1
|
Ciurleo GCV, de Azevedo OGR, Carvalho CGM, Vitek MP, Warren CA, Guerrant RL, Oriá RB. Apolipoprotein E4 and Alzheimer's disease causality under adverse environments and potential intervention by senolytic nutrients. Clin Nutr ESPEN 2024; 64:16-20. [PMID: 39251089 DOI: 10.1016/j.clnesp.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Apolipoprotein E (apoE) has a pivotal role in Alzheimer's Disease (AD) pathophysiology. APOE4 has been recognized as a risk factor for developing late-onset AD. Recently, APOE4 homozygosity was regarded as a new familial genetic trait of AD. In this opinion paper, we summarized the potential pleiotropic antagonism role of APOE4 in children living under early life adversity and afflicted with enteric infection/malnutrition-related pathogenic exposome. APOE4 was found to be neuroprotective early in life despite its increasing risk for AD with aging. We call for awareness of the potential burden this can bring to the public health system when APOE4 carriers, raised under adverse environmental conditions in early life and then aging with unhealthy lifestyles in later life may be at special risk for cognitive impairments and acquired AD. We postulate the importance of anti-senescence therapies to protect these individuals and remediate aging-related chronic illnesses.
Collapse
Affiliation(s)
- Gabriella C V Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Camila G M Carvalho
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
2
|
Ciesielski TH, Sirugo G, Iyengar SK, Williams SM. Characterizing the pathogenicity of genetic variants: the consequences of context. NPJ Genom Med 2024; 9:3. [PMID: 38195641 PMCID: PMC10776585 DOI: 10.1038/s41525-023-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Ronin Institute, Montclair, NJ, USA.
| | - Giorgio Sirugo
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K Iyengar
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| |
Collapse
|
3
|
Oriá RB, Smith CJ, Ashford JW, Vitek MP, Guerrant RL. Pros and Cons of APOE4 Homozygosity and Effects on Neuroplasticity, Malnutrition, and Infections in Early Life Adversity, Alzheimer's Disease, and Alzheimer's Prevention. J Alzheimers Dis 2024; 100:S179-S185. [PMID: 39093076 DOI: 10.3233/jad-240888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fortea et al.'s. (2024) recent data analysis elegantly calls attention to familial late-onset Alzheimer's disease (AD) with APOE4 homozygosity. The article by Grant (2024) reviews the factors associated with AD, particularly the APOE genotype and lifestyle, and the broad implications for prevention, both for individuals with the lifestyles associated with living in resource-rich countries and for those enduring environmental adversity in poverty settings, including high exposure to enteric pathogens and precarious access to healthcare. Grant discusses the issue of APOE genotype and its implications for the benefits of lifestyle modifications. This review highlights that bearing APOE4 could constitute an evolutionary benefit in coping with heavy enteric infections and malnutrition early in life in the critical formative first two years of brain development. However, the critical issue may be that this genotype could be a health concern under shifts in lifestyle and unhealthy diets during aging, leading to severe cognitive impairments and increased risk of AD. This commentary supports the discussions of Grant and the benefits of improving lifestyle for decreasing the risks for AD while providing further understanding and modelling of the early life benefits of APOE4 amidst adversity. This attention to the pathophysiology of AD should help further elucidate these critical, newly appreciated pathogenic pathways for developing approaches to the prevention and management in the context of the APOE genetic variations associated with AD.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Department of Morphology, Laboratory of Tissue Healing, Ontogeny, and Nutrition, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Carr J Smith
- Society for Brain Mapping and Therapeutics, Pacific Palisades, CA, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Richard L Guerrant
