1
|
Liu H, Li M, Li S, Zhang C, Feng J. Simulation study on parameter dependence of dynamic osteocyte response under low-magnitude high-frequency vibration. Med Eng Phys 2025; 137:104307. [PMID: 40057366 DOI: 10.1016/j.medengphy.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025]
Abstract
The dynamic response mechanism of osteocytes to whole-body low-amplitude high-frequency vibration (LMHFV) is investigated using numerical simulation. In this study, a finite element model of a single bone lacuna-osteocyte incorporating the cytoskeleton was established. The vibration parameter dependence characteristics (acceleration amplitude (a), frequency (f)) of the dynamic osteocyte response under LMHFV were simulated. The results demonstrate that the alternating positive and negative liquid pressure acted on the osteocyte under LMHFV protocols (0.01 g-0.05 g, 30 Hz) (g=gravitational acceleration, 1 g = 9.8 m/s2) and the fluid shear stress increase with the acceleration amplitude. Additionally, the absolute values of positive and negative liquid pressure are relatively higher in the parameters range (0.026 g-0.038 g, 30 Hz). The von Mises stress extreme value of the microtubules presents a non-linear variation with increasing vibration parameters. Moreover, cytoskeletons can generate higher stress under vibration protocols (0.02 g-0.03 g, 30-45 Hz), thus facilitating the transmission of mechanical signals while satisfying the mechanical strength conditions compared to other reasonable vibration parameter range (0.01 g-0.05 g, 30-45 Hz). In summary, LMHFV with appropriate parameters can improve the mechanical microenvironment of osteocytes and enhance cell bioactivity to some extent.
Collapse
Affiliation(s)
- Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingzhi Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shenggang Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| | - Jingjing Feng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
2
|
Long-term Effects of Mechanical Vibration Stimulus on the Bone Formation of Wistar Rats: An Assessment Method Based on X-rays Images. Acad Radiol 2021; 28:e240-e245. [PMID: 32624402 DOI: 10.1016/j.acra.2020.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone is a complex living tissue that adapts itself to the demands of mechanical stimuli such as physical activity and exercise. Whole-body vibration (WBV) is a type of exercise characterized by the transmission of mechanical vibration stimuli produced by a vibrating platform. This study aimed to investigated, in experimental model, the effect of WBV exercise on the bone in different frequencies through X-ray analysis. MATERIALS AND METHODS Wistar rats were divided in three groups: control, exposed to WBV of 10 Hz and exposed to WBV of 20 Hz, during 8-weeks. All procedures to obtain the radiographic images were carried out before and after the experiments. The femur linear size and bone density measurements through radiographic images were performed in all animals. A factor of increase for bone density (FIBD) was determined. RESULTS No differences were observed in the qualitative comparison between the groups, as well as radiographic bone density before the experiment. However, after the experiment the bone density increased in the rats exposed to WBV of 10 Hz and 20 Hz compared to control group. Also, the FIBD was higher in the groups exposed to WBV in comparison with control. CONCLUSION These findings indicate an increase of the bone density dependent of the vibration stimulus frequency. In addition, this increase suggests a possible osteogenic effect to the mechanical vibrations of 10 and 20 Hz.
