1
|
Abstract
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall). But what are the molecular mechanisms that govern the expression of immediate-early genes (IEGs; c-fos, Npas4) and plasticity-related genes (PRGs; Dlg4/PSD95 and Grin2b/NR2B) in memory ensemble? Studies in relatively simple in vitro and in vivo neuronal model systems have demonstrated that synaptic activity during development, or when induced by chemical stimuli (i.e., cLTP, KCl, picrotoxin), activates the NMDAR-Ca2+-CREB signaling pathway that upregulates gene expression through changes in the epigenetic landscape (i.e., histone marks and DNA methylation) and/or 3D chromatin organization. The data support a model in which epigenetic modifications in promoters and enhancers facilitate the priming and activation of these regulatory regions, hence leading to the formation of enhancer-promoter interactions (EPIs) through chromatin looping. The exploration of whether similar molecular mechanisms drive gene expression in learning and memory has presented notable challenges due to the distinct phases of learning and the activation of only sparse population of cells (the engram). Consequently, such studies demand precise temporal and spatial control. By combining activity-dependent engram tagging strategies (i.e., TRAP mice) with multi-omics analyses (i.e., RNA-seq, ChiP-seq, ATAC-seq, and Hi-C), it has been recently possible to associate changes in the epigenomic landscape and/or 3D genome architecture with transcriptional waves in engram cells of mice subjected to contextual fear conditioning (CFC), a relevant one-shot Pavlovian learning task. These studies support the role of specific epigenetic mechanisms and of the 3D chromatin organization during the control of gene transcription waves in engram cells. Advancements in our comprehension of the molecular mechanisms driving memory ensemble will undoubtedly play a crucial role in the development of better-targeted strategies to tackle cognitive diseases, including Alzheimer's disease and frontotemporal dementia, among other information-processing disorders.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
2
|
Acutain MF, Baez MV. Reduced expression of GluN2A induces a delay in neuron maturation. J Neurochem 2024; 168:4001-4013. [PMID: 38037434 DOI: 10.1111/jnc.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
NMDA receptors (NMDARs) play an important role in synaptic plasticity both in physiological and pathological conditions. GluN2A and GluN2B are the most expressed NMDAR regulatory subunits, in the hippocampus and other cognitive-related brain structures. GluN2B is characteristic of immature structures and GluN2A of mature ones. Changes in GluN2A expression were associated with complex phenotypes that led to complex neurodevelopmental disorders, including the occurrence of seizures. However, little is known about the role of GluN2A in these phenotypes. In this work, we reduced GluN2A expression in mature neuronal cultures and observed an altered GluN2A/GluN2B ratio. Furthermore, those neurons exhibit an increase in immature dendritic spines and dendritic branching, as well as an increased response to glutamate stimulus. This phenotype (considering GluN2A/GluN2B ratio, index branching and glutamate response) resembles those observed at immature neuronal stages in vitro. We propose that this immature phenotype led to a higher response to glutamate stimulus which, in vivo, would be the basis of reduced threshold for seizure onset in GluN2A-pathological conditions.
Collapse
Affiliation(s)
- María Florencia Acutain
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
| | - María Verónica Baez
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
- 1UA de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, UBA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Brauer B, Ancatén-González C, Ahumada-Marchant C, Meza RC, Merino-Veliz N, Nardocci G, Varela-Nallar L, Arriagada G, Chávez AE, Bustos FJ. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci Rep 2024; 14:20416. [PMID: 39223259 PMCID: PMC11369245 DOI: 10.1038/s41598-024-70728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Bastian Brauer
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-González
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Constanza Ahumada-Marchant
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo C Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Nicolas Merino-Veliz
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Lorena Varela-Nallar
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Gloria Arriagada
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile.
| | - Fernando J Bustos
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
4
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
5
|
Bustos FJ, Pandian S, Haensgen H, Zhao JP, Strouf H, Heidenreich M, Swiech L, Deverman BE, Gradinaru V, Zhang F, Constantine-Paton M. Removal of a partial genomic duplication restores synaptic transmission and behavior in the MyosinVA mutant mouse Flailer. BMC Biol 2023; 21:232. [PMID: 37957716 PMCID: PMC10644554 DOI: 10.1186/s12915-023-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. RESULTS Using the ASD and anxiety mouse model Flailer, which contains a partial genomic duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700 bp genomic region in vitro and in vivo. Importantly, DN-CRISPRs have not been used to remove genomic regions using sgRNA with an offset greater than 300 bp. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene editing. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescue some of the mutant behaviors, while intracerebroventricular delivery, completely recovers the Flailer animal phenotype associated to anxiety and ASD. CONCLUSIONS Our results demonstrate the potential of DN-CRISPR to efficiently remove larger genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando J Bustos
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile.
| | - Swarna Pandian
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henny Haensgen
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Jian-Ping Zhao
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haley Strouf
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Lukasz Swiech
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Feng Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
De Los Reyes DA, Karkoutly MY, Zhang Y. Synapse-associated protein 102 - a highly mobile MAGUK predominate in early synaptogenesis. Front Mol Neurosci 2023; 16:1286134. [PMID: 37928066 PMCID: PMC10620527 DOI: 10.3389/fnmol.2023.1286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Neurodevelopmental and neurodegenerative disorders are primarily characterized by serious structural and functional changes in excitatory glutamatergic synapses in the brain, resulting in many synaptic deficits and aberrant synapse loss. It is a big challenge to reverse these synaptic impairments as a treatment for neurological diseases in the field. Extensive research on glutamate receptors as therapeutic targets has been done but with little success shown in human trials. PSD-95-like MAGUK proteins perform a pivotal role in regulating the trafficking and stability of glutamate receptors that are important to postsynaptic structure and function. MAGUK and MAGUK-modulated synaptic pathways are becoming promising candidates for developing therapeutic targets. As a MAGUK protein, SAP102 is not understood well compared to PSD-95. Here, we review the current research on SAP102 including its synaptic functions and regulation, especially its expression and functions in the early stage of synaptogenesis and the association with neurodevelopmental disorders. This review presents valuable information for future structural and functional studies of SAP102 to reveal its roles in young and mature neurons. It provides clues for developing potential remedies to reverse synaptic impairments and strategies to grow new neurons.
Collapse
Affiliation(s)
| | | | - Yonghong Zhang
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
7
|
Sharma DR, Cheng B, Sahu R, Zhang X, Mehdizadeh R, Singh D, Iacobas D, Ballabh P. Oestrogen treatment restores dentate gyrus development in premature newborns by IGF1 regulation. J Cell Mol Med 2023; 27:2467-2481. [PMID: 37594177 PMCID: PMC10468667 DOI: 10.1111/jcmm.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 08/19/2023] Open
Abstract
Prematurely-born infants cared for in the neonatal units suffer from memory and learning deficits. Prematurity diminishes neurogenesis and synaptogenesis in the hippocampal dentate gyrus (DG). This dysmaturation of neurons is attributed to elevated PSD95, NMDR2A, and IGF1 levels. Since oestrogen treatment plays key roles in the development and plasticity of DG, we hypothesized that 17β-estradiol (E2) treatment would ameliorate neurogenesis and synaptogenesis in the DG, reversing cognitive deficits in premature newborns. Additionally, E2-induced recovery would be mediated by IGF1 signalling. These hypotheses were tested in a rabbit model of prematurity and nonmaternal care, in which premature kits were gavage-fed and reared by laboratory personnel. We compared E2- and vehicle-treated preterm kits for morphological, molecular, and behavioural parameters. We also treated kits with oestrogen degrader, RAD1901, and assessed IGF1 signalling. We found that E2 treatment increased the number of Tbr2+ and DCX+ neuronal progenitors and increased the density of glutamatergic synapses in the DG. E2 treatment restored PSD95 and NMDAR2A levels and cognitive function in preterm kits. Transcriptomic analyses showed that E2 treatment contributed to recovery by influencing interactions between IGF1R and neurodegenerative, as well as glutamatergic genes. ERα expression was reduced on completion of E2 treatment at D7, followed by D30 elevation. E2-induced fluctuation in ERα levels was associated with a reciprocal elevation in IGF1/2 expression at D7 and reduction at D30. ERα degradation by RAD1901 treatment enhanced IGF1 levels, suggesting ERα inhibits IGF1 expression. E2 treatment alleviates the prematurity-induced maldevelopment of DG and cognitive dysfunctions by regulating ERα and IGF1 levels.
