1
|
Zhang H, Xiong X, Cheng M, Ji L, Ning K. Deep learning enabled integration of tumor microenvironment microbial profiles and host gene expressions for interpretable survival subtyping in diverse types of cancers. mSystems 2024; 9:e0139524. [PMID: 39565103 PMCID: PMC11651096 DOI: 10.1128/msystems.01395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
The tumor microbiome, a complex community of microbes found in tumors, has been found to be linked to cancer development, progression, and treatment outcome. However, it remains a bottleneck in distangling the relationship between the tumor microbiome and host gene expressions in tumor microenvironment, as well as their concert effects on patient survival. In this study, we aimed to decode this complex relationship by developing ASD-cancer (autoencoder-based subtypes detector for cancer), a semi-supervised deep learning framework that could extract survival-related features from tumor microbiome and transcriptome data, and identify patients' survival subtypes. By using tissue samples from The Cancer Genome Atlas database, we identified two statistically distinct survival subtypes across all 20 types of cancer Our framework provided improved risk stratification (e.g., for liver hepatocellular carcinoma, [LIHC], log-rank test, P = 8.12E-6) compared to PCA (e.g., for LIHC, log-rank test, P = 0.87), predicted survival subtypes accurately, and identified biomarkers for survival subtypes. Additionally, we identified potential interactions between microbes and host genes that may play roles in survival. For instance, in LIHC, Arcobacter, Methylocella, and Isoptericola may regulate host survival through interactions with host genes enriched in the HIF-1 signaling pathway, indicating these species as potential therapy targets. Further experiments on validation data sets have also supported these patterns. Collectively, ASD-cancer has enabled accurate survival subtyping and biomarker discovery, which could facilitate personalized treatment for broad-spectrum types of cancers.IMPORTANCEUnraveling the intricate relationship between the tumor microbiome, host gene expressions, and their collective impact on cancer outcomes is paramount for advancing personalized treatment strategies. Our study introduces ASD-cancer, a cutting-edge autoencoder-based subtype detector. ASD-cancer decodes the complexities within the tumor microenvironment, successfully identifying distinct survival subtypes across 20 cancer types. Its superior risk stratification, demonstrated by significant improvements over traditional methods like principal component analysis, holds promise for refining patient prognosis. Accurate survival subtype predictions, biomarker discovery, and insights into microbe-host gene interactions elevate ASD-cancer as a powerful tool for advancing precision medicine. These findings not only contribute to a deeper understanding of the tumor microenvironment but also open avenues for personalized interventions across diverse cancer types, underscoring the transformative potential of ASD-cancer in shaping the future of cancer care.
Collapse
Affiliation(s)
- Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghao Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Detlefsen S, Burton M, Ainsworth AP, Fristrup C, Graversen M, Pfeiffer P, Tarpgaard LS, Mortensen MB. RNA expression profiling of peritoneal metastasis from pancreatic cancer treated with Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). Pleura Peritoneum 2024; 9:79-91. [PMID: 38948326 PMCID: PMC11211652 DOI: 10.1515/pp-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/12/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is an experimental treatment option in peritoneal metastasis from pancreatic cancer (PM-PC). Aims were to examine mRNA profile of fibrosis due to response after systemic chemotherapy and PIPAC (Regression) compared to treatment-naïve PM-PC and chronic cholecystitis-related peritoneal fibrosis (Controls). Methods Peritoneal biopsies (PBs) from PM-PC patients who had undergone systemic chemotherapy and PIPAC were evaluated with Peritoneal Regression Grading Score (PRGS). We extracted RNA from PBs with Regression (PRGS 1, n=11), treatment-naïve PM-PC (n=10), and Controls (n=10). Profiling of 800 mRNAs was performed (NanoString nCounter, PanCancer Immuno-Oncology 360 (IO-360) and 30 additional stroma-related mRNAs). Results Regression vs. PM-PC identified six up-regulated and 197 down-regulated mRNAs (FDR≤0.05), linked to TNF-α signaling via NF-kB, G2M checkpoint, epithelial-mesenchymal transition, estrogen response, and coagulation. Regression vs. Controls identified 43 significantly up-regulated mRNAs, linked to interferon-α response, and down-regulation of 99 mRNAs, linked to TNF-α signaling via NF-kB, inflammatory response, epithelial-mesenchymal transition, KRAS signaling, and hypoxia (FDR≤0.05). Conclusions In regressive fibrosis of PM-PC after systemic chemotherapy and PIPAC (Regression), downregulation of mRNAs related to key tumor biological pathways was identified. Regression also showed transcriptional differences from unspecific, benign fibrosis (Controls). Future studies should explore whether mRNA profiling of PBs with PM from PC or other primaries holds prognostic or predictive value.
Collapse
Affiliation(s)
- Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mark Burton
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, University of Southern Denmark, Odense, Denmark
| | - Alan P. Ainsworth
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Claus Fristrup
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Martin Graversen
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
- OPEN–Open Patient Data Explorative Network, Odense University Hospital, Region of Southern Denmark,Denmark
| | - Per Pfeiffer
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Line S. Tarpgaard
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Michael B. Mortensen
- Odense Pancreas Center (OPAC) and Odense PIPAC Center (OPC), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Nikas IP, Park SY, Song MJ, Lee C, Ryu HS. Expression of EGFR, PD-L1, and the mismatch repair proteins before and following therapy in malignant serous effusions with metastatic high-grade serous tubo-ovarian carcinoma. Diagn Cytopathol 2024; 52:69-75. [PMID: 37937321 DOI: 10.1002/dc.25248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
AIM To compare the immunochemical expression of EGFR, PD-L1, and the mismatch repair (MMR) proteins MLH1, PMS2, MSH2, and MSH6 between matched malignant effusions obtained before and following the administration of chemotherapy in patients with high-grade serous tubo-ovarian carcinoma (HGSC). METHODS In the enrolled HGSCs, matched formalin-fixed and paraffin-embedded cell blocks (CBs) from effusions sampled before (treatment-naïve patients) and during recurrence (following chemotherapy administration), in addition to their matched HGSC tissues obtained from the ovaries at initial diagnosis (treatment-naïve patients), were subjected to EGFR, PD-L1, and MMR immunochemical analysis. RESULTS EGFR was more often overexpressed in effusions obtained after chemotherapy administration compared to both effusions (100% vs. 57.1%) and their matched tubo-ovarian tumors (100% vs. 7.1%) from treatment-naïve patients, respectively. EGFR immunochemistry was concordant in just 9.1% of the effusions sampled during recurrence and their paired ovarian samples before recurrence. Whereas all HGSC treatment-naïve samples (ovarian lesions and effusions) were PD-L1 negative, 3/11 (27.3%) malignant effusions obtained during recurrence showed PD-L1 overexpression. Lastly, none of the tested HGSC samples exhibited MMR deficiency. CONCLUSION Measuring biomarkers using CBs from malignant effusions may provide clinicians with significant information related to HGSC prognosis and therapy selection, especially in patients with resistance to chemotherapy.