Collapse
|
3
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
4
|
Ye M, Zhang C, Jia W, Shen Q, Qin X, Zhang H, Zhu L. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food Funct 2020; 11:1498-1512. [PMID: 31993619 DOI: 10.1039/c9fo01944h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous work demonstrated that yak bone collagen peptides (YBP) possessed excellent osteogenic activity in vitro. However, associations between YBP and osteoporosis were less established, and the positive effect and underlying mechanism of YBP in the treatment of osteoporotic rats in vivo remained unclear. Herein, ovariectomized rats were intragastrically administered with YBP or 17β-estradiol for 12 weeks. Bone turnover markers, bone biomechanical parameters and bone microarchitecture were investigated to identify the specific changes of potential antagonistic effects of YBP on ovariectomized rats. Then, serum samples were analyzed by UPLC/Q-TOF-MS to identify metabolites. The results showed that YBP treatment remarkably altered the content of serum bone turnover markers and prevented the ovariectomy-induced deterioration of bone mechanical and microarchitecture characteristics. A total of forty-one biomarkers for which levels changed markedly upon treatment have been identified based on non-targeted metabolomics. Among them, twenty-one metabolites displayed a downward expression level, while twenty metabolites showed an upward expression level in the YBP group and finally were selected as potential biomarkers. The levels of these biomarkers displayed significant alterations and a tendency to be restored to normal values in YBP treated osteoporotic rats. A systematic network analysis of their corresponding pathways delineated that the protective or recovery effect of YBP on osteoporosis occurred primarily by regulating the amino acid metabolism and lipid metabolism (especially unsaturated fatty acid). Collectively, these findings highlight that such peptides hold promise in further advancement as a natural alternative for functional and health-promoting foods, which could be potentially used in mediated treatment of osteoporosis.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Minematsu A, Nishii Y, Imagita H, Sakata S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos Sarcopenia 2019; 5:78-83. [PMID: 31728424 PMCID: PMC6838745 DOI: 10.1016/j.afos.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Objectives To examine the effects of whole body vibration (WBV) on bone properties in growing rats, and to explore the optimal conditions for enhancing bone properties. Methods Thirty-six 4-week-old male rats were divided into 1 control and 5 experimental groups. Each experimental group underwent WBV at 15, 30, 45, 60, and 90 Hz (0.5 g, 15 min/d, 5 d/wk) for 8 weeks. We measured bone size, muscle weight and bone mechanical strength of the right tibia. Trabecular bone mass and trabecular bone microstructure (TBMS) of the left tibia were analyzed by micro-computed tomography. Serum levels of bone formation/resorption markers were also measured. Results WBV at 45 Hz and 60 Hz tended to enhance trabecular bone mass and TBMS parameters. However, there was no difference in maximum load of tibias among all groups. Serum levels of bone resorption marker were significantly higher in the 45-Hz WBV group than in the control group. Conclusions WBV at 45–60 Hz may offer a potent modality for increasing bone mass during the period of rapid growth. Further studies are needed to explore the optimal WBV conditions for increasing peak bone mass and TBMS parameters. WBV modality may be a potent strategy for primary prevention against osteoporosis.
Collapse
Affiliation(s)
- Akira Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Yasue Nishii
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Hidetaka Imagita
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Susumu Sakata
- Department of Physiology I, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Liu Z, Gao J, Gong H. Effects of treadmill with different intensities on bone quality and muscle properties in adult rats. Biomed Eng Online 2019; 18:107. [PMID: 31718665 PMCID: PMC6852718 DOI: 10.1186/s12938-019-0728-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone is a dynamically hierarchical material that can be divided into length scales of several orders of magnitude. Exercise can cause bone deformation, which in turn affects bone mass and structure. This study aimed to study the effects of treadmill running with different intensities on the long bone integrity and muscle biomechanical properties of adult male rats. METHODS Forty-eight 5-month-old male SD rats were randomly divided into 4 groups: i.e., sedentary group (SED), exercise with speed of 12 m/min group (EX12), 16 m/min group (EX16), and 20 m/min group (EX20). The exercise was carried out for 30 min every day, 5 days a week for 4 weeks. The femurs were examined using three-point bending test, microcomputer tomography scanning and nanoindentation test; the soleus muscle was dissected for tensile test; ALP and TRACP concentrations were measured by serum analysis. RESULTS The failure load was significantly increased by the EX12 group, whereas the elastic modulus was not significantly changed. The microstructure and mineral densities of the trabecular and cortical bone were significantly improved by the EX12 group. The mechanical properties of the soleus muscle were significantly increased by treadmill exercise. Bone formation showed significant increase by the EX12 group. Statistically higher nanomechanical properties of cortical bone were detected in the EX12 group. CONCLUSION The speed of 12 m/min resulted in significant changes in the microstructure and biomechanical properties of bone; besides, it significantly increased the ultimate load of the soleus muscle. The different intensities of treadmill running in this study provide an experimental basis for the selection of exercise intensity for adult male rats.