Collapse
Affiliation(s)
- Deep R. Sharma
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Bokun Cheng
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rauhin Sahu
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Xusheng Zhang
- Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rana Mehdizadeh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Divya Singh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Dumitru Iacobas
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Personalized Genomics Laboratory, Texas Undergraduate Medical AcademyPrairie View A&M UniversityPrairie ViewTexasUSA
| | - Praveen Ballabh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
8
|
Rojas F, Aguilar R, Almeida S, Fritz E, Corvalán D, Ampuero E, Abarzúa S, Garcés P, Amaro A, Diaz I, Arredondo C, Cortes N, Sanchez M, Mercado C, Varela-Nallar L, Gao FB, Montecino M, van Zundert B. Mature iPSC-derived astrocytes of an ALS/FTD patient carrying the TDP43 A90V mutation display a mild reactive state and release polyP toxic to motoneurons. Front Cell Dev Biol 2023; 11:1226604. [PMID: 37645251 PMCID: PMC10461635 DOI: 10.3389/fcell.2023.1226604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (SOD1, TARDBP, and C9ORF72) and human induced pluripotent stem cells (iPSC)-derived astrocytes (TARDBP) to kill MNs. However, others have reported that astrocytes carrying mutant TDP43 do not produce detectable MN toxicity. This controversy is likely to arise from the findings that human iPSC-derived astrocytes exhibit a rather immature and/or reactive phenotype in a number of studies. Here, we have succeeded in generating a highly homogenous population of functional quiescent mature astrocytes from control subject iPSCs. Using identical conditions, we also generated mature astrocytes from an ALS/FTD patient carrying the TDP43A90V mutation. These mutant TDP43 patient-derived astrocytes exhibit key pathological hallmarks, including enhanced cytoplasmic TDP-43 and polyP levels. Additionally, mutant TDP43 astrocytes displayed a mild reactive signature and an aberrant function as they were unable to promote synaptogenesis of hippocampal neurons. The polyP-dependent neurotoxic nature of the TDP43A90V mutation was further confirmed as neutralization of polyP in ACM derived from mutant TDP43 astrocytes prevented MN death. Our results establish that human astrocytes carrying the TDP43A90V mutation exhibit a cell-autonomous pathological signature, hence providing an experimental model to decipher the molecular mechanisms underlying the generation of the neurotoxic phenotype.
Collapse
Affiliation(s)
- Fabiola Rojas
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Elsa Fritz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Daniela Corvalán
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago, Santiago, Chile
| | - Sebastián Abarzúa
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Iván Diaz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Cristian Arredondo
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Nicole Cortes
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Mario Sanchez
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mercado
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Lorena Varela-Nallar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| |
Collapse
|
9
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
10
|
Sharma DR, Cheng B, Jaiswal MK, Zhang X, Kumar A, Parikh N, Singh D, Sheth H, Varghese M, Dobrenis K, Zhang X, Hof PR, Stanton PK, Ballabh P. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb Cortex 2023; 33:6449-6464. [PMID: 36646459 PMCID: PMC10183730 DOI: 10.1093/cercor/bhac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Collapse
Affiliation(s)
- Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manoj Kumar Jaiswal
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nirzar Parikh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Divya Singh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patric K Stanton
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Bustos FJ, Pandian S, Haensgen H, Zhao JP, Strouf H, Heidenreich M, Swiech L, Deverman B, Gradinaru V, Zhang F, Constantine-Paton M. Removal of a genomic duplication by double-nicking CRISPR restores synaptic transmission and behavior in the MyosinVA mutant mouse Flailer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538685. [PMID: 37163068 PMCID: PMC10168395 DOI: 10.1101/2023.04.28.538685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. Using the ASD and anxiety mouse model Flailer, that contains a duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700bp genomic duplication in vitro and in vivo . Importantly, DN-CRISPRs have not been used to remove more gene regions <100bp successfully and with high efficiency. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene edition. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescues some of the mutant behaviors, while intracerebroventricular delivery, completely recovers Flailer animal phenotype associated to anxiety and ASD. Our results demonstrate the potential of DN-CRISPR to efficiently (>60% editing in vivo) remove large genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
Collapse
|
12
|
Xu J, Li J, Sun YJ, Quan W, Liu L, Zhang QH, Qin YD, Pei XC, Su H, Chen JJ. Identification of key genes and signaling pathways associated with dementia with Lewy bodies and Parkinson's disease dementia using bioinformatics. Front Neurol 2023; 14:1029370. [PMID: 36970514 PMCID: PMC10034123 DOI: 10.3389/fneur.2023.1029370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectiveDementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are collectively known as Lewy body dementia (LBD). Considering the heterogeneous nature of LBD and the different constellations of symptoms with which patients can present, the exact molecular mechanism underlying the differences between these two isoforms is still unknown. Therefore, this study aimed to explore the biomarkers and potential mechanisms that distinguish between PDD and DLB.MethodsThe mRNA expression profile dataset of GSE150696 was acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between 12 DLB and 12 PDD were identified from Brodmann area 9 of human postmortem brains using GEO2R. A series of bioinformatics methods were applied to identify the potential signaling pathways involved, and a protein–protein interaction (PPI) network was constructed. Weighted gene co-expression network analysis (WGCNA) was used to further investigate the relationship between gene co-expression and different LBD subtypes. Hub genes that are strongly associated with PDD and DLB were obtained from the intersection of DEGs and selected modules by WGCNA.ResultsA total of 1,864 DEGs between PDD and DLB were filtered by the online analysis tool GEO2R. We found that the most significant GO- and KEGG-enriched terms are involved in the establishment of the vesicle localization and pathways of neurodegeneration-multiple diseases. Glycerolipid metabolism and viral myocarditis were enriched in the PDD group. A B-cell receptor signaling pathway and one carbon pool by folate correlated with DLB in the results obtained from the GSEA. We found several clusters of co-expressed genes which we designated by colors in our WGCNA analysis. Furthermore, we identified seven upregulated genes, namely, SNAP25, GRIN2A, GABRG2, GABRA1, GRIA1, SLC17A6, and SYN1, which are significantly correlated with PDD.ConclusionThe seven hub genes and the signaling pathways we identified may be involved in the heterogeneous pathogenesis of PDD and DLB.
Collapse
|
13
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
14
|
Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous Modulators of NMDA Receptor Control Dendritic Field Expansion of Cortical Neurons. Mol Neurobiol 2023; 60:1440-1452. [PMID: 36462136 PMCID: PMC9899188 DOI: 10.1007/s12035-022-03147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.