Collapse
Affiliation(s)
- Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Soo-Young Park
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Guo KS, Brodsky AS. Tumor collagens predict genetic features and patient outcomes. NPJ Genom Med 2023; 8:15. [PMID: 37414817 DOI: 10.1038/s41525-023-00358-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The extracellular matrix (ECM) is a critical determinant of tumor fate that reflects the output from myriad cell types in the tumor. Collagens constitute the principal components of the tumor ECM. The changing collagen composition in tumors along with their impact on patient outcomes and possible biomarkers remains largely unknown. The RNA expression of the 43 collagen genes from solid tumors in The Cancer Genome Atlas (TCGA) was clustered to classify tumors. PanCancer analysis revealed how collagens by themselves can identify the tissue of origin. Clustering by collagens in each cancer type demonstrated strong associations with survival, specific immunoenvironments, somatic gene mutations, copy number variations, and aneuploidy. We developed a machine learning classifier that predicts aneuploidy, and chromosome arm copy number alteration (CNA) status based on collagen expression alone with high accuracy in many cancer types with somatic mutations, suggesting a strong relationship between the collagen ECM context and specific molecular alterations. These findings have broad implications in defining the relationship between cancer-related genetic defects and the tumor microenvironment to improve prognosis and therapeutic targeting for patient care, opening new avenues of investigation to define tumor ecosystems.
Collapse
Affiliation(s)
- Kevin S Guo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
6
|
Duchnowska R, Supernat AM, Pęksa R, Łukasiewicz M, Stokowy T, Ronen R, Dutkowski J, Umińska M, Iżycka-Świeszewska E, Kowalczyk A, Och W, Rucińska M, Olszewski WP, Mandat T, Jarosz B, Bieńkowski M, Biernat W, Jassem J. Pathway-level mutation analysis in primary high-grade serous ovarian cancer and matched brain metastases. Sci Rep 2022; 12:20537. [PMID: 36446793 PMCID: PMC9708673 DOI: 10.1038/s41598-022-23788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022] Open
Abstract
Brain metastases (BMs) in ovarian cancer (OC) are a rare event. BMs occur most frequently in high-grade serous (HGS) OC. The molecular features of BMs in HGSOC are poorly understood. We performed a whole-exome sequencing analysis of ten matched pairs of formalin-fixed paraffin-embedded samples from primary HGSOC and corresponding BMs. Enrichment significance (p value; false discovery rate) was computed using the Reactome, the Kyoto Encyclopedia of Genes and Genomes pathway collections, and the Gene Ontology Biological Processes. Germline DNA damage repair variants were found in seven cases (70%) and involved the BRCA1, BRCA2, ATM, RAD50, ERCC4, RPA1, MLHI, and ATR genes. Somatic mutations of TP53 were found in nine cases (90%) and were the only stable mutations between the primary tumor and BMs. Disturbed pathways in BMs versus primary HGSOC constituted a complex network and included the cell cycle, the degradation of the extracellular matrix, cell junction organization, nucleotide metabolism, lipid metabolism, the immune system, G-protein-coupled receptors, intracellular vesicular transport, and reaction to chemical stimuli (Golgi vesicle transport and olfactory signaling). Pathway analysis approaches allow for a more intuitive interpretation of the data as compared to considering single-gene aberrations and provide an opportunity to identify clinically informative alterations in HGSOC BM.
Collapse
Affiliation(s)
- Renata Duchnowska
- grid.415641.30000 0004 0620 0839Oncology Department, Military Institute of Medicine - National Research Institute, Szaserów St. 128, 04-141 Warsaw, Poland
| | - Anna Maria Supernat
- grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Pęksa
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Łukasiewicz
- grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Stokowy
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | - Ewa Iżycka-Świeszewska
- grid.11451.300000 0001 0531 3426Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kowalczyk
- grid.11451.300000 0001 0531 3426Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Waldemar Och
- Neurosurgery Department, Regional Specialist Hospital, Olsztyn, Poland
| | - Monika Rucińska
- grid.412607.60000 0001 2149 6795Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech P. Olszewski
- grid.418165.f0000 0004 0540 2543Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Mandat
- grid.418165.f0000 0004 0540 2543Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Bożena Jarosz
- grid.411484.c0000 0001 1033 7158Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Michał Bieńkowski
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Biernat
- grid.11451.300000 0001 0531 3426Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- grid.11451.300000 0001 0531 3426Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Wang Y, Xie H, Chang X, Hu W, Li M, Li Y, Liu H, Cheng H, Wang S, Zhou L, Shen D, Dou S, Ma R, Mao Y, Zhu H, Zhang X, Zheng Y, Ye X, Wen L, Kee K, Cui H, Tang F. Single-Cell Dissection of the Multiomic Landscape of High-Grade Serous Ovarian Cancer. Cancer Res 2022; 82:3903-3916. [PMID: 35969151 PMCID: PMC9627134 DOI: 10.1158/0008-5472.can-21-3819] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/30/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
High-grade serous cancer (HGSC) is the most common subtype of ovarian cancer. HGSC is highly aggressive with poor patient outcomes, and a deeper understanding of HGSC tumorigenesis could help guide future treatment development. To systematically characterize the underlying pathologic mechanisms and intratumoral heterogeneity in human HGSC, we used an optimized single-cell multiomics sequencing technology to simultaneously analyze somatic copy-number alterations (SCNA), DNA methylation, chromatin accessibility, and transcriptome in individual cancer cells. Genes associated with interferon signaling, metallothioneins, and metabolism were commonly upregulated in ovarian cancer cells. Integrated multiomics analyses revealed that upregulation of interferon signaling and metallothioneins was influenced by both demethylation of their promoters and hypomethylation of satellites and LINE1, and potential key transcription factors regulating glycolysis using chromatin accessibility data were uncovered. In addition, gene expression and DNA methylation displayed similar patterns in matched primary and abdominal metastatic tumor cells of the same genetic lineage, suggesting that metastatic cells potentially preexist in the subclones of primary tumors. Finally, the lineages of cancer cells with higher residual DNA methylation levels and upregulated expression of CCN1 and HSP90AA1 presented greater metastatic potential. This study characterizes the critical genetic, epigenetic, and transcriptomic features and their mutual regulatory relationships in ovarian cancer, providing valuable resources for identifying new molecular mechanisms and potential therapeutic targets for HGSC. SIGNIFICANCE Integrated analysis of multiomic changes and epigenetic regulation in high-grade serous ovarian cancer provides insights into the molecular characteristics of this disease, which could help improve diagnosis and treatment.