- Department of Medicine, Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Cho J, Alexander KL, Ferrell JL, Johnson LA, Estus S, D’Orazio SEF. Apolipoprotein E genotype affects innate susceptibility to Listeria monocytogenes infection in aged male mice. Infect Immun 2023; 91:e0025123. [PMID: 37594272 PMCID: PMC10501219 DOI: 10.1128/iai.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Apolipoprotein E (ApoE) is a lipid transport protein that is hypothesized to suppress proinflammatory cytokine production, particularly after stimulation with Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). Studies using transgenic ApoE human replacement mice (APOE) expressing one of three different allelic variants suggest that there is a hierarchy in terms of responsiveness to proinflammatory stimuli such as APOE4/E4 > APOE3/E3 > APOE2/E2. In this study, we test the hypothesis that APOE genotype can also predict susceptibility to infection with the facultative intracellular gram-positive bacterium Listeria monocytogenes. We found that bone-marrow-derived macrophages isolated from aged APOE4/E4 mice expressed elevated levels of nitric oxide synthase 2 and were highly resistant to in vitro infection with L. monocytogenes compared to APOE3/E3 and APOE2/E2 mice. However, we did not find statistically significant differences in cytokine or chemokine output from either macrophages or whole splenocytes isolated from APOE2/E2, APOE3/E3, or APOE4/E4 mice following L. monocytogenes infection. In vivo, overall susceptibility to foodborne listeriosis also did not differ by APOE genotype in either young (2 mo old) or aged (15 mo old) C57BL/6 mice. However, we observed a sex-dependent susceptibility to infection in aged APOE2/E2 male mice and a sex-dependent resistance to infection in aged APOE4/E4 male mice that was not present in female mice. Thus, these results suggest that APOE genotype does not play an important role in innate resistance to infection with L. monocytogenes but may be linked to sex-dependent changes that occur during immune senescence.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Katie L. Alexander
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Ciurleo GCV, Tavares-Júnior JWL, Vieira CMAG, Braga-Neto P, Oriá RB. Do APOE4 and long COVID-19 increase the risk for neurodegenerative diseases in adverse environments and poverty? Front Neurosci 2023; 17:1229073. [PMID: 37694114 PMCID: PMC10483995 DOI: 10.3389/fnins.2023.1229073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Gabriella C. V. Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Carlos Meton A. G. Vieira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Braga-Neto
- Neurology Division, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Health Sciences Center, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Reinaldo B. Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
6
|
Trumble BC, Charifson M, Kraft T, Garcia AR, Cummings DK, Hooper P, Lea AJ, Eid Rodriguez D, Koebele SV, Buetow K, Beheim B, Minocher R, Gutierrez M, Thomas GS, Gatz M, Stieglitz J, Finch CE, Kaplan H, Gurven M. Apolipoprotein-ε 4 is associated with higher fecundity in a natural fertility population. SCIENCE ADVANCES 2023; 9:eade9797. [PMID: 37556539 PMCID: PMC10411886 DOI: 10.1126/sciadv.ade9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
In many populations, the apolipoprotein-ε4 (APOE-ε4) allele increases the risk for several chronic diseases of aging, including dementia and cardiovascular disease; despite these harmful effects at later ages, the APOE-ε4 allele remains prevalent. We assess the impact of APOE-ε4 on fertility and its proximate determinants (age at first reproduction, interbirth interval) among the Tsimane, a natural fertility population of forager-horticulturalists. Among 795 women aged 13 to 90 (20% APOE-ε4 carriers), those with at least one APOE-ε4 allele had 0.3 to 0.5 more children than (ε3/ε3) homozygotes, while those with two APOE-ε4 alleles gave birth to 1.4 to 2.1 more children. APOE-ε4 carriers achieve higher fertility by beginning reproduction 0.8 years earlier and having a 0.23-year shorter interbirth interval. Our findings add to a growing body of literature suggesting a need for studies of populations living in ancestrally relevant environments to assess how alleles that are deleterious in sedentary urban environments may have been maintained by selection throughout human evolutionary history.