Collapse
Affiliation(s)
- Pascal Jorratt
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XThird Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Ricny
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic
| | - Christian Leibold
- grid.5963.9Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Saak V. Ovsepian
- grid.36316.310000 0001 0806 5472Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
15
|
van Zundert B, Montecino M. Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012081. [PMID: 36292933 PMCID: PMC9602769 DOI: 10.3390/ijms232012081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Healthy brain functioning in mammals requires a continuous fine-tuning of gene expression. Accumulating evidence over the last three decades demonstrates that epigenetic mechanisms and dynamic changes in chromatin organization are critical components during the control of gene transcription in neural cells. Recent genome-wide analyses show that the regulation of brain genes requires the contribution of both promoter and long-distance enhancer elements, which must functionally interact with upregulated gene expression in response to physiological cues. Hence, a deep comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical if we are to understand the processes associated with learning, memory and recall. Moreover, the onset and progression of several neurodegenerative diseases and neurological alterations are found to be strongly associated with changes in the components that support and/or modulate the dynamics of these EPIs. Here, we overview relevant discoveries in the field supporting the role of the chromatin organization and of specific epigenetic mechanisms during the control of gene transcription in neural cells from healthy mice subjected to the fear conditioning paradigm, a relevant model to study memory ensemble. Additionally, special consideration is dedicated to revising recent results generated by investigators working with animal models and human postmortem brain tissue to address how changes in the epigenome and chromatin architecture contribute to transcriptional dysregulation in Alzheimer’s disease, a widely studied neurodegenerative disease. We also discuss recent developments of potential new therapeutic strategies involving epigenetic editing and small chromatin-modifying molecules (or epidrugs).
Collapse
Affiliation(s)
- Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- CARE Biomedical Research Center, Santiago 8330005, Chile
- Correspondence: (B.v.Z.); (M.M.)
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago 8370186, Chile
- Correspondence: (B.v.Z.); (M.M.)
| |
Collapse
|
16
|
Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath 2022; 27:893-902. [DOI: 10.1007/s11325-022-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
|
17
|
Morrill NK, Joly-Amado A, Li Q, Prabhudeva S, Weeber EJ, Nash KR. Reelin central fragment supplementation improves cognitive deficits in a mouse model of Fragile X Syndrome. Exp Neurol 2022; 357:114170. [PMID: 35863501 DOI: 10.1016/j.expneurol.2022.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.
Collapse
Affiliation(s)
- Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
18
|
Simiate and the focal adhesion kinase FAK1 cooperate in the regulation of dendritogenesis. Sci Rep 2022; 12:11274. [PMID: 35787638 PMCID: PMC9253104 DOI: 10.1038/s41598-022-14460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the crucial importance of dendritogenesis for the correct functioning of neurons, the molecular mechanisms underlying neuronal arborisation are still not well understood. Current models suggest that distinct parts and phases of dendritic development are regulated by the expression of distinct transcription factors, that are able to target the cytoskeleton. Two proteins recently implicated in dendritogenesis are the Focal Adhesion Kinase FAK1 and the Actin-binding protein Simiate. Using heterologous expression systems as well as mouse brain extracts in combination with coprecipitation assays, we show that Simiate is able to associate with FAK1. Differential centrifugation experiments further revealed the interaction to be present in cytosolic as well as nuclear fractions. Inside the nucleus though, Simiate preferentially binds to a FAK1 isoform of 80 kDa, which has previously been shown to regulate transcription factor activity. Investigating the function of both proteins in primary hippocampal cultures, we further found that FAK1 and Simiate have distinct roles in dendritogenesis: While FAK1 increases dendrite length and number, Simiate preferentially enhances growth and branching. However, if being confined to the nucleus, Simiate selectively triggers primary dendrite formation, enhancing transcription activity at the same time. Since the effect on primary dendrites is specifically re-normalized by a co-expression of FAK1 and Simiate in the nucleus, the data implies that the two proteins interact to counterbalance each other in order to control dendrite formation. Looking at the role of the cytosolic interaction of FAK1 and Simiate, we found that neurotrophin induced dendritogenesis causes a striking colocalisation of FAK1 and Simiate in dendritic growth cones, which is not present otherwise, thus suggesting that the cytosolic interaction stimulates growth cone mediated dendritogenesis in response to certain external signals. Taken together, the data show that FAK1 and Simiate exert several and distinct actions during the different phases of dendritogenesis and that these actions are related to their subcellular localisation and their interaction.
Collapse
|
19
|
Clabough E, Ingersoll J, Reekes T, Gleichsner A, Ryan A. Acute Ethanol Exposure during Synaptogenesis Rapidly Alters Medium Spiny Neuron Morphology and Synaptic Protein Expression in the Dorsal Striatum. Int J Mol Sci 2021; 23:290. [PMID: 35008713 PMCID: PMC8745582 DOI: 10.3390/ijms23010290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.
Collapse
Affiliation(s)
- Erin Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - James Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
| | - Tyler Reekes
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71104, USA
| | - Alyssa Gleichsner
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| | - Amy Ryan
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| |
Collapse
|
20
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
21
|
Liouta K, Chabbert J, Benquet S, Tessier B, Studer V, Sainlos M, De Wit J, Thoumine O, Chamma I. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2. Biol Cell 2021; 113:492-506. [PMID: 34498765 DOI: 10.1111/boc.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.
Collapse
Affiliation(s)
- Konstantina Liouta
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julia Chabbert
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Sebastien Benquet
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| |
Collapse
|
22
|
Bahry JA, Fedder-Semmes KN, Sceniak MP, Sabo SL. An Autism-Associated de novo Mutation in GluN2B Destabilizes Growing Dendrites by Promoting Retraction and Pruning. Front Cell Neurosci 2021; 15:692232. [PMID: 34393725 PMCID: PMC8363002 DOI: 10.3389/fncel.2021.692232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in GRIN2B, which encodes the GluN2B subunit of NMDA receptors, lead to autism spectrum disorders (ASD), but the pathophysiological mechanisms remain unclear. Recently, we showed that a GluN2B variant that is associated with severe ASD (GluN2B724t) impairs dendrite morphogenesis. To determine which aspects of dendrite growth are affected by GluN2B724t, we investigated the dynamics of dendrite growth and branching in rat neocortical neurons using time-lapse imaging. GluN2B724t expression shifted branch motility toward retraction and away from extension. GluN2B724t and wild-type neurons formed new branches at similar rates, but mutant neurons exhibited increased pruning of dendritic branches. The observed changes in dynamics resulted in nearly complete elimination of the net expansion of arbor size and complexity that is normally observed during this developmental period. These data demonstrate that ASD-associated mutant GluN2B interferes with dendrite morphogenesis by reducing rates of outgrowth while promoting retraction and subsequent pruning. Because mutant dendrites remain motile and capable of growth, it is possible that reducing pruning or promoting dendrite stabilization could overcome dendrite arbor defects associated with GRIN2B mutations.