Collapse
Affiliation(s)
- Yicheng Wang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Haoling Xie
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Xiaohong Chang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Wenqi Hu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengyao Li
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yi Li
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Huiping Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Hongyan Cheng
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Shang Wang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Ling Zhou
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Danhua Shen
- Department of Pathology, People's Hospital, Peking University, Beijing, China
| | - Sha Dou
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Ruiqiong Ma
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Yunuo Mao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Honglan Zhu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Xiaobo Zhang
- Department of Pathology, People's Hospital, Peking University, Beijing, China
| | - Yuxuan Zheng
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Xue Ye
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Corresponding Authors: Fuchou Tang, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China. E-mail: ; Heng Cui, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China. E-mail: ; and Kehkooi Kee, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China. E-mail:
| | - Heng Cui
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Center of Gynecologic Oncology, People's Hospital, Peking University, Beijing, China.,Corresponding Authors: Fuchou Tang, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China. E-mail: ; Heng Cui, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China. E-mail: ; and Kehkooi Kee, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China. E-mail:
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing, China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,Corresponding Authors: Fuchou Tang, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China. E-mail: ; Heng Cui, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China. E-mail: ; and Kehkooi Kee, Tsinghua University, 30 Shuangqing Road, Beijing 100084, China. E-mail:
| |
Collapse
|
8
|
Bose S, Huang Q, Ma Y, Wang L, Rivera GO, Ouyang Y, Whitaker R, Gibson RA, Kontos CD, Berchuck A, Previs RA, Shen X. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep 2022; 39:111012. [PMID: 35767962 PMCID: PMC9534522 DOI: 10.1016/j.celrep.2022.111012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis. Bose et al. characterize the importance of G6PD, the rate-limiting enzyme of the oxidative pentose phosphate pathway, in mitigating oxidative stress experienced by ovarian cancer cells metastasizing to the omentum.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710006, China
| | - Yunhan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Grecia O Rivera
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yunxin Ouyang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Regina Whitaker
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Rebecca A Gibson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA; Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27708, USA
| | - Andrew Berchuck
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Rebecca A Previs
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
9
|
Hermida LC, Gertz EM, Ruppin E. Predicting cancer prognosis and drug response from the tumor microbiome. Nat Commun 2022; 13:2896. [PMID: 35610202 PMCID: PMC9130323 DOI: 10.1038/s41467-022-30512-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor gene expression is predictive of patient prognosis in some cancers. However, RNA-seq and whole genome sequencing data contain not only reads from host tumor and normal tissue, but also reads from the tumor microbiome, which can be used to infer the microbial abundances in each tumor. Here, we show that tumor microbial abundances, alone or in combination with tumor gene expression, can predict cancer prognosis and drug response to some extent-microbial abundances are significantly less predictive of prognosis than gene expression, although similarly as predictive of drug response, but in mostly different cancer-drug combinations. Thus, it appears possible to leverage existing sequencing technology, or develop new protocols, to obtain more non-redundant information about prognosis and drug response from RNA-seq and whole genome sequencing experiments than could be obtained from tumor gene expression or genomic data alone.
Collapse
Affiliation(s)
- Leandro C Hermida
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - E Michael Gertz
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
10
|
To SKY, Tang MKS, Tong Y, Zhang J, Chan KKL, Ip PPC, Shi J, Wong AST. A Selective β-Catenin-Metadherin/CEACAM1-CCL3 Axis Mediates Metastatic Heterogeneity upon Tumor-Macrophage Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103230. [PMID: 35403834 PMCID: PMC9165500 DOI: 10.1002/advs.202103230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Tumor heterogeneity plays a key role in cancer relapse and metastasis, however, the distinct cellular behaviors and kinetics of interactions among different cancer cell subclones and the tumor microenvironment are poorly understood. By profiling an isogenic model that resembles spontaneous human ovarian cancer metastasis with an highly metastatic (HM) and non-metastatic (NM) tumor cell pair, one finds an upregulation of Wnt/β-catenin signaling uniquely in HM. Using humanized immunocompetent mice, one shows for the first time that activated β-catenin acts nonautonomously to modulate the immune microenvironment by enhancing infiltrating tumor-associated macrophages (TAM) at the metastatic site. Single-cell time-lapse microscopy further reveals that upon contact with macrophages, a significant subset of HM, but not NM, becomes polyploid, a phenotype pivotal for tumor aggressiveness and therapy resistance. Moreover, HM, but not NM, polarizes macrophages to a TAM phenotype. Mechanistically, β-catenin upregulates cancer cell surface metadherin, which communicates through CEACAM1 expressed on macrophages to produce CCL3. Tumor xenografts in humanized mice and clinical patient samples both corroborate the relevance of enhanced metastasis, TAM activation, and polyploidy in vivo. The results thus suggest that targeting the β-catenin-metadherin/CEACAM1-CCL3 positive feedback cascade holds great therapeutic potential to disrupt polyploidization of the cancer subclones that drive metastasis.
Collapse
Affiliation(s)
- Sally K. Y. To
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Maggie K. S. Tang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology Limited17W, Hong Kong Science and Technology Parks, New TerritoriesHong KongChina
| | - Yin Tong
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jiangwen Zhang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Karen K. L. Chan
- Department of Obstetrics & GynaecologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong KongChina
| | - Philip P. C. Ip
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jue Shi
- Centre for Quantitative Systems Biology and Department of PhysicsHong Kong Baptist UniversityHong KongChina
| | - Alice S. T. Wong
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
11
|
Peritoneal Restoration by Repurposing Vitamin D Inhibits Ovarian Cancer Dissemination via Blockade of the TGF-β1/Thrombospondin-1 Axis. Matrix Biol 2022; 109:70-90. [PMID: 35339636 DOI: 10.1016/j.matbio.2022.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer (OvCa), a lethal gynecological malignancy, disseminates to the peritoneum. Mesothelial cells (MCs) act as barriers in the abdominal cavity, preventing the adhesion of cancer cells. However, in patients with OvCa, they are transformed into cancer-associated mesothelial cells (CAMs) via mesenchymal transition and form a favorable microenvironment for tumors to promote metastasis. However, attempts for restoring CAMs to their original state have been limited. Here, we investigated whether inhibition of mesenchymal transition and restoration of MCs by vitamin D suppressed the OvCa dissemination in vitro and in vivo. METHODS The effect of vitamin D on the mutual association of MCs and OvCa cells was evaluated using in vitro coculture models and in vivo using a xenograft model. RESULTS Vitamin D restored the CAMs, and thrombospondin-1 (component of the extracellular matrix that is clinically associated with poor prognosis and is highly expressed in peritoneally metastasized OvCa) was found to promote OvCa cell adhesion and proliferation. Mechanistically, TGF-β1 secreted from OvCa cells enhanced thrombospondin-1 expression in CAMs via Smad-dependent TGF-β signaling. Vitamin D inhibited mesenchymal transition in MCs and suppressed thrombospondin-1 expression via vitamin D receptor/Smad3 competition, contributing to the marked reduction in peritoneal dissemination in vivo. Importantly, vitamin D restored CAMs from a stabilized mesenchymal state to the epithelial state and normalized thrombospondin-1 expression in preclinical models that mimic cancerous peritonitis in vivo. CONCLUSIONS MCs are key players in OvCa dissemination and peritoneal restoration and normalization of thrombospondin-1 expression by vitamin D may be a novel strategy for preventing OvCa dissemination.