Collapse
Affiliation(s)
- Zhehao Liu
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
7
|
Mu D, Yu J, Lin J, Li C, Hao B, Gu F, Liu C, Tan L, Zhu D, Zhang X. Intermittent vibrations accelerate fracture healing in sheep. Acta Cir Bras 2019; 34:e201900702. [PMID: 31531537 PMCID: PMC6746562 DOI: 10.1590/s0102-865020190070000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effect of intermittent vibration at different intervals on bone fracture healing and optimize the vibration interval. METHODS Ninety sheep were randomized to receive no treatment (the control group), incision only (the sham control group), internal fixation with or without metatarsal fracture (the internal fixation group), and continuous vibration in addition to internal fixation of metatarsal fracture, or intermittent vibration at 1, 2, 3, 5, 7 and 17-day interval in addition to internal fixation of metatarsal fracture (the vibration group). Vibration was done at frequency F=35 Hz, acceleration a=0.25g, 15 min each time 2 weeks after bone fracture. Bone healing was evaluated by micro-CT scan, bone microstructure and mechanical compression of finite element simulation. RESULTS Intermittent vibration at 7-day interval significantly improved bone fracture healing grade. However, no significant changes on microstructure parameters and mechanical properties were observed among sheep receiving vibration at different intervals. CONCLUSIONS Clinical healing effects should be the top concern. Quantitative analyses of bone microstructure and of finite element mechanics on the process of fracture healing need to be further investigated.
Collapse
Affiliation(s)
- Degong Mu
- Bachelor, Operating Theatre 3, the First Hospital of Jilin University, Changchun, China. Conception and design of the study, analysis and interpretation of data, manuscript writing
| | - Jing Yu
- Master, Operating Theatre 1, the First Hospital of Jilin University, Changchun, China. Manuscript writing
| | - Junhao Lin
- Master, College of Mechanical Science and Engineering, Jilin University, Changchun, China. Statistics analysis
| | - Chen Li
- Master, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Technical procedures
| | - Baohui Hao
- Master, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Technical procedures, interpretation of data, critical revision
| | - Feng Gu
- Master, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Technical procedures, interpretation of data
| | - Chao Liu
- Master, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Statistics analysis
| | - Lei Tan
- PhD, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Analysis and interpretation of data, critical revision
| | - Dong Zhu
- PhD, Department of Orthopedic Traumatology, the First Hospital of Jilin University, Changchun, China. Conception and design of the study, analysis and interpretation of data, critical revision
| | - Xizheng Zhang
- PhD, Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin, China. Critical revision
| |
Collapse
|
8
|
Fang J, Gao J, Gong H, Zhang T, Zhang R, Zhan B. Multiscale experimental study on the effects of different weight-bearing levels during moderate treadmill exercise on bone quality in growing female rats. Biomed Eng Online 2019; 18:33. [PMID: 30902108 PMCID: PMC6431042 DOI: 10.1186/s12938-019-0654-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/15/2019] [Indexed: 01/16/2023] Open
Abstract
Background Bone tissue displays a hierarchical organization. Mechanical environments influence bone mass and structure. This study aimed to explore the effects of different mechanical stimuli on growing bone properties at macro–micro–nano scales. Methods Sixty five-week-old female Wistar rats were treadmill exercised at moderate intensity with the speed of 12 m/min, and then randomly divided into five groups according to weight-bearing level. After 8 weeks of experiment, femurs were harvested to perform multiscale tests. Results Bone formation was significantly increased by weight-bearing exercise, whereas bone resorption was not significantly inhibited. Trabecular and cortical bone mineral densities showed no significant increase by weight-bearing exercise. The microstructure of trabecular bone was significantly improved by 12% weight-bearing exercise. However, similar positive effects were not observed with further increase in weight-bearing levels. The nanomechanical properties of trabecular bone were not significantly changed by weight-bearing exercise. The macrostrength of whole femur and the nanomechanical properties of cortical bone significantly decreased in the 19% and 26% weight-bearing exercise groups. Conclusion When rats ran on the treadmill at moderate intensity during growth period, additional 12% weight-bearing level could significantly increase bone formation, improve microstructure of trabecular bone, as well as maintain the structure and mechanical properties of cortical bone. Excessive weight-bearing level caused no positive effects on the trabecular bone microstructure and properties of cortical bone at all scales. In addition, increased weight-bearing level exerted no significant influence on trabecular and cortical bone mineral densities.