Collapse
Affiliation(s)
- Jacob A Bahry
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States.,Graduate Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Karlie N Fedder-Semmes
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States.,Graduate Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States.,Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
23
|
Nuwer JL, Brady ML, Povysheva NV, Coyne A, Jacob TC. Sustained treatment with an α5 GABA A receptor negative allosteric modulator delays excitatory circuit development while maintaining GABAergic neurotransmission. Neuropharmacology 2021; 197:108724. [PMID: 34284042 DOI: 10.1016/j.neuropharm.2021.108724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
α5 subunit GABA type A receptor (GABAAR) preferring negative allosteric modulators (NAMs) are cognitive enhancers with antidepressant-like effects. α5-NAM success in treating mouse models of neurodevelopmental disorders with excessive inhibition have led to Phase 2 clinical trials for Down syndrome. Despite in vivo efficacy, no study has examined the effects of continued α5-NAM treatment on inhibitory and excitatory synapse plasticity to identify mechanisms of action. Here we used L-655,708, an imidazobenzodiazepine that acts as a highly selective but weak α5-NAM, to investigate the impact of sustained treatment on hippocampal neuron synapse and dendrite development. We show that 2-day pharmacological reduction of α5-GABAAR signaling from DIV12-14, when GABAARs contribute to depolarization, delays dendritic spine maturation and the NMDA receptor (NMDAR) GluN2B/GluN2A developmental shift. In contrast, α5-NAM treatment from DIV19-21, when hyperpolarizing GABAAR signaling predominates, enhances surface synaptic GluN2A while decreasing GluN2B. Despite changes in NMDAR subtype surface levels and localization, total levels of key excitatory synapse proteins were largely unchanged, and mEPSCs were unaltered. Importantly, 2-day α5-NAM treatment does not alter the total surface levels or distribution of α5-GABAARs, reduce the gephyrin inhibitory synaptic scaffold, or impair phasic or tonic inhibition. Furthermore, α5-NAM inhibition of the GABAAR tonic current in mature neurons is maintained after 2-day α5-NAM treatment, suggesting reduced tolerance liability, in contrast to other clinically relevant GABAAR-targeting drugs such as benzodiazepines. Together, these results show that α5-GABAARs contribute to dendritic spine maturation and excitatory synapse development via a NMDAR dependent mechanism without perturbing overall neuronal excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Coyne
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep 2021; 30:4197-4208.e6. [PMID: 32209478 DOI: 10.1016/j.celrep.2020.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Collapse
Affiliation(s)
- Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Ribeiro Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly Point du Jour
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Markus Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
25
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
26
|
Crosta CM, Hernandez K, Bhattiprolu AK, Fu AY, Moore JC, Clarke SG, Dudzinski NR, Brzustowicz LM, Paradiso KG, Firestein BL. Characterization hiPSC-derived neural progenitor cells and neurons to investigate the role of NOS1AP isoforms in human neuron dendritogenesis. Mol Cell Neurosci 2020; 109:103562. [PMID: 32987141 PMCID: PMC7736313 DOI: 10.1016/j.mcn.2020.103562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 01/30/2023] Open
Abstract
Abnormal dendritic arbor development has been implicated in a number of neurodevelopmental disorders, such as autism and Rett syndrome, and the neuropsychiatric disorder schizophrenia. Postmortem brain samples from subjects with schizophrenia show elevated levels of NOS1AP in the dorsolateral prefrontal cortex, a region of the brain associated with cognitive function. We previously reported that the long isoform of NOS1AP (NOS1AP-L), but not the short isoform (NOS1AP-S), negatively regulates dendrite branching in rat hippocampal neurons. To investigate the role that NOS1AP isoforms play in human dendritic arbor development, we adapted methods to generate human neural progenitor cells and neurons using induced pluripotent stem cell (iPSC) technology. We found that increased protein levels of either NOS1AP-L or NOS1AP-S decrease dendrite branching in human neurons at the developmental time point when primary and secondary branching actively occurs. Next, we tested whether pharmacological agents can decrease the expression of NOS1AP isoforms. Treatment of human iPSC-derived neurons with d-serine, but not clozapine, haloperidol, fluphenazine, or GLYX-13, results in a reduction in endogenous NOS1AP-L, but not NOS1AP-S, protein expression; however, d-serine treatment does not reverse decreases in dendrite number mediated by overexpression of NOS1AP isoforms. In summary, we demonstrate how an in vitro model of human neuronal development can help in understanding the etiology of schizophrenia and can also be used as a platform to screen drugs for patients.
Collapse
Affiliation(s)
- Christen M Crosta
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Neurosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kristina Hernandez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Atul K Bhattiprolu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Allen Y Fu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jennifer C Moore
- Department of Genetics, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Stephen G Clarke
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Natasha R Dudzinski
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Linda M Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Kenneth G Paradiso
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
27
|
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179:108277. [PMID: 32818520 PMCID: PMC7572776 DOI: 10.1016/j.neuropharm.2020.108277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus. However, little is known about whether PSD-95 deficiency will affect gamma-aminobutyric acid (GABA)ergic inhibitory synapses. Using a PSD-95 transgenic mouse model (PSD-95+/-), we studied how PSD-95 deficiency affects GABAA receptor expression and function in the medial prefrontal cortex (mPFC) during adolescence. Our results showed a significant increase in the GABAA receptor subunit α1. Correspondingly, there are increases in the frequency and amplitude in spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons in the mPFC of PSD-95+/- mice, along with a significant increase in evoked IPSCs, leading to a dramatic shift in the excitatory-to-inhibitory balance in PSD-95 deficient mice. Furthermore, PSD-95 deficiency promotes inhibitory synapse function via upregulation and trafficking of NLGN2 and reduced GSK3β activity through tyr-216 phosphorylation. Our study provides novel insights on the effects of GABAergic transmission in the mPFC due to PSD-95 deficiency and its potential link with cognitive and learning deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
28
|
Gonda S, Giesen J, Sieberath A, West F, Buchholz R, Klatt O, Ziebarth T, Räk A, Kleinhubbert S, Riedel C, Hollmann M, Hamad MIK, Reiner A, Wahle P. GluN2B but Not GluN2A for Basal Dendritic Growth of Cortical Pyramidal Neurons. Front Neuroanat 2020; 14:571351. [PMID: 33281565 PMCID: PMC7691608 DOI: 10.3389/fnana.2020.571351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
NMDA receptors are important players for neuronal differentiation. We previously reported that antagonizing NMDA receptors with APV blocked the growth-promoting effects evoked by the overexpression of specific calcium-permeable or flip-spliced AMPA receptor subunits and of type I transmembrane AMPA receptor regulatory proteins which both exclusively modify apical dendritic length and branching of cortical pyramidal neurons. These findings led us to characterize the role of GluN2B and GluN2A for dendritogenesis using organotypic cultures of rat visual cortex. Antagonizing GluN2B with ifenprodil and Ro25-6981 strongly impaired basal dendritic growth of supra- and infragranular pyramidal cells at DIV 5–10, but no longer at DIV 15–20. Growth recovered after washout, and protein blots revealed an increase of synaptic GluN2B-containing receptors as indicated by a enhanced phosphorylation of the tyrosine 1472 residue. Antagonizing GluN2A with TCN201 and NVP-AAM077 was ineffective at both ages. Dendrite growth of non-pyramidal interneurons was not altered. We attempted to overexpress GluN2A and GluN2B. However, although the constructs delivered currents in HEK cells, there were neither effects on dendrite morphology nor an enhanced sensitivity to NMDA. Further, co-expressing GluN1-1a and GluN2B did not alter dendritic growth. Visualization of overexpressed, tagged GluN2 proteins was successful after immunofluorescence for the tag which delivered rather weak staining in HEK cells as well as in neurons. This suggested that the level of overexpression is too weak to modify dendrite growth. In summary, endogenous GluN2B, but not GluN2A is important for pyramidal cell basal dendritic growth during an early postnatal time window.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Giesen
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Sieberath
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Fabian West
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raoul Buchholz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Oliver Klatt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabine Kleinhubbert
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Guajardo L, Aguilar R, Bustos FJ, Nardocci G, Gutiérrez RA, van Zundert B, Montecino M. Downregulation of the Polycomb-Associated Methyltransferase Ezh2 during Maturation of Hippocampal Neurons Is Mediated by MicroRNAs Let-7 and miR-124. Int J Mol Sci 2020; 21:ijms21228472. [PMID: 33187138 PMCID: PMC7697002 DOI: 10.3390/ijms21228472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/04/2022] Open
Abstract
Ezh2 is a catalytic subunit of the polycomb repressive complex 2 (PRC2) which mediates epigenetic gene silencing through depositing the mark histone H3 lysine 27 trimethylation (H3K27me3) at target genomic sequences. Previous studies have demonstrated that Enhancer of Zeste Homolog 2 (Ezh2) was differentially expressed during maturation of hippocampal neurons; in immature neurons, Ezh2 was abundantly expressed, whereas in mature neurons the expression Ezh2 was significantly reduced. Here, we report that Ezh2 is downregulated by microRNAs (miRs) that are expressed during the hippocampal maturation process. We show that, in mature hippocampal neurons, lethal-7 (let-7) and microRNA-124 (miR-124) are robustly expressed and can target cognate motifs at the 3′-UTR of the Ezh2 gene sequence to downregulate Ezh2 expression. Together, these data demonstrate that the PRC2 repressive activity during hippocampal maturation is controlled through a post-transcriptional mechanism that mediates Ezh2 downregulation in mature neurons.