Collapse
|
12
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
13
|
Nikas IP, Lee C, Song MJ, Kim B, Ryu HS. Biomarkers expression among paired serous ovarian cancer primary lesions and their peritoneal cavity metastases in treatment-naïve patients: A single-center study. Cancer Med 2022; 11:2193-2203. [PMID: 35212471 PMCID: PMC9160817 DOI: 10.1002/cam4.4600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Background High‐grade serous ovarian carcinoma (HGSOC), the most common histologic subtype of ovarian epithelial cancer, is associated with treatment resistance, enhanced recurrence rates, and poor prognosis. HGSOCs often metastasize to the peritoneal cavity, while fluid cytology examination could identify such metastases. This retrospective study aimed to identify potential biomarker discrepancies between paired HGSOC primary tissues and metastatic peritoneal fluid cytology samples, processed as cell blocks (CBs). Methods Twenty‐four pairs of formalin‐fixed, paraffin‐embedded primary tissues and metastatic CBs from an equal number of treatment‐naïve patients were used, and immunohistochemistry (IHC) for epidermal growth factor receptor (EGFR), human epidermal growth factor receptor, programmed cell death‐1 ligand 1 (PD‐L1), and CD147 was applied. Results 13/24 pairs showed discordant EGFR IHC results; in all these 13 patients, EGFR was positive (≥1+ membranous staining intensity found in at least 10% of the cancer cells) in the peritoneal, yet negative in the primary tissue samples. Notably, EGFR IHC was positive in 15/24 of the metastatic, whereas in just 2/24 of the primary HGSOC samples (p < 0.001). Although most PD‐L1 results were concordant, 5/24 and 6/24 pairs exhibited discordant results when stained with the E1L3N and 22C3 clones, respectively. Lastly, CD147 overexpression was found more often in the metastatic rather than the matched primary HGSOCs stained with CD147, though the difference was not significant. Conclusions Cytology from effusions could be considered for biomarker testing when present, even when tissue from the primary cancer is also available and adequately cellular, as it could provide additional information of potential clinical significance.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University CyprusNicosiaCyprus
| | - Cheol Lee
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Min Ji Song
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Bohyun Kim
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
- Department of Pathology, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
14
|
Gonda A, Zhao N, Shah JV, Siebert JN, Gunda S, Inan B, Kwon M, Libutti SK, Moghe PV, Francis NL, Ganapathy V. Extracellular Vesicle Molecular Signatures Characterize Metastatic Dynamicity in Ovarian Cancer. Front Oncol 2021; 11:718408. [PMID: 34868914 PMCID: PMC8637407 DOI: 10.3389/fonc.2021.718408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Late-stage diagnosis of ovarian cancer, a disease that originates in the ovaries and spreads to the peritoneal cavity, lowers 5-year survival rate from 90% to 30%. Early screening tools that can: i) detect with high specificity and sensitivity before conventional tools such as transvaginal ultrasound and CA-125, ii) use non-invasive sampling methods and iii) longitudinally significantly increase survival rates in ovarian cancer are needed. Studies that employ blood-based screening tools using circulating tumor-cells, -DNA, and most recently tumor-derived small extracellular vesicles (sEVs) have shown promise in non-invasive detection of cancer before standard of care. Our findings in this study show the promise of a sEV-derived signature as a non-invasive longitudinal screening tool in ovarian cancer. METHODS Human serum samples as well as plasma and ascites from a mouse model of ovarian cancer were collected at various disease stages. Small extracellular vesicles (sEVs) were extracted using a commercially available kit. RNA was isolated from lysed sEVs, and quantitative RT-PCR was performed to identify specific metastatic gene expression. CONCLUSION This paper highlights the potential of sEVs in monitoring ovarian cancer progression and metastatic development. We identified a 7-gene panel in sEVs derived from plasma, serum, and ascites that overlapped with an established metastatic ovarian carcinoma signature. We found the 7-gene panel to be differentially expressed with tumor development and metastatic spread in a mouse model of ovarian cancer. The most notable finding was a significant change in the ascites-derived sEV gene signature that overlapped with that of the plasma-derived sEV signature at varying stages of disease progression. While there were quantifiable changes in genes from the 7-gene panel in serum-derived sEVs from ovarian cancer patients, we were unable to establish a definitive signature due to low sample number. Taken together our findings show that differential expression of metastatic genes derived from circulating sEVs present a minimally invasive screening tool for ovarian cancer detection and longitudinal monitoring of molecular changes associated with progression and metastatic spread.
Collapse
Affiliation(s)
- Amber Gonda
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Srujanesh Gunda
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Berk Inan
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Mijung Kwon
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Steven K. Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Nicola L. Francis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
15
|
CCNE1 amplification among metastatic sites in patients with gynecologic high-grade serous carcinoma. Gynecol Oncol Rep 2021; 37:100850. [PMID: 34485660 PMCID: PMC8391017 DOI: 10.1016/j.gore.2021.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
CCNE1 amplification is conserved among metastatic sites in CCNE1-amplified high-grade serous carcinomas. Limited CCNE1 copy number heterogeneity among CCNE1-amplified cases suggests some genomic change during metastasis. Digital droplet PCR can be used to quantify CCNE1 copy number from archival specimens of high-grade serous carcinomas.
Objective We sought to characterize the variability of CCNE1 amplification among metastatic sites of CCNE1 amplified high grade serous carcinoma (HGSC) cases to investigate the feasibility of targeting this alteration for therapeutic purposes. Methods Patients with CCNE1 amplified HGSC who underwent surgical cytoreduction with metastatic sites were identified from institutional molecular profiling reports and a population of HGSC cases screened using digital droplet PCR (ddPCR). Cases with normal CCNE1 copy number were included as controls. Slides from metastatic sites were cut from formalin-fixed paraffin-embedded tissue blocks, dissected for tumor of > 50% purity, and underwent DNA extraction. CCNE1 copy number was determined by ddPCR. Tumor purity was confirmed with mutant TP53 allele fraction from targeted massively parallel sequencing. Results Four of 15 patients from an institutional database screened by ddPCR were found to have CCNE1 amplification. Three additional patients were identified from a query of institutional commercial clinical reports. Among these 7 CCNE1 amplified cases (2 uterine, 5 ovarian), 5 showed preservation of CCNE1 amplification (copy number > 5) among all metastatic sites. The remaining 2 cases had multiple metastatic sites without preserved CCNE1 amplification. Non-amplified cases had predominantly normal CCNE1 copy number across metastatic sites. Conclusions CCNE1 amplification is an early genomic event in HGSC and is preserved in most metastatic sites suggesting a uniform response to pathway targeting therapies.
Collapse
|
16
|
Qian J, LeSavage BL, Hubka KM, Ma C, Natarajan S, Eggold JT, Xiao Y, Fuh KC, Krishnan V, Enejder A, Heilshorn SC, Dorigo O, Rankin EB. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest 2021; 131:e146186. [PMID: 34396988 DOI: 10.1172/jci146186] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-β signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Jin Qian
- Department of Radiation Oncology
| | | | - Kelsea M Hubka
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | | | | | | | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, Missouri, USA
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Erinn B Rankin
- Department of Radiation Oncology.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Naffar-Abu Amara S, Kuiken HJ, Selfors LM, Butler T, Leung ML, Leung CT, Kuhn EP, Kolarova T, Hage C, Ganesh K, Panayiotou R, Foster R, Rueda BR, Aktipis A, Spellman P, Ince TA, Xiu J, Oberley M, Gatalica Z, Navin N, Mills GB, Bronson RT, Brugge JS. Transient commensal clonal interactions can drive tumor metastasis. Nat Commun 2020; 11:5799. [PMID: 33199705 PMCID: PMC7669858 DOI: 10.1038/s41467-020-19584-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The extent and importance of functional heterogeneity and crosstalk between tumor cells is poorly understood. Here, we describe the generation of clonal populations from a patient-derived ovarian clear cell carcinoma model which forms malignant ascites and solid peritoneal tumors upon intraperitoneal transplantation in mice. The clonal populations are engineered with secreted Gaussia luciferase to monitor tumor growth dynamics and tagged with a unique DNA barcode to track their fate in multiclonal mixtures during tumor progression. Only one clone, CL31, grows robustly, generating exclusively malignant ascites. However, multiclonal mixtures form large solid peritoneal metastases, populated almost entirely by CL31, suggesting that transient cooperative interclonal interactions are sufficient to promote metastasis of CL31. CL31 uniquely harbors ERBB2 amplification, and its acquired metastatic activity in clonal mixtures is dependent on transient exposure to amphiregulin, which is exclusively secreted by non-tumorigenic clones. Amphiregulin enhances CL31 mesothelial clearance, a prerequisite for metastasis. These findings demonstrate that transient, ostensibly innocuous tumor subpopulations can promote metastases via “hit-and-run” commensal interactions. Cooperative interactions among tumor cells may have important implications for metastasis. Here, the authors examined the spatio-temporal nature of interactions among clonal populations of ovarian carcinoma cells and found that transient interactions cells can promote metastases via commensal interactions.