Collapse
Affiliation(s)
- Benjamin C. Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Mia Charifson
- Department of Population Health, New York University Grossman School of Medicine, New York City, NY, USA
| | - Tom Kraft
- Anthropology Department, University of Utah, Salt Lake City, UT, USA
| | - Angela R. Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Scientific Research Core, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona, Tucson, AZ, USA
| | - Daniel K. Cummings
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Paul Hooper
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Amanda J. Lea
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bret Beheim
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Riana Minocher
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Gregory S. Thomas
- MemorialCare Health System, Fountain Valley, CA, USA
- University of California, Irvine, CA, USA
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Université Toulouse 1 Capitole, Toulouse, France
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Hillard Kaplan
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, CA, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Oriá RB, Costa DVS, de Medeiros PHQS, Roque CR, Dias RP, Warren CA, Bolick DT, Guerrant RL. Myeloperoxidase as a biomarker for intestinal-brain axis dysfunction induced by malnutrition and Cryptosporidium infection in weanling mice. Braz J Infect Dis 2023; 27:102776. [PMID: 37150212 PMCID: PMC10212782 DOI: 10.1016/j.bjid.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle, necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil; University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - Deiziane V S Costa
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - Pedro Henrique Q S de Medeiros
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA; Faculdade de Medicina da Universidade Federal do Ceará, Instituto de Biomedicina, Laboratório de Doenças Infecciosas, Fortaleza, CE, Brazil
| | - Cássia R Roque
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil
| | - Ronaldo P Dias
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil
| | - Cirle A Warren
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - David T Bolick
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA.
| | - Richard L Guerrant
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| |
Collapse
|
8
|
Smith CJ, Ashford JW. Apolipoprotein ɛ4-Associated Protection Against Pediatric Enteric Infections is a Survival Advantage in Pre-Industrial Populations. J Alzheimers Dis 2023:JAD221218. [PMID: 37125551 DOI: 10.3233/jad-221218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Until 300,000 years ago, ancestors of modern humans ubiquitously carried the apolipoprotein E (APOE) ɛ4/ɛ4 genotype, when the ɛ3 allele mutated from the ancestral ɛ4, which elevates the risk of Alzheimer's disease. Modern humans living today predominantly carry the ɛ3 allele, which provides protection against heart disease and dementia in long-lived populations. The ancestral ɛ4 allele has been highly preserved in isolated populations in tropical and Arctic regions with high pathogen burdens, e.g., helminths. Early humans experienced serious enteric infections that exerted evolutionary selection pressure, and factors that mitigate infant and childhood mortality from enteric infections also exert selection pressure. Some bacteria can exploit the host's defensive inflammatory response to colonize and invade the host. Pathogen-induced inflammation associated with infant and childhood diarrhea can damage the gut wall long after the invading organisms are no longer present. Inflammation not only resides in the mucosal wall, but also induces systemic inflammation. Baseline systemic inflammation is lower in ɛ4 carriers, yet ɛ4 carriers display a stronger host inflammatory response that reduces pathogen burdens, increasing infant and early childhood survival. Evolutionary selection of the ɛ3 allele likely occurred after humans moved into temperate zones with lower pathogen burdens, unrelated to protection from Alzheimer's disease.
Collapse
Affiliation(s)
| | - J Wesson Ashford
- Stanford University and VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
9
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Zajac DJ, Green SJ, Johnson LA, Estus S. APOE genetics influence murine gut microbiome. Sci Rep 2022; 12:1906. [PMID: 35115575 PMCID: PMC8814305 DOI: 10.1038/s41598-022-05763-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Apolipoprotein E (APOE) alleles impact pathogenesis and risk for multiple human diseases, making them primary targets for disease treatment and prevention. Previously, we and others reported an association between APOE alleles and the gut microbiome. Here, we evaluated effects of APOE heterozygosity and tested whether these overall results extended to mice maintained under ideal conditions for microbiome analyses. To model human APOE alleles, this study used APOE targeted replacement (TR) mice on a C57Bl/6 background. To minimize genetic drift, homozygous APOE3 mice were crossed to homozygous APOE2 or homozygous APOE4 mice prior to the study, and the resulting heterozygous progeny crossed further to generate the study mice. To