Collapse
Affiliation(s)
- Laura Guajardo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Fernando J. Bustos
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- CARE Biomedical Research Center, Santiago 83370186, Chile
| | - Gino Nardocci
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
| | - Rodrigo A. Gutiérrez
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- CARE Biomedical Research Center, Santiago 83370186, Chile
- Correspondence: (B.v.Z.); (M.M.)
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (L.G.); (R.A.); (F.J.B.); (G.N.)
- FONDAP Center for Genome Regulation, Santiago 8370186, Chile;
- Correspondence: (B.v.Z.); (M.M.)
| |
Collapse
|
30
|
Aguilar R, Bustos FJ, Nardocci G, van Zundert B, Montecino M. Epigenetic silencing of the osteoblast-lineage gene program during hippocampal maturation. J Cell Biochem 2020; 122:367-384. [PMID: 33135214 DOI: 10.1002/jcb.29865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that epigenetic control of gene expression plays a significant role during cell lineage commitment and subsequent cell fate maintenance. Here, we assess epigenetic mechanisms operating in the rat brain that mediate silencing of genes that are expressed during early and late stages of osteogenesis. We report that repression of the osteoblast master regulator Sp7 in embryonic (E18) hippocampus is mainly mediated through the Polycomb complex PRC2 and its enzymatic product H3K27me3. During early postnatal (P10), juvenile (P30), and adult (P90) hippocampal stages, the repressive H3K27me3 mark is progressively replaced by nucleosome enrichment and increased CpG DNA methylation at the Sp7 gene promoter. In contrast, silencing of the late bone phenotypic Bglap gene in the hippocampus is PRC2-independent and accompanied by strong CpG methylation from E18 through postnatal and adult stages. Forced ectopic expression of the primary master regulator of osteogenesis Runx2 in embryonic hippocampal neurons activates the expression of its downstream target Sp7 gene. Moreover, transcriptomic analyses show that several genes associated with the mesenchymal-osteogenic lineages are transcriptionally activated in these hippocampal cells that express Runx2 and Sp7. This effect is accompanied by a loss in neuronal properties, including a significant reduction in secondary processes at the dendritic arbor and reduced expression of critical postsynaptic genes like PSD95. Together, our results reveal a developmental progression in epigenetic control mechanisms that repress the expression of the osteogenic program in hippocampal neurons at embryonic, postnatal, and adult stages.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando J Bustos
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Neurometabolic effects of sweetened solution intake during adolescence related to depressive-like phenotype in rats. Nutrition 2020; 75-76:110770. [PMID: 32276242 DOI: 10.1016/j.nut.2020.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Exposure to artificial sweeteners, such as aspartame, during childhood and adolescence has been increasing in recent years. However, the safe use of aspartame has been questioned owing to its potentially harmful effects on the developing brain. The aim of this study was to test whether the chronic consumption of aspartame during adolescence leads to a depressive-like phenotype and to investigate the possible mechanisms underlying these behavioral changes. METHODS Adolescent male and female rats were given unlimited access to either water, solutions of aspartame, or sucrose in their home cages from postnatal day 21 to 55. RESULTS Forced swim test revealed that both chronic aspartame and sucrose intake induced depressive-like behaviord, which was more pronounced in males. Additionally, repeated aspartame intake was associated with increased cerebrospinal fluid (CSF) aspartate levels, decreased hippocampal neurogenesis, and reduced activation of the hippocampal leptin signaling pathways in males. In females, we observed a main effect of aspartame: reducing PI3K/AKT one of the brain-derived neurotrophic factor pathways; aspartame also increased CSF aspartate levels and decreased the immunocontent of the GluN2A subunit of the N-methyl-d-aspartic acid receptor. CONCLUSION The findings revealed that repeated aspartame intake during adolescence is associated with a depressive-like phenotype and changes in brain plasticity. Interestingly, males appear to be more vulnerable to the adverse neurometabolic effects of aspartame than females, demonstrating a sexually dimorphic response. The present results highlighted the importance of understanding the effects caused by the constant use of this artificial sweetener in sensitive periods of development and contribute to regulation of its safe use.
Collapse
|
32
|
Zhang L, Wang R, Bai T, Xiang X, Qian W, Song J, Hou X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J 2019; 33:13644-13659. [PMID: 31601124 DOI: 10.1096/fj.201901192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Patients with irritable bowel syndrome (IBS) show pain hypersensitivity and smooth muscle hypercontractility in response to colorectal distension (CRD). Synaptic plasticity, a key process of memory formation, in the enteric nervous system may be a novel explanation. This study aimed to explore the regulatory role of ephrinB2/ephB2 in enteric synaptic plasticity and colonic hyperreactive motility in IBS. Postinfectious (PI)-IBS was induced by Trichinella spiralis infection in rats. Isometric contractions of colonic circular muscle strips, particularly neural-mediated contractions, were recorded ex vivo. Meanwhile, ephrinB2/ephB2-mediated enteric structural and functional synaptic plasticity were assessed in the colonic muscularis, indicating that ephrinB2 and ephB2 were located on enteric nerves and up-regulated in the colonic muscularis of PI-IBS rats. Colonic hypersensitivity to CRD and neural-mediated colonic hypercontractility were present in PI-IBS rats, which were correlated with increased levels of cellular homologous fos protein (c-fos) and activity-regulated cystoskeleton-associated protein (arc), the synaptic plasticity-related immediate early genes, and were ameliorated by ephB2Fc (an ephB2 receptor blocker) or MK801 (an NMDA receptor inhibitor) exposure. EphrinB2/ephB2 facilitated synaptic sprouting and NMDA receptor-mediated synaptic potentiation in the colonic muscularis of PI-IBS rats and in the longitudinal muscle-myenteric plexus cultures, involving the Erk-MAPK and PI3K-protein kinase B pathways. In conclusion, ephrinB2/ephB2 promoted the synaptic sprouting and potentiation of myenteric nerves involved in persistent muscle hypercontractility and pain in PI-IBS. Hence, ephrinB2/ephB2 may be an emerging target for the treatment of IBS.-Zhang, L., Wang, R., Bai, T., Xiang, X., Qian, W., Song, J., Hou, X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian Xiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Sceniak MP, Fedder KN, Wang Q, Droubi S, Babcock K, Patwardhan S, Wright-Zornes J, Pham L, Sabo SL. An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth. J Cell Sci 2019; 132:jcs.232892. [PMID: 31548203 DOI: 10.1242/jcs.232892] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with multiple genetic associations. Analysis of de novo mutations identified GRIN2B, which encodes the GluN2B subunit of NMDA receptors, as a gene linked to ASDs with high probability. However, the mechanisms by which GRIN2B mutations contribute to ASD pathophysiology are not understood. Here, we investigated the cellular phenotypes induced by a human mutation that is predicted to truncate GluN2B within the extracellular loop. This mutation abolished NMDA-dependent Ca2+ influx. Mutant GluN2B co-assembled with GluN1 but was not trafficked to the cell surface or dendrites. When mutant GluN2B was expressed in developing cortical neurons, dendrites appeared underdeveloped, with shorter and fewer branches, while spine density was unaffected. Mutant dendritic arbors were often dysmorphic, displaying abnormal filopodial-like structures. Interestingly, dendrite maldevelopment appeared when mutant GluN2B was expressed on a wild-type background, reflecting the disease given that individuals are heterozygous for GRIN2B mutations. Restoring the fourth transmembrane domain and cytoplasmic tail did not rescue the phenotypes. Finally, abnormal development was not accompanied by reduced mTOR signaling. These data suggest that mutations in GluN2B contribute to ASD pathogenesis by disrupting dendrite development.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Karlie N Fedder