Collapse
Affiliation(s)
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy Butler
- Department of Molecular and Medical Genetics, Oregon Health & Science University Portland, Portland, OR, 97239-3098, USA.,Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Marco L Leung
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, PA, 19104, USA
| | - Cheuk T Leung
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Elaine P Kuhn
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Teodora Kolarova
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, 98195, USA
| | - Carina Hage
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kripa Ganesh
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Panayiotou
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosemary Foster
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center and Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University Portland, Portland, OR, 97239-3098, USA
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, AZ, 85040, USA
| | | | - Zoran Gatalica
- Caris Life Sciences, Phoenix, AZ, 85040, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Nicholas Navin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, OR, 97239-3098, USA
| | - Rodrick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Jacob F, Marchetti RL, Kind AB, Russell K, Schoetzau A, Heinzelmann-Schwarz VA. High-grade serous peritoneal cancer follows a high stromal response signature and shows worse outcome than ovarian cancer. Mol Oncol 2020; 15:91-103. [PMID: 33016563 PMCID: PMC7782088 DOI: 10.1002/1878-0261.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
In the era of personalized medicine, where transition from organ‐based to individualized genetic diagnosis takes place, the tailoring of treatment in cancer becomes increasingly important. This is particularly true for high‐grade, advanced FIGO stage serous adenocarcinomas of the ovary (OC), fallopian tube (TC), and peritoneum (PC), which are currently all treated identically. We analyzed three independent patient cohorts using histopathologically classified diagnosis and various molecular approaches (transcriptomics, immunohistochemistry, next‐generation sequencing, fluorescent and chromogenic in situ hybridization). Using multivariate Cox regression model, we found that PC is more aggressive compared with advanced‐stage OC independent of residual disease as shown by an earlier relapse‐free survival in two large cohorts (HR: 2.63, CI: 1.59–4.37, P < 0.001, and HR: 1.66, CI: 1.04–2.63, P < 0.033). In line with these findings, transcriptomic data revealed differentially expressed gene signatures identifying PC as high stromal response tumors. The third independent cohort (n = 4054) showed a distinction between these cancer types for markers suggested to be predictive for chemotherapy drug response. Our findings add additional evidence that ovarian and peritoneal cancers are epidemiologically and molecularly distinct diseases. Moreover, our data also suggest consideration of the tumor‐sampling site for future diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Rosa Lina Marchetti
- Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, Switzerland
| | - André B Kind
- Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, Switzerland
| | | | - Andreas Schoetzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Viola A Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland.,Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, Switzerland
| |
Collapse
|
19
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
20
|
Brain Metastases from Ovarian Cancer: Current Evidence in Diagnosis, Treatment, and Prognosis. Cancers (Basel) 2020; 12:cancers12082156. [PMID: 32759682 PMCID: PMC7464214 DOI: 10.3390/cancers12082156] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
With this review, we provide the state of the art concerning brain metastases (BMs) from ovarian cancer (OC), a rare condition. Clinical, pathological, and molecular features, treatment options, and future perspectives are comprehensively discussed. Overall, a diagnosis of high-grade serous OC and an advanced disease stage are common features among patients who develop brain metastases. BRCA1 and BRCA2 gene mutations, as well as the expression of androgen receptors in the primary tumor, are emerging risk and prognostic factors which could allow one to identify categories of patients at greater risk of BMs, who could benefit from a tailored follow-up. Based on present data, a multidisciplinary approach combining surgery, radiotherapy, and chemotherapy seem to be the best approach for patients with good performance status, although the median overall survival (<1 year) remains largely disappointing. Hopefully, novel therapeutic avenues are being explored, like PARP inhibitors and immunotherapy, based on our improved knowledge regarding tumor biology, but further investigation is warranted.
Collapse
|
21
|
Wu A, Zhang S, Liu J, Huang Y, Deng W, Shu G, Yin G. Integrated Analysis of Prognostic and Immune Associated Integrin Family in Ovarian Cancer. Front Genet 2020; 11:705. [PMID: 32765584 PMCID: PMC7379341 DOI: 10.3389/fgene.2020.00705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Human integrin receptors are important for cell-cell and cell-matrix adhesion in normal epithelial cells. Emerging evidences have indicated integrin members are involved in cancer development and progression as well. However, the expression patterns and clinical significance of the whole integrin family in ovarian cancer (OC) have not yet been well understood. In the present study, we utilized the public datasets including GEPIA, GEO, ONCOMINE, cBioPortal, Kaplan-Meier Plotter, TIMER databases, to analyze the expression and prognostic value of integrin members in OC. We found ITGA3/B4/B6/B7/B8 were abnormally overexpressed in OC; ITGA6 was good prognosis predictor in OC; ITGA3/ B4/B8 were poor prognosis predictor specially in advanced OC patients; elevated ITGA3/B4 might promote metastasis and elevated ITGA3/B8 might promote platinum resistance of OC; ITGA3 and ITGB4 might synergistically or independently regulate cell adhesion and proliferation; ITGA4/AL/AM/AX/B2/B7 showed strong correlations with various tumor immune infiltrates (TILs), especially with pro-tumor immunes cell types like monocyte, M2 macrophage and exhaustion T cells infiltration; ITGAL/AM/B2/B7 and residing memory CD8+ T cells marker ITGAE were specially associated with early OC patients outcome. Our results implied that ITGA3/B4 were important prognostic markers of advanced OC, ITGAL/AM/ B2/B7 were immune associated prognosis markers of early OC, together they might render important therapeutic targets for OC.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Sai Zhang
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jiaqi Liu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yifeng Huang
- Department of Anesthesia, School of Medicine, Central South University, Changsha, China
| | - Wenyu Deng
- Departmemt of Nursing, School of Nursing, Central South University, Changsha, China
