced ER stress. The upregulation of ER stress resulted in higher reactive oxygen species production, intracellular calcium concentration, inflammatory cytokines as well as surface antigen production and apoptosis of cells. This study suggested that these mutations may contribute to the progression of liver disease in chronic patients.
Collapse
Affiliation(s)
- HyunJoo Lee
- 1Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute, and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hong Kim
- 1Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute, and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Seoung-Ae Lee
- 1Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute, and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - You-Sub Won
- 1Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute, and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hye-In Kim
- 2Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Kyung-Soo Inn
- 2Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bum-Joon Kim
- 1Department of Biomedical Sciences, Microbiology and Immunology, Liver Research Institute, and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Kim H, Lee SA, Won YS, Lee H, Kim BJ. Occult infection related hepatitis B surface antigen variants showing lowered secretion capacity. World J Gastroenterol 2015; 21:1794-1803. [PMID: 25684944 PMCID: PMC4323455 DOI: 10.3748/wjg.v21.i6.1794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the molecular mechanisms underlying hepatitis B virus (HBV) occult infection of genotype C. METHODS A total of 10 types of hepatitis B surface antigen (HBsAg) variants from a Korean occult cohort were used. After a complete HBV genome plasmid mutated such that it does not express HBsAg and plasmid encoding, each HBsAg variant was transiently co-transfected into HuH-7 cells. The secretion capacity and intracellular expression of the HBV virions and HBsAgs in their respective variants were analyzed using real-time quantitative polymerase chain reaction assays and commercial HBsAg enzyme-linked immunosorbent assays, respectively. RESULTS All variants exhibited lower levels of HBsAg secretion into the medium compared with the wild type. In particular, in eight of the ten variants, very low levels of HBsAg secretion that were similar to the negative control were detected. In contrast, most variants (9/10) exhibited normal virion secretion capacities comparable with, or even higher than, the wild type. This provided new insight into the intrinsic nature of occult HBV infection, which leads to HBsAg sero-negativeness but has horizontal infectivity. Furthermore, most variants generated higher reactive oxidative species production than the wild type. This finding provides potential links between occult HBV infection and liver disease progression. CONCLUSION The presently obtained data indicate that deficiency in the secretion capacity of HBsAg variants may have a pivotal function in the occult infections of HBV genotype C.
Collapse
|
13
|
Kim H, Kim BJ. Naturally Occurring Mutations of Hepatitis B virus and Hepatitis C Virus in Korean Chronic Patients by Distinct CD4 T Cell Responses. JOURNAL OF BACTERIOLOGY AND VIROLOGY 2014; 44:37. [DOI: 10.4167/jbv.2014.44.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|