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qian Wang
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Sammy Droubi
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katie Babcock
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Sagar Patwardhan
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jazmin Wright-Zornes
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Lucynda Pham
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA .,Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Wang D, Li B, Wu Y, Li B. The Effects of Maternal Atrazine Exposure and Swimming Training on Spatial Learning Memory and Hippocampal Morphology in Offspring Male Rats via PSD95/NR2B Signaling Pathway. Cell Mol Neurobiol 2019; 39:1003-1015. [PMID: 31187311 PMCID: PMC11457838 DOI: 10.1007/s10571-019-00695-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Abstract
Atrazine (ATR), a widely used herbicide, has been previously shown to damage spatial memory capability and the hippocampus of male rats during the development. It has also been indicated that physical exercise can improve learning and memory in both humans and animals, as a neuroprotective method. Our aim here was to investigate the effect of maternal ATR exposure during gestation and lactation on spatial learning and memory function and hippocampal morphology in offspring and to further evaluate the neuroprotective effect of swimming training and identify possible related learning and memory signaling pathways. Using Sprague-Dawley rats, we examined behavioral and molecular biology effects associated with maternal ATR exposure, as well as the effects of 8 or 28 days swimming training. Maternal exposure to ATR was found to impair spatial learning and memory by behavioral test, damage the hippocampal morphology, and reduce related genes and proteins expression of learning and memory in the hippocampus. The extended, 28 days, period of swimming training produced a greater amelioration of the adverse effects of ATR exposure than the shorter, 8 days, training period. Our results suggest that maternal ATR exposure may damage the spatial learning and memory of offspring male rats via PSD95/NR2B signaling pathway. The negative effect of ATR could be at least partially reversed by swimming training, pointing to a potential neuroprotective role of physical exercise in nervous system diseases accompanying by learning and memory deficit.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Bai Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yanping Wu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Baixiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
35
|
陈 小, 任 晓, 马 亚, 葛 莉, 胡 钟, 阎 文. [Research progress of the role of postoperative pain in the development of postoperative cognitive dysfunction in geriatric patients]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1122-1126. [PMID: 31640954 PMCID: PMC6881737 DOI: 10.12122/j.issn.1673-4254.2019.09.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/21/2022]
Abstract
Previous studies have shown that postoperative cognitive dysfunction (POCD) is related to multiple factors including age, postoperative trauma, inflammation, postoperative pain, and anesthesia, among which postoperative pain is thought to play an important role in the development of POCD. This review summarizes the recent findings in the study of the role of postoperative pain in the pathogenesis of POCD in light of nerve injuries, neural remodeling and stress, and the progress in the prevention and treatment of POCD in elderly patients. It is of vital important to assess the postoperative pain and formulate adequate analgesic regimens for effective prevention and management of POCD to protect the brain functions of elderly patients.
Collapse
Affiliation(s)
- 小慧 陈
- 甘肃省人民医院麻醉科,甘肃 兰州 730000Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - 晓强 任
- 河西学院附属张掖人民医院骨二科,甘肃 张掖 734000Department of Orthopedics, Zhangye People's Hospital Affiliated to Hexi University, Zhangye 734000, China
| | - 亚兵 马
- 甘肃省人民医院麻醉科,甘肃 兰州 730000Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - 莉 葛
- 甘肃省人民医院麻醉科,甘肃 兰州 730000Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - 钟元 胡
- 甘肃省人民医院麻醉科,甘肃 兰州 730000Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - 文军 阎
- 甘肃省人民医院麻醉科,甘肃 兰州 730000Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| |
Collapse
|
36
|
Ampuero E, Cerda M, Härtel S, Rubio FJ, Massa S, Cubillos P, Abarzúa-Catalán L, Sandoval R, Galaburda AM, Wyneken U. Chronic Fluoxetine Treatment Induces Maturation-Compatible Changes in the Dendritic Arbor and in Synaptic Responses in the Auditory Cortex. Front Pharmacol 2019; 10:804. [PMID: 31379577 PMCID: PMC6650542 DOI: 10.3389/fphar.2019.00804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023] Open
Abstract
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) used to treat mood and anxiety disorders. Chronic treatment with this antidepressant drug is thought to favor functional recovery by promoting structural and molecular changes in several forebrain areas. At the synaptic level, chronic fluoxetine induces an increased size and density of dendritic spines and an increased ratio of GluN2A over GluN2B N-methyl-D-aspartate (NMDA) receptor subunits. The "maturation"-promoting molecular changes observed after chronic fluoxetine should also induce structural remodeling of the neuronal dendritic arbor and changes in the synaptic responses. We treated adult rats with fluoxetine (0.7 mg/kg i.p. for 28 days) and performed a morphometric analysis using Golgi stain in limbic and nonlimbic cortical areas. Then, we focused especially on the auditory cortex, where we evaluated the dendritic morphology of pyramidal neurons using a 3-dimensional reconstruction of neurons expressing mRFP after in utero electroporation. With both methodologies, a shortening and decreased complexity of the dendritic arbors was observed, which is compatible with an increased GluN2A over GluN2B ratio. Recordings of extracellular excitatory postsynaptic potentials in the auditory cortex revealed an increased synaptic response after fluoxetine and were consistent with an enrichment of GluN2A-containing NMDA receptors. Our results confirm that fluoxetine favors maturation and refinement of extensive cortical networks, including the auditory cortex. The fluoxetine-induced receptor switch may decrease GluN2B-dependent toxicity and thus could be applied in the future to treat neurodegenerative brain disorders characterized by glutamate toxicity and/or by an aberrant network connectivity.