| | - Guang Shu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Hu Y, Taylor-Harding B, Raz Y, Haro M, Recouvreux MS, Taylan E, Lester J, Millstein J, Walts AE, Karlan BY, Orsulic S. Are Epithelial Ovarian Cancers of the Mesenchymal Subtype Actually Intraperitoneal Metastases to the Ovary? Front Cell Dev Biol 2020; 8:647. [PMID: 32766252 PMCID: PMC7380132 DOI: 10.3389/fcell.2020.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Primary ovarian high-grade serous carcinoma (HGSC) has been classified into 4 molecular subtypes: Immunoreactive, Proliferative, Differentiated, and Mesenchymal (Mes), of which the Mes subtype (Mes-HGSC) is associated with the worst clinical outcomes. We propose that Mes-HGSC comprise clusters of cancer and associated stromal cells that detached from tumors in the upper abdomen/omentum and disseminated in the peritoneal cavity, including to the ovary. Using comparative analyses of multiple transcriptomic data sets, we provide the following evidence that the phenotype of Mes-HGSC matches the phenotype of tumors in the upper abdomen/omentum: (1) irrespective of the primary ovarian HGSC molecular subtype, matched upper abdominal/omental metastases were typically of the Mes subtype, (2) the Mes subtype was present at the ovarian site only in patients with concurrent upper abdominal/omental metastases and not in those with HGSC confined to the ovary, and (3) ovarian Mes-HGSC had an expression profile characteristic of stromal cells in the upper abdominal/omental metastases. We suggest that ovarian Mes-HGSC signifies advanced intraperitoneal tumor dissemination to the ovary rather than a subtype of primary ovarian HGSC. This is consistent with the presence of upper abdominal/omental disease, suboptimal debulking, and worst survival previously reported in patients with ovarian Mes-HGSC compared to other molecular subtypes.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yael Raz
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Marcela Haro
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K. The E2F Pathway Score as a Predictive Biomarker of Response to Neoadjuvant Therapy in ER+/HER2- Breast Cancer. Cells 2020; 9:E1643. [PMID: 32650578 PMCID: PMC7407968 DOI: 10.3390/cells9071643] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
E2F transcription factors play critical roles in the cell cycle. Therefore, their activity is expected to reflect tumor aggressiveness and responsiveness to therapy. We scored 3905 tumors of nine breast cancer cohorts for this activity based on their gene expression for the Hallmark E2F targets gene set. As expected, tumors with a high score had an increased expression of cell proliferation-related genes. A high score was significantly associated with shorter patient survival, greater MKI67 expression, histological grade, stage, and genomic aberrations. Furthermore, metastatic tumors had higher E2F scores than the primary tumors from which they arose. Although tumors with a high score had greater infiltration by both pro- and anti-cancerous immune cells, they had an increased expression of immune checkpoint genes. Estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative cancer with a high E2F score achieved a significantly higher pathological complete response (pCR) rate to neoadjuvant chemotherapy. The E2F score was significantly associated with the expression of cyclin-dependent kinase (CDK)-related genes and strongly correlated with sensitivity to CDK inhibition in cell lines. In conclusion, the E2F score is a marker of breast cancer aggressiveness and predicts the responsiveness of ER-positive/HER2-negative patients to neoadjuvant chemotherapy and possibly to CDK and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Omar M. Rashid
- Department of Surgery, Holy Cross Hospital, Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, FL 33308, USA;
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518520, Japan;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 9601295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 1608402, Japan
| |
Collapse
|
24
|
Akar S, Harmankaya İ, Uğraş S, Çelik Ç. Nicotinamide N-Methyltransferase Expression in High-Grade Serous Carcinoma and Its Association with Survival. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2019. [DOI: 10.1007/s40944-019-0327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Sallinen H, Janhonen S, Pölönen P, Niskanen H, Liu OH, Kivelä A, Hartikainen JM, Anttila M, Heinäniemi M, Ylä-Herttuala S, Kaikkonen MU. Comparative transcriptome analysis of matched primary and distant metastatic ovarian carcinoma. BMC Cancer 2019; 19:1121. [PMID: 31744494 PMCID: PMC6862850 DOI: 10.1186/s12885-019-6339-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High grade serous ovarian carcinoma (HGSOC) is the most common subtype of epithelial ovarian cancers (EOC) with poor prognosis. In most cases EOC is widely disseminated at the time of diagnosis. Despite the optimal cytoreductive surgery and chemotherapy most patients develop chemoresistance, and the 5-year overall survival being only 25-35%. METHODS Here we analyzed the gene expression profiles of 10 primary HGSOC tumors and 10 related omental metastases using RNA sequencing and identified 100 differentially expressed genes. RESULTS The differentially expressed genes were associated with decreased embryogenesis and vasculogenesis and increased cellular proliferation and organismal death. Top upstream regulators responsible for this gene signature were NR5A1, GATA4, FOXL2, TP53 and BMP7. A subset of these genes were highly expressed in the ovarian cancer among the cancer transcriptomes of The Cancer Genome Atlas. Importantly, the metastatic gene signature was suggestive of poor survival in TCGA data based on gene enrichment analysis. CONCLUSION By comparing the gene expression profiles of primary HGSOC tumors and their matched metastasis, we provide evidence that a signature of 100 genes is able to separate these two sample types and potentially predict patient survival. Our study identifies functional categories of genes and transcription factors that could play important roles in promoting metastases and serve as markers for cancer prognosis.
Collapse
Affiliation(s)
- H. Sallinen
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - S. Janhonen
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - P. Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - H. Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - O. H. Liu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - A. Kivelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - J. M. Hartikainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - M. Anttila
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - M. Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - M. U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
26
|
Mitra S, Tiwari K, Podicheti R, Pandhiri T, Rusch DB, Bonetto A, Zhang C, Mitra AK. Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression. Cancers (Basel) 2019; 11:cancers11101513. [PMID: 31600962 PMCID: PMC6826756 DOI: 10.3390/cancers11101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Sumegha Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kartikeya Tiwari
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Andrea Bonetto
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W, Wang Z. Tumor cell‑fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med 2019; 44:2245-2255. [PMID: 31638162 PMCID: PMC6844628 DOI: 10.3892/ijmm.2019.4361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Ascitic multicellular aggregates (MCAs) promote peritoneal metastasis of ovarian cancer. The aim of the present study was to elucidate the role of cancer-associated fibroblasts (CAFs) in MCA formation and metastasis in patients with high-grade serous ovarian cancer (HGSOC). Immunohistochemistry was used to identify the cell phenotypes and the presence of CAFs in ascitic MCAs. The role of CAFs in tumor-cell MCA formation was assessed by co-culture in suspension. Primary ascitic tumor cells and omental CAFs were used to generate ex vivo MCAs in hanging drops, and the invasiveness of MCAs was evaluated by mesothelial clearance and adhesion assays in vitro and in vivo. MCAs containing CAFs and tumor cells were identified in the ascitic fluid. CAFs facilitated tumor cell aggregation and compaction to form MCAs, and enhanced the mesothelial clearance and adhesion abilities of tumor-cell MCAs. These findings suggest that ascitic CAFs promote peritoneal metastasis by forming heterotypic aggregates with tumor cells, and that they may serve as potential targets for the treatment of HGSOC.