Collapse
Affiliation(s)
- Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.,School of Civil Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| | - Tianlong Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Rui Zhang
- School of Biomedical Science and Medical Engineering, Beihang Univerisity, Beijing, 100191, People's Republic of China
| | - Bangchao Zhan
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| |
Collapse
|
9
|
Whole body vibration with rest days could improve bone quality of distal femoral metaphysis by regulating trabecular arrangement. SCIENCE CHINA-LIFE SCIENCES 2018; 62:95-103. [PMID: 30019161 DOI: 10.1007/s11427-017-9253-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Low-magnitude, high-frequency vibration (LMHFV) with rest days (particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current knowledge is limited regarding the possible benefit of this mechanical regimen to other bone sites and whether the optimal rest days are the same. This study followed our previous experiment on LMHFV loading with rest days for three-month-old male Wistar rats. The experiment involved seven groups, namely, vibrational loading for X day followed with X day rest (X=1, 3, 5, 7), daily vibrational loading, tail suspension and baseline control. Micro-computed tomography (micro-CT) scanning was used to evaluate the microarchitecture of the distal femoral trabecular bone. Micro-CT image-based microfinite element analysis was performed for each distal femoral metaphysis. LMHFV with rest days substantially changed the trabecular arrangement from remarkably plate-like to rod-like. Vibrational loading with 1 day rest was substantially effective in improving the architecture and apparent- and tissuelevel mechanical properties of the rat distal femoral metaphysis. This study may provide an improved understanding of the sitespecific responses of bone tissue to LMHFV with rest days for a substantially effective therapy of a targeted bone site.
Collapse
|
10
|
Zhang T, Gao J, Fang J, Gong H. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats. J Bone Miner Metab 2018; 36:157-169. [PMID: 28293780 DOI: 10.1007/s00774-017-0827-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P < 0.05). Vx (x = 5, 12, 19, 26) rats showed poor microarchitectures. The content of tartrate-resistant acid phosphatase 5b was significantly higher in Vx (x = 5, 12, 19, 26) rats than that in SED rats (P < 0.05). V26 rats demonstrated comparatively better nanomechanical properties of materials than the other vibrational groups. Additional weight bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Liu G, Yu J, Li C, Tan L, Hao B, Liu C, Lin J, Zhu D, Zhang X. Effects of continuous or intermittent low-magnitude high-frequency vibration on fracture healing in sheep. INTERNATIONAL ORTHOPAEDICS 2018; 42:939-946. [PMID: 29352332 DOI: 10.1007/s00264-018-3759-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Vibration therapy has been shown to improve fracture healing. In this study, we investigated the effects of continuous or different intermittent vibration regimens on fracture healing in sheep models on the basis of radiographs, mechanical, and biochemical testing. METHODS The 63 right-hind metatarsals from 63 sheep (12-month-old) were osteotomized; followed by surgical fixation with a steel plate. Two weeks after the surgery, the sheep with right-hind metatarsal fractures were randomly divided into seven groups (n=9/group): control (no vibration treated), continuous vibration (CV), one, three, five, seven and 14-day intermittent vibration (named IV-1, -3, -5, -7, and -14, respectively) groups, which represented a cycle of the successive n-day vibration and successive n-day break. Vibration stimulation (F=35 Hz, a=0.25 g) lasted 15 minutes each treatment. After eight weeks with/without vibration treatment, the sheep were euthanized with intravenous anesthetic. The callus formation, mechanical properties, and biochemical compositions of fracture metatarsals were analyzed. RESULTS In CV and IV-7 groups, X-ray images showed an increased callus volume around the fracture area. The bone elastic modulus and the concentrations of Ca, P, and Ca/P ratio of the area at 15 and 25 mm away from the fracture centerline were higher in CV and IV-7 groups compared with the other groups. CONCLUSIONS Our results demonstrate that both CV and IV-7 vibration patterns showed better improvement of fracture healing.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Cardiology and Echocardiography, First Hospital of Jilin University, Changchun, China
| | - Guozhao Liu
- College of Mechanical Science and Engineering, Jilin University, Changchun, China
| | - Jing Yu
- Operating Theatre 1, The First Hospital of Jilin University, Changchun, China
| | - Chen Li
- Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Tan
- Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun, 130021, China
| | - Baohui Hao
- Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun, 130021, China
| | - Chao Liu
- Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun, 130021, China
| | - Junhao Lin
- College of Mechanical Science and Engineering, Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Xizheng Zhang
- Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
12
|
Fan R, Liu J, Jia Z, Deng Y, Liu J. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method. Proc Inst Mech Eng H 2017; 232:80-89. [PMID: 29165039 DOI: 10.1177/0954411917743275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.