maximize environmental homogeneity, mice with mixed genotypes were housed together and used bedding from the cages was mixed and added back as a portion of new bedding. Fecal samples were obtained from mice at 3-, 5- and 7-months of age, and microbiota analyzed by 16S ribosomal RNA gene amplicon sequencing. Linear discriminant analysis of effect size (LefSe) identified taxa associated with APOE status, depicted as cladograms to show phylogenetic relatedness. The influence of APOE status was tested on alpha-diversity (Shannon H index) and beta-diversity (principal coordinate analyses and PERMANOVA). Individual taxa associated with APOE status were identified by classical univariate analysis. Whether findings in the APOE mice were replicated in humans was evaluated by using published microbiome genome wide association data. Cladograms revealed robust differences with APOE in male mice and limited differences in female mice. The richness and evenness (alpha-diversity) and microbial community composition (beta-diversity) of the fecal microbiome was robustly associated with APOE status in male but not female mice. Classical univariate analysis revealed individual taxa that were significantly increased or decreased with APOE, illustrating a stepwise APOE2-APOE3-APOE4 pattern of association with heterozygous animals trending as intermediate in the stepwise pattern. The relative abundance of bacteria from the class Clostridia, order Clostridiales, family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of Erysipelotrichia increased with APOE4 status, a finding that extended to humans. In this study, wherein mice were maintained in an ideal fashion for microbiome studies, gut microbiome profiles were strongly and significantly associated with APOE status in male APOE-TR mice. Erysipelotrichia are increased with APOE4 in both mice and humans. APOE allelic effects appeared generally intermediate in heterozygous animals. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on disease-relevant phenotypes, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE alleles impact disease.
Collapse
Affiliation(s)
- Diana J Zajac
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Lance A Johnson
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, 789 S. Limestone, Rm. 537, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Freitas RS, Roque CR, Matos GA, Belayev L, de Azevedo OGR, Alvarez-Leite JI, Guerrant RL, Oriá RB. Immunoinflammatory role of apolipoprotein E4 in malnutrition and enteric infections and the increased risk for chronic diseases under adverse environments. Nutr Rev 2021; 80:1001-1012. [PMID: 34406390 DOI: 10.1093/nutrit/nuab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.
Collapse
Affiliation(s)
- Raul S Freitas
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Cássia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Gabriella A Matos
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| |
Collapse
|
13
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Parikh IJ, Estus JL, Zajac DJ, Malik M, Maldonado Weng J, Tai LM, Chlipala GE, LaDu MJ, Green SJ, Estus S. Murine Gut Microbiome Association With APOE Alleles. Front Immunol 2020; 11:200. [PMID: 32117315 PMCID: PMC7034241 DOI: 10.3389/fimmu.2020.00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Since APOE alleles represent the most impactful genetic risk factors for Alzheimer's disease (AD), their differential mechanism(s) of action are under intense scrutiny. APOE4 is robustly associated with increased AD risk compared to the neutral APOE3 and protective APOE2. APOE alleles have also been associated with differential inflammation and gastrointestinal recovery after insult in human and murine studies, leading us to hypothesize that APOE alleles impact the gut microbiome. Methods: To assess this hypothesis, we compared 16S ribosomal RNA gene amplicon-based microbiome profiles in a cohort of mice that were homozygous for APOE2, APOE3, or APOE4, and included both males and females as well as carriers and non-carriers of five familial AD (5xFAD) mutations. Fecal samples were analyzed from mice at 4 and 6 months of age. APOE genotype, as well as sex and 5xFAD status, was then tested for influence on alpha diversity (Shannon H index) and beta diversity (principal coordinate analyses and PERMANOVA). A Random Forest analysis was used to identify features that predicted APOE, sex and 5xFAD status. Results: The richness and evenness (alpha diversity) of the fecal microbiome was not robustly associated with APOE genotype, 5xFAD status or sex. In contrast, microbial community composition (beta-diversity) was consistently and strongly associated with APOE genotype. The association between beta-diversity and sex or 5xFAD status was less consistent and more modest. Comparison of the differences underlying APOE effects showed that the relative abundance of multiple bacterial taxa was significantly different as a function of APOE genotype. Conclusions: The structure of the gut microbiome was strongly and significantly associated with APOE alleles in this murine model. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on AD-relevant phenotypes in murine models, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE genotype impacts AD.