Collapse
Affiliation(s)
- Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bangxing Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yifan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiahong Jiang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
28
|
Mariani A, Wang C, Oberg AL, Riska SM, Torres M, Kumka J, Multinu F, Sagar G, Roy D, Jung DB, Zhang Q, Grassi T, Visscher DW, Patel VP, Jin L, Staub JK, Cliby WA, Weroha SJ, Kalli KR, Hartmann LC, Kaufmann SH, Goode EL, Shridhar V. Genes associated with bowel metastases in ovarian cancer. Gynecol Oncol 2019; 154:495-504. [PMID: 31204077 DOI: 10.1016/j.ygyno.2019.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study is designed to identify genes and pathways that could promote metastasis to the bowel in high-grade serous ovarian cancer (OC) and evaluate their associations with clinical outcomes. METHODS We performed RNA sequencing of OC primary tumors (PTs) and their corresponding bowel metastases (n = 21 discovery set; n = 18 replication set). Differentially expressed genes (DEGs) were those expressed at least 2-fold higher in bowel metastases (BMets) than PTs in at least 30% of patients (P < .05) with no increased expression in paired benign bowel tissue and were validated with quantitative reverse transcription PCR. Using an independent OC cohort (n = 333), associations between DEGs in PTs and surgical and clinical outcomes were performed. Immunohistochemistry and mouse xenograft studies were performed to confirm the role of LRRC15 in promoting metastasis. RESULTS Among 27 DEGs in the discovery set, 21 were confirmed in the replication set: SFRP2, Col11A1, LRRC15, ADAM12, ADAMTS12, MFAP5, LUM, PLPP4, FAP, POSTN, GRP, MMP11, MMP13, C1QTNF3, EPYC, DIO2, KCNA1, NETO1, NTM, MYH13, and PVALB. Higher expression of more than half of the genes in the PT was associated with an increased requirement for bowel resection at primary surgery and an inability to achieve complete cytoreduction. Increased expression of LRRC15 in BMets was confirmed by immunohistochemistry and knockdown of LRRC15 significantly inhibited tumor progression in mice. CONCLUSIONS We identified 21 genes that are overexpressed in bowel metastases among patients with OC. Our findings will help select potential molecular targets for the prevention and treatment of malignant bowel obstruction in OC.
Collapse
Affiliation(s)
- Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shaun M Riska
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michelle Torres
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joseph Kumka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gunisha Sagar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tommaso Grassi
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Vatsal P Patel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Julie K Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly R Kalli
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lynn C Hartmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Viji Shridhar
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Natarajan S, Foreman KM, Soriano MI, Rossen NS, Shehade H, Fregoso DR, Eggold JT, Krishnan V, Dorigo O, Krieg AJ, Heilshorn SC, Sinha S, Fuh KC, Rankin EB. Collagen Remodeling in the Hypoxic Tumor-Mesothelial Niche Promotes Ovarian Cancer Metastasis. Cancer Res 2019; 79:2271-2284. [PMID: 30862717 DOI: 10.1158/0008-5472.can-18-2616] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/27/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Peritoneal metastases are the leading cause of morbidity and mortality in high-grade serous ovarian cancer (HGSOC). Accumulating evidence suggests that mesothelial cells are an important component of the metastatic microenvironment in HGSOC. However, the mechanisms by which mesothelial cells promote metastasis are unclear. Here, we report that the HGSOC tumor-mesothelial niche was hypoxic, and hypoxic signaling enhanced collagen I deposition by mesothelial cells. Specifically, hypoxic signaling increased expression of lysyl oxidase (LOX) in mesothelial and ovarian cancer cells to promote collagen crosslinking and tumor cell invasion. The mesothelial niche was enriched with fibrillar collagen in human and murine omental metastases. Pharmacologic inhibition of LOX reduced tumor burden and collagen remodeling in murine omental metastases. These findings highlight an important role for hypoxia and mesothelial cells in the modification of the extracellular matrix and tumor invasion in HGSOC. SIGNIFICANCE: This study identifies HIF/LOX signaling as a potential therapeutic target to inhibit collagen remodeling and tumor progression in HGSOC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2271/F1.large.jpg.
Collapse
Affiliation(s)
- Suchitra Natarajan
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Kaitlyn M Foreman
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Michaela I Soriano
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Ninna S Rossen
- Department of Radiation Oncology, Stanford University, Palo Alto, California.,Department of Materials Science and Engineering, Stanford University, Palo Alto, California
| | - Hussein Shehade
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Daniel R Fregoso
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Joshua T Eggold
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - Adam J Krieg
- Oregon Health & Science University, Portland, Oregon
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Palo Alto, California
| | | | - Katherine C Fuh
- Division of Gynecologic Oncology, Washington University, St. Louis, Missouri
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Palo Alto, California. .,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
30
|
Ke X, Shen L. Targeting cytokines secreted by CD4 + CD25 high CD127 low regulatory T cells inhibits ovarian cancer progression. Scand J Immunol 2018; 89:e12736. [PMID: 30485902 DOI: 10.1111/sji.12736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 11/27/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the major malignant cancers with high rates of early metastasis in which regulatory T cells (Tregs) play an important role. Tregs suppress immune responses and promote the development of tumours in patients with EOC. However, the underlying mechanisms remain unclear. In this study, we found higher levels of CD4+ CD25high CD127low Tregs in patients with EOC than in patients with benign ovarian tumours and healthy donors. The immune inhibitory effect of Tregs functions by maintaining high levels of immunosuppressive cytokines in EOC. The high levels of Tregs and related cytokines (TGF-β1 or IL-10) were associated with lymphatic metastasis and FIGO stages of patients with EOC. Expression of matrix metalloproteinase (MMP)-2 and tissue inhibitors of metalloproteinase (TIMP)-2 in EOC cell lines were significantly regulated in the coculture experiment with CD4+ CD25high CD127low Tregs sorted from EOC patients. Levels of MMP-2 and TIMP-2 conversely changed after blocking IL-10R and TGF-β1R in EOC cells. The invasion ability of EOC cells was also significantly downregulated in this process. The metastasis of EOC cells was correlated with the levels of TGF-β1 or IL-10. These findings suggested that immunosuppressive cytokines secreted by CD4+ Tregs could be a novel target for inhibiting EOC progression.