Collapse
Affiliation(s)
- Ruoxun Fan
- 1 Department of Automotive Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China
| | - Jie Liu
- 1 Department of Automotive Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China
| | - Zhengbin Jia
- 2 Department of Engineering Mechanics, Jilin University, Changchun, P.R. China
| | - Ying Deng
- 3 School of Public Health, Jilin University, Changchun, P.R. China
| | - Jun Liu
- 4 Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, No. 2 Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
13
|
|
14
|
Qing F, Xie P, Liem YS, Chen Y, Chen X, Zhu X, Fan Y, Yang X, Zhang X. Administration duration influences the effects of low-magnitude, high-frequency vibration on ovariectomized rat bone. J Orthop Res 2016; 34:1147-57. [PMID: 26662723 DOI: 10.1002/jor.23128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Low-magnitude, high-frequency vibration (LMHFV) has been proposed as a non-drug anti-osteoporosis treatment. However, the influence of administration duration on its effect is seldom investigated. In this study, the effect of 16-week LMHFV (0.3 g, 30 Hz, 20 min/day) on the bone mineral densities (BMDs), bone mechanical properties, and cellular responses of osteoporotic and healthy rats was examined by in vivo peripheral quantitative computed tomography (pQCT), fracture tests, cell assays, and mRNA quantification. Forty-eight adult rats were equally assigned to sham surgery (SHM), sham surgery with LMHFV (SHM+V), ovariectomy (OVX), and ovariectomy with LMHFV (OVX+V) groups. At week 8, LMHFV ameliorated ovariectomy-induced deterioration of trabecular bone, with a significantly higher tibia trabecular BMD (+11.2%) being noted in OVX+V rats (vs. OVX). However, this positive effect was not observed at later time points. Furthermore, 16 weeks of LMHFV caused significant reductions in the vertebral mean BMD (-13.0%), trabecular BMD (-15.7%), and maximum load (-21.5%) in OVX+V rats (vs. OVX). Osteoblasts derived from osteoporotic rat bone explants showed elevated BSP and OSX mRNA expression induced by LMHFV on day 1. However, no further positive effect on osteoblastic mRNA expression, alkaline phosphatase activity, or calcium deposition was observed with prolonged culture time. A higher ratio of RANKL/OPG induced by LMHFV suggests that osteoclastogenesis may be activated. Together, these results demonstrate that administration duration played an important role in the effect of LMHFV. Early exposure to LMHFV can positively modulate osteoporotic bone and osteoblasts; however, the beneficial effect seems not to persist over time. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1147-1157, 2016.
Collapse
Affiliation(s)
- Fangzhu Qing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Pengfei Xie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yacincha Selushia Liem
- Faculty of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,Faculty of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
15
|
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech 2016; 49:1899-1908. [PMID: 27178020 DOI: 10.1016/j.jbiomech.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density.
Collapse
Affiliation(s)
- Vasily Gnyubkin
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Alain Guignandon
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Norbert Laroche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Arnaud Vanden-Bossche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Luc Malaval
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France.
| |
Collapse
|
16
|
Fan R, Gong H, Zhang R, Gao J, Jia Z, Hu Y. Quantification of Age-Related Tissue-Level Failure Strains of Rat Femoral Cortical Bones Using an Approach Combining Macrocompressive Test and Microfinite Element Analysis. J Biomech Eng 2016; 138:041006. [DOI: 10.1115/1.4032798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 12/15/2022]
Abstract
Bone mechanical properties vary with age; meanwhile, a close relationship exists among bone mechanical properties at different levels. Therefore, conducting multilevel analyses for bone structures with different ages are necessary to elucidate the effects of aging on bone mechanical properties at different levels. In this study, an approach that combined microfinite element (micro-FE) analysis and macrocompressive test was established to simulate the failure of male rat femoral cortical bone. Micro-FE analyses were primarily performed for rat cortical bones with different ages to simulate their failure processes under compressive load. Tissue-level failure strains in tension and compression of these cortical bones were then back-calculated by fitting the experimental stress–strain curves. Thus, tissue-level failure strains of rat femoral cortical bones with different ages were quantified. The tissue-level failure strain exhibited a biphasic behavior with age: in the period of skeletal maturity (1–7 months of age), the failure strain gradually increased; when the rat exceeded 7 months of age, the failure strain sharply decreased. In the period of skeletal maturity, both the macro- and tissue-levels mechanical properties showed a large promotion. In the period of skeletal aging (9–15 months of age), the tissue-level mechanical properties sharply deteriorated; however, the macromechanical properties only slightly deteriorated. The age-related changes in tissue-level failure strain were revealed through the analysis of male rat femoral cortical bones with different ages, which provided a theoretical basis to understand the relationship between rat cortical bone mechanical properties at macro- and tissue-levels and decrease of bone strength with age.