Collapse
Affiliation(s)
- Ishita J. Parikh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Janice L. Estus
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Diana J. Zajac
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Manasi Malik
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - George E. Chlipala
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Stefan J. Green
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Steven Estus
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
16
|
Moir RD, Tanzi RE. Low Evolutionary Selection Pressure in Senescence Does Not Explain the Persistence of Aβ in the Vertebrate Genome. Front Aging Neurosci 2019; 11:70. [PMID: 30983989 PMCID: PMC6447958 DOI: 10.3389/fnagi.2019.00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
The argument is frequently made that the amyloid-β protein (Aβ) persists in the human genome because Alzheimer's disease (AD) primarily afflicts individuals over reproductive age and, therefore, there is low selective pressure for the peptide's elimination or modification. This argument is an important premise for AD amyloidosis models and therapeutic strategies that characterize Aβ as a functionless and intrinsically pathological protein. Here, we review if evolutionary theory and data on the genetics and biology of Aβ are consistent with low selective pressure for the peptide's expression in senescence. Aβ is an ancient neuropeptide expressed across vertebrates. Consistent with unusually high evolutionary selection constraint, the human Aβ sequence is shared by a majority of vertebrate species and has been conserved across at least 400 million years. Unlike humans, the overwhelming majority of vertebrate species do not cease reproduction in senescence and selection pressure is maintained into old age. Hence, low selective pressure in senescence does not explain the persistence of Aβ across the vertebrate genome. The "Grandmother hypothesis" (GMH) is the prevailing model explaining the unusual extended postfertile period of humans. In the GMH, high risk associated with birthing in old age has lead to early cessation of reproduction and a shift to intergenerational care of descendants. The rechanneling of resources to grandchildren by postreproductive individuals increases reproductive success of descendants. In the GMH model, selection pressure does not end following menopause. Thus, evolutionary models and phylogenetic data are not consistent with the absence of reproductive selection pressure for Aβ among aged vertebrates, including humans. Our analysis suggests an alternative evolutionary model for the persistence of Aβ in the vertebrate genome. Aβ has recently been identified as an antimicrobial effector molecule of innate immunity. High conservation across the Chordata phylum is consistent with strong positive selection pressure driving human Aβ's remarkable evolutionary longevity. Ancient origins and widespread conservation suggest the human Aβ sequence is highly optimized for its immune role. We detail our analysis and discuss how the emerging "Antimicrobial Protection Hypothesis" of AD may provide insights into possible evolutionary roles for Aβ in infection, aging, and disease etiology.
Collapse
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School – Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
17
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
18
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
19
|
Pereira LC, Nascimento JCR, Rêgo JMC, Canuto KM, Crespo-Lopez ME, Alvarez-Leite JI, Baysan A, Oriá RB. Apolipoprotein E, periodontal disease and the risk for atherosclerosis: a review. Arch Oral Biol 2018; 98:204-212. [PMID: 30503976 DOI: 10.1016/j.archoralbio.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/25/2018] [Accepted: 11/10/2018] [Indexed: 12/26/2022]
Abstract
The association between cardiovascular and periodontal diseases is characterized by chronic inflammatory processes, with a high prevalence worldwide and complex genetic-environment interactions. Although apolipoprotein E4 (ApoE4), one of the isoforms coded by a polymorphic APOE gene, has been widely recognized as a risk factor for cardiovascular diseases and as an immunoinflammatory factor, less is known regarding how ApoE4 affects atherosclerosis in periodontitis patients. The aim of this review was to investigate the potential underlying mechanisms related to APOE4 that could increase the risk of periodontal disease and, ultimately, of atherosclerosis. There have only been a few studies addressing apoE polymorphisms in patients with chronic periodontitis. To date, no studies have been performed that have assessed how ApoE4 affects atherosclerotic disease in chronic periodontitis patients. Although clinical studies are warranted, experimental studies have consistently documented the presence of periodontal pathogens, which are usually found in the oral cavity and saliva, in the atherosclerotic plaques of ApoE-deficient mice. In addition, in this review, the potential role of the APOE4 allele as an example of antagonistic pleiotropy during human evolution and its relation to oral health is discussed.