Collapse
Affiliation(s)
- Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Mauricio Cerda
- SCIAN-Lab, CIMT, Biomedical Neuroscience Institute (BNI), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, CIMT, Biomedical Neuroscience Institute (BNI), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Centro Nacional de Sistemas de Información en Salud (CENS), Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Solange Massa
- Laboratorio de Neurociencias, Universidad de los Andes, Santiago, Chile
| | - Paula Cubillos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lorena Abarzúa-Catalán
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Sandoval
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Albert M. Galaburda
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
37
|
Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 2019; 9:9486. [PMID: 31263190 PMCID: PMC6602948 DOI: 10.1038/s41598-019-45971-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a major regulator in the maturation of excitatory synapses by interacting and trafficking N-methyl-D-aspartic acid receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPAR) to the postsynaptic membrane. PSD-95 disruption has recently been associated with neuropsychiatric disorders such as schizophrenia and autism. However, the effects of PSD-95 deficiency on the prefrontal cortex (PFC)-associated functions, including cognition, working memory, and sociability, has yet to be investigated. Using a PSD-95 knockout mouse model (PSD-95-/-), we examined how PSD-95 deficiency affects NMDAR and AMPAR expression and function in the medial prefrontal cortex (mPFC) during juvenile and adolescent periods of development. We found significant increases in total protein levels of NMDAR subunits GluN1, and GluN2B, accompanied by decreases in AMPAR subunit GluA1 during adolescence. Correspondingly, there is a significant increase in NMDAR/AMPAR-mediated current amplitude ratio that progresses from juvenile-to-adolescence. Behaviorally, PSD-95-/- mice exhibit a lack of sociability, as well as learning and working memory deficits. Together, our data indicate that PSD-95 deficiency disrupts mPFC synaptic function and related behavior at a critical age of development. This study highlights the importance of PSD-95 during neurodevelopment in the mPFC and its potential link in the pathogenesis associated with schizophrenia and/or autism.
Collapse
Affiliation(s)
- Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
38
|
Abarzúa S, Ampuero E, Zundert B. Superoxide generation via the NR2B‐NMDAR/RasGRF1/NOX2 pathway promotes dendritogenesis. J Cell Physiol 2019; 234:22985-22995. [DOI: 10.1002/jcp.28859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Abarzúa
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| | - Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| |
Collapse
|
39
|
Mardones MD, Jorquera PV, Herrera-Soto A, Ampuero E, Bustos FJ, van Zundert B, Varela-Nallar L. PSD95 regulates morphological development of adult-born granule neurons in the mouse hippocampus. J Chem Neuroanat 2019; 98:117-123. [PMID: 31047946 DOI: 10.1016/j.jchemneu.2019.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 11/29/2022]
Abstract
In the adult hippocampus new neurons are generated in the dentate gyrus from neural progenitor cells. Adult-born neurons integrate into the hippocampal circuitry and contribute to hippocampal function. PSD95 is a major postsynaptic scaffold protein that is crucial for morphological maturation and synaptic development of hippocampal neurons. Here we study the function of PSD95 in adult hippocampal neurogenesis by downregulating PSD95 expression in newborn cells using retroviral-mediated RNA interference. Retroviruses coding for a control shRNA or an shRNA targeting PSD95 (shPSD95) were stereotaxically injected into the dorsal dentate gyrus of 2-month-old C57BL/6 mice. PSD95 knockdown did not affect neuronal differentiation of newborn cells into neurons, or migration of newborn neurons into the granule cell layer. Morphological analysis revealed that newborn neurons expressing shPSD95 showed increased dendritic length and increased number of high-order dendrites. Concomitantly, dendrites from shPSD95-expressing newborn granule neurons showed a reduction in the density of dendritic spines. These results suggest that PSD95 is required for proper dendritic and spine maturation of adult-born neurons, but not for early stages of neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Muriel D Mardones
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Patricia V Jorquera
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Fernando J Bustos
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; McGovern Institute for Brain Research, MIT, Cambridge, MA, United States
| | - Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Centro de Envejecimiento y Regeneración (CARE), P. Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
40
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
41
|
Moutton S, Bruel AL, Assoum M, Chevarin M, Sarrazin E, Goizet C, Guerrot AM, Charollais A, Charles P, Heron D, Faudet A, Houcinat N, Vitobello A, Tran-Mau-Them F, Philippe C, Duffourd Y, Thauvin-Robinet C, Faivre L. Truncating variants of the DLG4
gene are responsible for intellectual disability with marfanoid features. Clin Genet 2018; 93:1172-1178. [DOI: 10.1111/cge.13243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- S. Moutton
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A.-L. Bruel
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Assoum
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Chevarin
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - E. Sarrazin
- Caribbean Reference Center for Rare Neurological and Neuromuscular Diseases; Fort de France University Hospital; Fort de France France
| | - C. Goizet
- Reference Center for Developmental Anomalies, Medical Genetics Department, CHU Bordeaux and Laboratoire MRGM, INSERM U1211; University of Bordeaux; Bordeaux France
| | - A.-M. Guerrot
- Department of Genetics; Rouen University Hospital; Rouen France
| | - A. Charollais
- Department of Neonatal Medicine and Intensive Care, Neuropediatrics and Reference Centre for Learning Disabilities; Rouen University Hospital; Rouen France
| | - P. Charles
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - D. Heron
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - A. Faudet
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - N. Houcinat
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A. Vitobello
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - F. Tran-Mau-Them
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Philippe
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - Y. Duffourd
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Thauvin-Robinet
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - L. Faivre
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| |
Collapse
|
42
|
Coley AA, Gao WJ. PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:187-194. [PMID: 29169997 PMCID: PMC5801047 DOI: 10.1016/j.pnpbp.2017.11.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
Abstract
The molecular components of the postsynaptic density (PSD) in excitatory synapses of the brain are currently being investigated as one of the major etiologies of neurodevelopmental disorders such as schizophrenia (SCZ) and autism. Postsynaptic density protein-95 (PSD-95) is a major regulator of synaptic maturation by interacting, stabilizing and trafficking N-methyl-d-aspartic acid receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPARs) to the postsynaptic membrane. Recently, there has been overwhelming evidence that associates PSD-95 disruption with cognitive and learning deficits observed in SCZ and autism. For instance, recent genomic and sequencing studies of psychiatric patients highlight the aberrations at the PSD of glutamatergic synapses that include PSD-95 dysfunction. In animal studies, PSD-95 deficiency shows alterations in NMDA and AMPA-receptor composition and function in specific brain regions that may contribute to phenotypes observed in neuropsychiatric pathologies. In this review, we describe the role of PSD-95 as an essential scaffolding protein during synaptogenesis and neurodevelopment. More specifically, we discuss its interactions with NMDA receptor subunits that potentially affect glutamate transmission, and the formation of silent synapses during critical time points of neurodevelopment. Furthermore, we describe how PSD-95 may alter dendritic spine morphologies, thus regulating synaptic function that influences behavioral phenotypes in SCZ versus autism. Understanding the role of PSD-95 in the neuropathologies of SCZ and autism will give an insight of the cellular and molecular attributes in the disorders, thus providing treatment options in patients affected.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
43
|
Wang X, Ding G, Lai W, Liu S, Shuai J. MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Exp Ther Med 2018; 15:3181-3188. [PMID: 29545833 PMCID: PMC5840935 DOI: 10.3892/etm.2018.5838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA-383 (miR-383) expression on propofol-induced learning and memory impairment. In total, 48 male Sprague-Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with propofol for 6 h and untreated (propofol model group), treated with a constructed lentivirus vector expressing miR-383 mimics (mimic + propofol group), or treated with miR-383 scramble (scramble + propofol group). The learning memory ability, hippocampal neuron apoptosis and expression of apoptosis-associated factors were detected using reverse transcription-quantitiative polymerase chain reaction and western blot analysis. Propofol treatment significantly reduced the relative mRNA and protein expression of miR-383, induced neuron apoptosis, upregulated the Bax/Bcl-2 ratio, downregulated the relative mRNA and protein expression levels of postsynaptic density protein 95 and cAMP-response element binding protein, and inactivated the phosphoinositide 3-kinase/protein kinase B signaling pathway. By contrast, miR-383 mimics significantly altered the propofol-induced dysregulation of the aforementioned factors. In conclusion, miR-383 mimic was able to repair propofol-induced cognitive impairment via protecting against hippocampal neuron apoptosis and dysregulation of related factors. The present study suggested that miR-383 may be used as a potential therapeutic target for the clinical treatment of cognitive impairment induced by propofol anesthesia.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guoyou Ding
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Wei Lai
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Shiwen Liu
- Department of Anesthesia, Ganzhou People's Hospital, Ganzhou, Jiangxi 310000, P.R. China
| | - Jun Shuai
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| |
Collapse
|
44
|
Peters C, Sepúlveda FJ, Fernández-Pérez EJ, Peoples RW, Aguayo LG. The Level of NMDA Receptor in the Membrane Modulates Amyloid-β Association and Perforation. J Alzheimers Dis 2018; 53:197-207. [PMID: 27163827 DOI: 10.3233/jad-160170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects mostly the elderly. The main histopathological markers are the senile plaques formed by amyloid-β peptide (Aβ) aggregates that can perforate the plasma membrane of cells, increasing the intracellular calcium levels and releasing synaptic vesicles that finally lead to a delayed synaptic failure. Several membrane proteins and lipids interact with Aβ affecting its toxicity in neurons. Here, we focus on NMDA receptors (NMDARs) as proteins that could be modulating the association and neurotoxic perforation induced by Aβ on the plasma membrane. In fact, our results showed that decreasing NMDARs, using enzymatic or siRNA approaches, increased the association of Aβ to the neurons. Furthermore, overexpression of NMDARs also resulted in an enhanced association between NMDA and Aβ. Functionally, the reduction in membrane NMDARs augmented the process of membrane perforation. On the other hand, overexpressing NMDARs had a protective effect because Aβ was now unable to cause membrane perforation, suggesting a complex relationship between Aβ and NMDARs. Because previous studies have recognized that Aβ oligomers are able to increase membrane permeability and produce amyloid pores, the present study supports the conclusion that NMDARs play a critical protective role on Aβ actions in hippocampal neurons. These results could explain the lack of correlation between brain Aβ burden and clinically observed dementia.