Collapse
Affiliation(s)
- Ruoxun Fan
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
- Department of Engineering Mechanics, Jilin University, Nanling Campus, Changchun 130025, China e-mail:
| | - He Gong
- Professor State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
- Department of Engineering Mechanics, Jilin University, Nanling Campus, Changchun 130025, China e-mail:
| | - Rui Zhang
- Department of Engineering Mechanics, Jilin University, Nanling Campus, Changchun 130025, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 10000, China e-mail:
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Nanling Campus, Changchun 130025, China e-mail:
| | - Zhengbin Jia
- Department of Engineering Mechanics, Jilin University, Nanling Campus, Changchun 130025, China e-mail:
| | - Yanjuan Hu
- School of Mechatronic Engineering, Changchun University of Technology, Changchun 130025, China e-mail:
| |
Collapse
|
17
|
Krishnamoorthy D, Frechette DM, Adler BJ, Green DE, Chan ME, Rubin CT. Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals. Osteoporos Int 2016; 27:747-56. [PMID: 26323329 DOI: 10.1007/s00198-015-3289-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/11/2015] [Indexed: 01/23/2023]
Abstract
UNLABELLED Ovariectomized mice were used to assess the ability of low-intensity vibrations to protect bone microarchitecture and marrow composition. Results indicate that low-intensity vibrations (LIV), introduced 2 weeks postsurgery, slows marrow adipogenesis in OVX mice but does not restore the bone within the period studied. However, immediate application of LIV partially protects quality. INTRODUCTION The aim of this study was to evaluate consequences of estrogen depletion on bone marrow (BM) phenotype and bone microarchitecture, and effects of mechanical signals delivered as LIV on modulating these changes. METHODS LIV (0.3 g, 90 Hz) was applied to C57BL/6 mice immediately following ovariectomy or 2 weeks postestrogen withdrawal for 2 (ST-LIV) or 6 weeks (LT-LIV), respectively. Sham-operated age-matched controls (ST-AC, LT-AC) and ovariectomized controls (ST-OVX, LT-OVX) received sham LIV treatment. Bone microstructure was evaluated through μCT and BM adipogenesis through histomorphometry, serum markers, and genes expression analysis. RESULTS LT-OVX increased BM adipogenesis relative to LT-AC (+136 %, p ≤ 0.05), while LT-LIV introduced for 6w suppressed this adipose encroachment (-55 %, p ≤ 0.05). In parallel with the fatty marrow, LT-OVX showed a marked loss of trabecular bone, -40 % (p ≤ 0.05) in the first 2 weeks following ovariectomy compared to LT-AC. Application of LT-LIV for 6w following this initial 2w bone loss failed to restore the lost trabeculae but did initiate an anabolic response as indicated by increased serum alkaline phosphatase (+26 %, p ≤ 0.05). In contrast, application of LIV immediately following ovariectomy was more efficacious in the protection of trabecular bone, with a +29 % (p > 0.05) greater BV/TV compared to ST-OVX at the 2w time period. CONCLUSIONS LIV can mitigate adipocyte accumulation in OVX marrow and protect it by favoring osteoblastogenesis over adipogenesis. These data also emphasize the rapidity of bone loss with OVX and provide perspective in the timing of treatments for postmenopausal osteoporosis where sooner is better than later.