Collapse
Affiliation(s)
- L C Pereira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - J C R Nascimento
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - J M C Rêgo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - K M Canuto
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - M E Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - J I Alvarez-Leite
- Institute of Biological Sciences, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A Baysan
- Institute of Dentistry, Barts and the London, School of Medicine and Dentistry, Queen Mary University, London, UK
| | - R B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Dose J, Schloesser A, Torres GG, Venkatesh G, Häsler R, Flachsbart F, Lieb W, Nebel A, Rimbach G, Huebbe P. On a Western diet, APOEɛ4 is associated with low innate immune sensing, but not APOEɛ3. J Allergy Clin Immunol 2018; 142:1346-1349.e9. [PMID: 29928926 DOI: 10.1016/j.jaci.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany; Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Guillermo G Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Geetha Venkatesh
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Friederike Flachsbart
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany.
| |
Collapse
|
21
|
Nataro JP, Guerrant RL. Chronic consequences on human health induced by microbial pathogens: Growth faltering among children in developing countries. Vaccine 2017; 35:6807-6812. [DOI: 10.1016/j.vaccine.2017.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
|
22
|
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017. [PMID: 28647612 DOI: 10.1016/j.arr.2017.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (APOE) is a member of the vertebrate protein family of exchangeable apolipoproteins that is characterized by amphipathic α-helices encoded by multiple nucleotide tandem repeats. Its equivalent in flying insects - apolipophorin-III - shares structural and functional commonalities with APOE, suggesting the possibility of an evolutionary relationship between the proteins. In contrast to all other known species, human APOE is functionally polymorphic and possesses three major allelic variants (ε4, ε3 and ε2). The present review examines the current knowledge on APOE gene structure, phylogeny and APOE protein topology as well as its human isoforms. The ε4 allele is associated with an increased age-related disease risk but is also the ancestral form. Despite increased mortality in the elderly, ε4 has not become extinct and is the second-most common allele worldwide after ε3. APOE ε4, moreover, shows a non-random geographical distribution, and similarly, the ε2 allele is not homogenously distributed among ethnic populations. This likely suggests the existence of selective forces that are driving the evolution of human APOE isoforms, which may include differential interactions with dietary factors. To that effect, micronutrients such as vitamin D and carotenoids or dietary macronutrient composition are elucidated with respect to APOE evolution.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
23
|
Bhutta ZA, Guerrant RL, Nelson CA. Neurodevelopment, Nutrition, and Inflammation: The Evolving Global Child Health Landscape. Pediatrics 2017; 139:S12-S22. [PMID: 28562245 DOI: 10.1542/peds.2016-2828d] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Abstract
The last decade has witnessed major reductions in child mortality and a focus on saving lives with key interventions targeting major causes of child deaths, such as neonatal deaths and those due to childhood diarrhea and pneumonia. With the transition to Sustainable Development Goals, the global health community is expanding child health initiatives to address not only the ongoing need for reduced mortality, but also to decrease morbidity and adverse exposures toward improving health and developmental outcomes. The relationship between adverse environmental exposures frequently associated with factors operating in the prepregnancy period and during fetal development is well established. Also well appreciated are the developmental impacts (both short- and long-term) associated with postnatal factors, such as immunostimulation and environmental enteropathy, and the additional risks posed by the confluence of factors related to malnutrition, poor living conditions, and the high burden of infections. This article provides our current thinking on the pathogenesis and risk factors for adverse developmental outcomes among young children, setting the scene for potential interventions that can ameliorate these adversities among families and children at risk.