Collapse
Affiliation(s)
- Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | | | - Robert W Peoples
- Laboratory of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| |
Collapse
|
45
|
Bustos FJ, Jury N, Martinez P, Ampuero E, Campos M, Abarzúa S, Jaramillo K, Ibing S, Mardones MD, Haensgen H, Kzhyshkowska J, Tevy MF, Neve R, Sanhueza M, Varela-Nallar L, Montecino M, van Zundert B. NMDA receptor subunit composition controls dendritogenesis of hippocampal neurons through CAMKII, CREB-P, and H3K27ac. J Cell Physiol 2017; 232:3677-3692. [PMID: 28160495 DOI: 10.1002/jcp.25843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
Dendrite arbor growth, or dendritogenesis, is choreographed by a diverse set of cues, including the NMDA receptor (NMDAR) subunits NR2A and NR2B. While NR1NR2B receptors are predominantly expressed in immature neurons and promote plasticity, NR1NR2A receptors are mainly expressed in mature neurons and induce circuit stability. How the different subunits regulate these processes is unclear, but this is likely related to the presence of their distinct C-terminal sequences that couple different signaling proteins. Calcium-calmodulin-dependent protein kinase II (CaMKII) is an interesting candidate as this protein can be activated by calcium influx through NMDARs. CaMKII triggers a series of biochemical signaling cascades, involving the phosphorylation of diverse targets. Among them, the activation of cAMP response element-binding protein (CREB-P) pathway triggers a plasticity-specific transcriptional program through unknown epigenetic mechanisms. Here, we found that dendritogenesis in hippocampal neurons is impaired by several well-characterized constructs (i.e., NR2B-RS/QD) and peptides (i.e., tatCN21) that specifically interfere with the recruitment and interaction of CaMKII with the NR2B C-terminal domain. Interestingly, we found that transduction of NR2AΔIN, a mutant NR2A construct with increased interaction to CaMKII, reactivates dendritogenesis in mature hippocampal neurons in vitro and in vivo. To gain insights into the signaling and epigenetic mechanisms underlying NMDAR-mediated dendritogenesis, we used immunofluorescence staining to detect CREB-P and acetylated lysine 27 of histone H3 (H3K27ac), an activation-associated histone tail mark. In contrast to control mature neurons, our data shows that activation of the NMDAR/CaMKII/ERK-P/CREB-P signaling axis in neurons expressing NR2AΔIN is not correlated with increased nuclear H3K27ac levels.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Pablo Martinez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Matias Campos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Abarzúa
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Karen Jaramillo
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Susanne Ibing
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Muriel D Mardones
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Henny Haensgen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Maria Florencia Tevy
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Rachael Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
46
|
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 2017; 140:3252-3268. [PMID: 29155979 PMCID: PMC5841035 DOI: 10.1093/brain/awx272] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Fahimeh Falahi
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorge Toledo
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Jaclyn Lata
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paula Cubillos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Berta Henríquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Miguel V Guerra
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Jimmy Stehberg
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nibaldo C Inestrosa
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Steffen Härtel
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| |
Collapse
|
47
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
48
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
49
|
Camprubí Camprubí M, Balada Caballé R, Ortega Cano JA, Ortega de la Torre MDLA, Duran Fernández-Feijoo C, Girabent-Farrés M, Figueras-Aloy J, Krauel X, Alcántara S. Learning and memory disabilities in IUGR babies: Functional and molecular analysis in a rat model. Brain Behav 2017; 7:e00631. [PMID: 28293472 PMCID: PMC5346519 DOI: 10.1002/brb3.631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/22/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION 1Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve its inherent growth potential, and it has frequently been associated with neurodevelopmental problems in childhood. Neurological disorders are mostly associated with IUGR babies with an abnormally high cephalization index (CI) and a brain sparing effect. However, a similar correlation has never been demonstrated in an animal model. The aim of this study was to determine the correlations between CI, functional deficits in learning and memory and alterations in synaptic proteins in a rat model of IUGR. METHODS 2Utero-placental insufficiency was induced by meso-ovarian vessel cauterization (CMO) in pregnant rats at embryonic day 17 (E17). Learning performance in an aquatic learning test was evaluated 25 days after birth and during 10 days. Some synaptic proteins were analyzed (PSD95, Synaptophysin) by Western blot and immunohistochemistry. RESULTS 3Placental insufficiency in CMO pups was associated with spatial memory deficits, which are correlated with a CI above the normal range. CMO pups presented altered levels of synaptic proteins PSD95 and synaptophysin in the hippocampus. CONCLUSIONS 4The results of this study suggest that learning disabilities may be associated with altered development of excitatory neurotransmission and synaptic plasticity. Although interspecific differences in fetal response to placental insufficiency should be taken into account, the translation of these data to humans suggest that both IUGR babies and babies with a normal birth weight but with intrauterine Doppler alterations and abnormal CI should be closely followed to detect neurodevelopmental alterations during the postnatal period.
Collapse
Affiliation(s)
- Marta Camprubí Camprubí
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Rafel Balada Caballé
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain
| | - Juan A Ortega Cano
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain; Present address: Department of Neurology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | | | | | | | - Josep Figueras-Aloy
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Xavier Krauel
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Soledad Alcántara
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain
| |
Collapse
|
50
|
Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P. Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 2016; 42:77-94. [PMID: 26613567 DOI: 10.1111/nan.12297] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro-striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α-synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α-synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α-synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re-cycling as well as synaptic and structural plasticity, α-synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Annalena Venneri
- IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| |
Collapse
|