Collapse
Affiliation(s)
- D Krishnamoorthy
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - D M Frechette
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - B J Adler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - D E Green
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - M E Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - C T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
18
|
Gao J, Gong H, Huang X, Zhang R, Ma R, Zhu D. Multi-Level Assessment of Fracture Calluses in Rats Subjected to Low-Magnitude High-Frequency Vibration with Different Rest Periods. Ann Biomed Eng 2016; 44:2489-2504. [DOI: 10.1007/s10439-015-1532-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
|
19
|
Whole-body vibration can attenuate the deterioration of bone mass and trabecular bone microstructure in rats with spinal cord injury. Spinal Cord 2015; 54:597-603. [DOI: 10.1038/sc.2015.220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 11/08/2022]
|
20
|
Li M, Wu W, Tan L, Mu D, Zhu D, Wang J, Zhao B. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats. Biochem Biophys Res Commun 2015; 465:344-8. [DOI: 10.1016/j.bbrc.2015.07.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
21
|
Zhang R, Gong H, Zhu D, Ma R, Fang J, Fan Y. Multi-level femoral morphology and mechanical properties of rats of different ages. Bone 2015; 76:76-87. [PMID: 25857690 DOI: 10.1016/j.bone.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
A macro-micro-nano-multi-level study was conducted to explore age-related structural and mechanical properties of bone, as well as the effects of aging on bone properties. A total of 70 male Wistar rats were used, ranging in the ages of 1, 3, 5, 7, 9, 11, 14, 15, 16, and 17 months (n = 7/age group). After micro-computed tomography (CT) scanning, longitudinal cortical bone specimens with a length of 5mm were cut along the femoral shaft axis from left femur shafts for mechanical testing, and the cross-sectional areas were measured. The macro-mechanical properties obtained in mechanical testing and microarchitecture parameters measured by micro-CT were significantly correlated with the animal age (r(2) = 0.96, p < 0.001). Scanning electron microscopy was used for detecting the microarchitecture features of the fractured surfaces, which exhibited age-related plate-fibrous-mixed fibrous-plate texture, resulting in changes in macro-mechanical properties (r(2) > 0.90, p < 0.001). The mineral phase of the left femoral shaft and head was analyzed by atomic force microscopy. Longitudinal and transverse trabecular bone tissues, as well as longitudinal cortical bone tissue, were used for nanoindentation test, and the chemical composition was evaluated by quantitative chemical analyses. The correlations between mineral content and bone material properties (i.e., elastic properties of the bone tissue and size and roughness of bone mineral grains) were highly significant (r > 0.95, p < 0.001). Multi-level femur morphology, mechanical property, and mineral content were significantly correlated with the animal age. The correlations between bone mineral content and bone material morphological and mechanical properties may partly explain the increase in bone fragility with aging, which will provide a theoretical basis for the investigation of age-related bone properties in clinics.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, People's Republic of China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China.
| | - Dong Zhu
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, People's Republic of China
| | - Renshi Ma
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, People's Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, People's Republic of China
| | - Yobo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China; National Research Center for Rehabilitation Technical Aids, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Gong H, Wang L, Fan Y, Zhang M, Qin L. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures. Ann Biomed Eng 2015; 44:1204-23. [DOI: 10.1007/s10439-015-1368-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
|
23
|
Gao J, Gong H, Zhang R, Zhu D. Age-related regional deterioration patterns and changes in nanoscale characterizations of trabeculae in the femoral head. Exp Gerontol 2015; 62:63-72. [PMID: 25582596 DOI: 10.1016/j.exger.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the mechanical properties and features of bone materials at the nanoscale level in different regions of the femoral head in elderly patients with femoral neck fracture. Ten femoral heads from female patients with femoral neck fractures were extracted during surgery (five for the Aged group, aged 65-66 years; five for the Advanced aged group, aged 85-95 years). The femoral head was divided into three equal layers (anterior, central, and posterior) in the coronal view, and each layer was segmented into five regions (superior, central, inferior, medial, and lateral). Nanoindentation testing and atomic force microscopy imaging were used to study the mechanical properties and surface morphology of the specimens. No statistical differences in grain size were found between age groups, which suggested that the nanostructure of trabeculae in the femoral heads of postmenopausal women cannot be used to predict age-related bone loss and fracture risk. Mechanical properties in the longitudinal direction deteriorated more quickly than those in the transverse direction for the whole femoral head. Comparisons between layers showed a higher deterioration rate with aging in the anterior layer than in other layers. In different regions, mechanical properties of the medial and lateral regions deteriorated more quickly than those in the three other regions, and deterioration in the longitudinal direction was more serious than that in the transverse direction. The regional deterioration patterns and material properties with aging observed in this study contribute to an understanding of the age-related fracture mechanism and provide a basis for predicting age-related fracture risk and decreasing early fixation failure in the proximal femur.
Collapse
Affiliation(s)
- Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China.
| | - Rui Zhang
- Department of Engineering Mechanics, Jilin University, Changchun 130022, People's Republic of China
| | - Dong Zhu
- Traumatic Orthopedics, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|