Collapse
Affiliation(s)
- Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; and.,Human Development Program, Harvard Graduate School of Education, Cambridge, Massachusetts
| |
Collapse
|
24
|
Trumble BC, Stieglitz J, Blackwell AD, Allayee H, Beheim B, Finch CE, Gurven M, Kaplan H. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden. FASEB J 2016; 31:1508-1515. [PMID: 28031319 DOI: 10.1096/fj.201601084r] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
The apolipoprotein E4 (E4) allele is present worldwide, despite its associations with higher risk of cardiovascular morbidity, accelerated cognitive decline during aging, and Alzheimer's disease (AD). The E4 allele is especially prevalent in some tropical regions with a high parasite burden. Equatorial populations also face a potential dual burden of high E4 prevalence combined with parasitic infections that can also reduce cognitive performance. We examined the interactions of E4, parasite burden, and cognitive performance in a traditional, nonindustrialized population of Amazonian forager-horticulturalists (N = 372) to test whether E4 protects against cognitive decline in environments with a heavy pathogen burden. Contrary to observations in industrial populations, older adult E4 carriers with high parasite burdens either maintained or showed slight improvements in cognitive performance, whereas non-E4 carriers with a high parasite burden showed reduced cognitive performance. Being an E4 carrier is the strongest risk factor to date of AD and cognitive decline in industrial populations; it is associated with greater cognitive performance in individuals facing a high parasite and pathogen load, suggesting advantages to the E4 allele under certain environmental conditions. The current mismatch between postindustrial hygienic lifestyles and active parasite-rich environs may be critical for understanding genetic risk for cognitive aging.-Trumble, B. C., Stieglitz, J., Blackwell, A. D., Allayee, H., Beheim, B., Finch, C. E., Gurven, M., Kaplan, H. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA; .,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Toulouse, France.,Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Aaron D Blackwell
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.,Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bret Beheim
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.,Dornsife College, University of Southern California, Los Angeles, California, USA
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Hillard Kaplan
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
25
|
Sampaio IC, Medeiros PHQS, Rodrigues FAP, Cavalcante PA, Ribeiro SA, Oliveira JS, Prata MMG, Costa DVS, Fonseca SGC, Guedes MM, Soares AM, Brito GAC, Havt A, Moore SR, Lima AAM. Impact of acute undernutrition on growth, ileal morphology and nutrient transport in a murine model. ACTA ACUST UNITED AC 2016; 49:e5340. [PMID: 27737316 PMCID: PMC5064774 DOI: 10.1590/1414-431x20165340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
Undernutrition represents a major public health challenge for middle- and low-income
countries. This study aimed to evaluate whether a multideficient Northeast Brazil
regional basic diet (RBD) induces acute morphological and functional changes in the
ileum of mice. Swiss mice (∼25 g) were allocated into two groups: i) control mice
were fed a standard diet and II) undernourished mice were fed the RBD. After 7 days,
mice were killed and the ileum collected for evaluation of electrophysiological
parameters (Ussing chambers), transcription (RT-qPCR) and protein expression (western
blotting) of intestinal transporters and tight junctions. Body weight gain was
significantly decreased in the undernourished group, which also showed decreased
crypt depth but no alterations in villus height. Electrophysiology measurements
showed a reduced basal short circuit current (Isc) in the undernourished group, with no differences in transepithelial
resistance. Specific substrate-evoked Isc related to affinity and efficacy (glutamine and alanyl-glutamine) were
not different between groups, except for the maximum Isc (efficacy) induced by glucose. Transcription of Sglt1
and Pept1 was significantly higher in the undernourished group,
while SN-2 transcription was decreased. No changes were found in
transcription of CAT-1 and CFTR, while claudin-2 and occludin transcriptions were
significantly increased in the undernourished group. Despite mRNA changes, SGLT-1,
PEPT-1, claudin-2 and occludin protein expression showed no difference between
groups. These results demonstrate early effects of the RBD on mice, which include
reduced body weight and crypt depth in the absence of significant alterations to
villus morphology, intestinal transporters and tight junction expression.
Collapse
Affiliation(s)
- I C Sampaio
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P H Q S Medeiros
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A P Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P A Cavalcante
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S A Ribeiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J S Oliveira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D V S Costa
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S G C Fonseca
- Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M Guedes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A M Soares
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - G A C Brito
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S R Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A A M Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
26
|
Finch CE, Shams S. Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice. Trends Neurosci 2016; 39:625-637. [PMID: 27546867 PMCID: PMC5040339 DOI: 10.1016/j.tins.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) research has mainly focused on neurodegenerative processes associated with the classic neuropathologic markers of senile plaques and neurofibrillary tangles. Additionally, cerebrovascular contributions to dementia are increasingly recognized, particularly from cerebral small vessel disease (SVD). Remarkably, in AD brains, the apolipoprotein E (ApoE) ɛ4 allele shows male excess for cerebral microbleeds (CMBs), a marker of SVD, which is opposite to the female excess of plaques and tangles. Mouse transgenic models add further complexities to sex-ApoE ɛ4 allele interactions, with female excess of both CMBs and brain amyloid. We conclude that brain aging and AD pathogenesis cannot be understood in humans without addressing major gaps in the extent of sex differences in cerebrovascular pathology.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| | - Sara Shams
- Department of Clinical Science, Intervention, and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Bartelt LA, Bolick DT, Kolling GL, Roche JK, Zaenker EI, Lara AM, Noronha FJ, Cowardin CA, Moore JH, Turner JR, Warren CA, Buck GA, Guerrant RL. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Negl Trop Dis 2016; 10:e0004820. [PMID: 27467505 PMCID: PMC4965189 DOI: 10.1371/journal.pntd.0004820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. Cryptosporidium attributable morbidities in malnourished children are increasingly recognized. Exactly how malnutrition interferes with host mucosal immunity to diarrheal pathogens and mucosal vaccine responses remains unclear. Dissecting these interactions in an experimental model of cryptosporidiosis can uncover new insights into novel therapeutic approaches against a pathogen for which effective therapies and vaccines are currently unavailable. We demonstrate that although malnutrition diminishes baseline (primary) Th1-type mucosal immunity these deficits can be partially overcome via non-specific mucosal strategies (S. Typhi and CpG) and completely restored after a sub-clinical (low-dose) exposure to viable C. parvum. These results add insight into preventive strategies to help alleviate Cryptosporidium-specific diarrhea in children in low-resource settings and abrogate prolonged post-infection sequelae.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - James K. Roche
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ana M. Lara
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Francisco Jose Noronha
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carrie A. Cowardin
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - John H. Moore
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pathology and Medicine—Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gregory A. Buck
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard L. Guerrant
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
28
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Cacciottolo M, Christensen A, Moser A, Liu J, Pike CJ, Smith C, LaDu MJ, Sullivan PM, Morgan TE, Dolzhenko E, Charidimou A, Wahlund LO, Wiberg MK, Shams S, Chiang GCY, Finch CE. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiol Aging 2016; 37:47-57. [PMID: 26686669 PMCID: PMC4687024 DOI: 10.1016/j.neurobiolaging.2015.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/21/2022]
Abstract
The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition.
Collapse
Affiliation(s)
- Mafalda Cacciottolo
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Christensen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Moser
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jiahui Liu
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Conor Smith
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrick M Sullivan
- Department of Medicine, Duke University, Durham VA Medical Center and GRECC, Durham, NC, USA
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Egor Dolzhenko
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Division of Clinical Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Kristofferson Wiberg
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Shams
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G, LaDu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener 2015; 10:52. [PMID: 26438529 PMCID: PMC4595327 DOI: 10.1186/s13024-015-0048-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD.
Collapse
Affiliation(s)
- Manasi Malik
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Ishita Parikh
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Jared B Vasquez
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Conor Smith
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| |
Collapse
|
31
|
The Global Burden of Pediatric Cryptosporidium Infections. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|
33
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
34
|
Araújo CV, Lazzarotto CR, Aquino CC, Figueiredo IL, Costa TB, Alves LADO, Ribeiro RA, Bertolini LR, Lima AAM, Brito GAC, Oriá RB. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice. ACTA ACUST UNITED AC 2015; 48:493-501. [PMID: 25945744 PMCID: PMC4470307 DOI: 10.1590/1414-431x20144360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023]
Abstract
Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/-) and wild-type (APOE+/+) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.
Collapse
Affiliation(s)
- C V Araújo
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C R Lazzarotto
- Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - C C Aquino
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - I L Figueiredo
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - T B Costa
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L A de Oliveira Alves
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R A Ribeiro
- Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L R Bertolini
- Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - A A M Lima
- Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - G A C Brito
- Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Oriá
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|