Collapse
Affiliation(s)
- Xing Ke
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Tan TZ, Heong V, Ye J, Lim D, Low J, Choolani M, Scott C, Tan DSP, Huang RYJ. Decoding transcriptomic intra-tumour heterogeneity to guide personalised medicine in ovarian cancer. J Pathol 2018; 247:305-319. [PMID: 30374975 DOI: 10.1002/path.5191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023]
Abstract
The evaluation of intra-tumour heterogeneity (ITH) from a transcriptomic point of view is limited. Single-cell cancer studies reveal significant genomic and transcriptomic ITH within a tumour and it is no longer adequate to employ single-subtype assignment as this does not acknowledge the ITH that exists. Molecular assessment of subtype heterogeneity (MASH) was developed to comprehensively report on the composition of all transcriptomic subtypes within a tumour lesion. Using MASH on 3431 ovarian cancer samples, correlation and association analyses with survival, metastasis and clinical outcomes were performed to assess the impact of subtype composition as a surrogate for ITH. The association was validated on two independent cohorts. We identified that 30% of ovarian tumours consist of two or more subtypes. When biological features of the subtype constituents were examined, we identified significant impact on clinical outcomes with the presence of poor prognostic subtypes (Mes or Stem-A). Poorer outcomes correlated with having higher degrees of poor prognostic subtype populations within the tumour. Subtype prediction in several independent datasets reflected a similar prognostic trend. In addition, paired analysis of primary and recurrent/metastatic tumours demonstrated Mes and/or Stem-A subtypes predominated in recurrent and metastatic tumours regardless of the original primary subtype. Given the biological and prognostic value in delineating individual subtypes within a tumour, a clinically applicable MASH assay using NanoString® technology was developed as a classification tool to comprehensively describe constituents of molecular subtypes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore
| | - Valerie Heong
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore.,Department of Haematology-Oncology, National University Cancer Institute Singapore, Level 8 NUH Medical Center, Singapore.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeffrey Low
- Department of Obstetrics and Gynecology, National University Health System, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Health System, Singapore
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore.,Department of Haematology-Oncology, National University Cancer Institute Singapore, Level 8 NUH Medical Center, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore.,Department of Obstetrics and Gynecology, National University Health System, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
32
|
Cao P, Zhao S, Sun Z, Jiang N, Shang Y, Wang Y, Gu J, Li S. BRMS1L suppresses ovarian cancer metastasis via inhibition of the β-catenin-wnt pathway. Exp Cell Res 2018; 371:214-221. [PMID: 30118697 DOI: 10.1016/j.yexcr.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/19/2023]
Abstract
A low level of breast cancer metastasis suppressor 1-like (BRMS1L) has been implicated in tumour metastasis involving breast cancer and other cancers. It remains unclear whether BRMS1L is involved in epithelial ovarian cancer (EOC) metastasis and what the molecular mechanism of BRMS1L is in suppressing EOC metastasis. In this study, we examined the mRNA expression and protein level of BRMS1L by screening EOC patients. Our results show that BRMS1L expression is downregulated in EOC patients compared to that in normal people and negatively correlated to pathological stages of EOC. We further explored examining epithelial to mesenchymal transition (EMT) as the molecular mechanism of BRMS1L in cancer cell metastasis. The overexpression of BRMS1L inhibits EOC cell migration and invasion, and this inhibition is correlated to the inactivation of EMT and Wnt/β-catenin signalling in vitro. Knockdown of BRMS1L by shRNA promotes EOC metastasis, enhances EMT process and activates Wnt/β-catenin signalling. These results suggest that BRMS1L plays a critical role in the suppression of ovarian cancer metastasis, and BRMS1L can be considered as a prognostic biomarker and potential therapeutic target for EOC patients.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuai Zhao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhigang Sun
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Nan Jiang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuhong Shang
- Department of Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
33
|
Antony J, Zanini E, Kelly Z, Tan TZ, Karali E, Alomary M, Jung Y, Nixon K, Cunnea P, Fotopoulou C, Paterson A, Roy-Nawathe S, Mills GB, Huang RYJ, Thiery JP, Gabra H, Recchi C. The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer. EMBO Rep 2018; 19:embr.201745670. [PMID: 29907679 DOI: 10.15252/embr.201745670] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
Abstract
In ovarian cancer, the prometastatic RTK AXL promotes motility, invasion and poor prognosis. Here, we show that reduced survival caused by AXL overexpression can be mitigated by the expression of the GPI-anchored tumour suppressor OPCML Further, we demonstrate that AXL directly interacts with OPCML, preferentially so when AXL is activated by its ligand Gas6. As a consequence, AXL accumulates in cholesterol-rich lipid domains, where OPCML resides. Here, phospho-AXL is brought in proximity to the lipid domain-restricted phosphatase PTPRG, which de-phosphorylates the RTK/ligand complex. This prevents AXL-mediated transactivation of other RTKs (cMET and EGFR), thereby inhibiting sustained phospho-ERK signalling, induction of the EMT transcription factor Slug, cell migration and invasion. From a translational perspective, we show that OPCML enhances the effect of the phase II AXL inhibitor R428 in vitro and in vivo We therefore identify a novel mechanism by which two spatially restricted tumour suppressors, OPCML and PTPRG, coordinate to repress AXL-dependent oncogenic signalling.
Collapse
Affiliation(s)
- Jane Antony
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Elisa Zanini
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Zoe Kelly
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Evdoxia Karali
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Mohammad Alomary
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Youngrock Jung
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Katherine Nixon
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Paula Cunnea
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Christina Fotopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Andrew Paterson
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Sushmita Roy-Nawathe
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Gordon B Mills
- Division of Basic Science Research, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynecology, National University Health System, Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hani Gabra
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK .,Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Chiara Recchi
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| |
Collapse
|
34
|
Chen SF, Liu Z, Chaurasiya S, Dellinger TH, Lu J, Wu X, Qin H, Wang J, Fong Y, Yuan YC. Identification of core aberrantly expressed microRNAs in serous ovarian carcinoma. Oncotarget 2018; 9:20451-20466. [PMID: 29755664 PMCID: PMC5945511 DOI: 10.18632/oncotarget.24942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have recently demonstrated great potential and enormous promise in the diagnosis, prognosis and therapy of various types of cancer. In this study, we performed a comprehensive miRNA expression analysis in the omental metastasis of serous ovarian carcinoma (SOC) using small RNA sequencing. Two hundred and fifty-one aberrantly expressed miRNAs were identified, which clearly separated malignant omentum from normal omentum. Furthermore, miRNA profiles in primary chemo-sensitive and chemo-resistant/refractory SOC were determined using publicly available data. Comparing miRNA expression profiles in omental metastases and primary chemo-sensitive and chemo-resistant/refractory tumors, a set of 70 miRNAs that were aberrantly expressed in both primary and metastatic SOC has been identified for the first time. These core aberrantly expressed miRNAs may play crucial roles in the tumorigenesis, growth, and metastasis of SOC. Therefore, they can serve as potential diagnostic biomarkers and as therapeutic targets for miRNA-mediated therapy. Kaplan-Meier overall survival analysis using The Cancer Genome Atlas data demonstrated that 10 miRNAs (hsa-miR-135, 150, -340, 625, 1908, 3187, -96, -196b, -449c, and -1275) were associated with survival of patients with SOC, which may serve as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Steven F. Chen
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Zheng Liu
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Thanh H. Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hanjun Qin
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
35
|
Zhao L, Wang W, Huang S, Yang Z, Xu L, Yang Q, Zhou X, Wang J, Shen Q, Wang C, Le X, Feng M, Zhou N, Lau WB, Lau B, Yao S, Yi T, Wang X, Zhao X, Wei Y, Zhou S. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol 2018; 19:35. [PMID: 29548303 PMCID: PMC5857099 DOI: 10.1186/s13059-018-1412-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ovarian cancer constitutes one of the most lethal gynecologic malignancies for females. Currently, early detection strategies and therapeutic options for ovarian cancer are far from satisfactory, leading to high diagnosis rates at late stages and disease relapses. New avenues of therapy are needed that target key processes in ovarian cancer progression. While a variety of non-coding RNAs have been proven to regulate ovarian cancer metastatic progression, the functional roles of RNA-binding proteins (RBPs) in this process are less well defined. RESULTS In this study, we identify that the RBP sorbin and SH3 domain containing 2 (SORBS2) is a potent suppressor of ovarian cancer metastatic colonization. Mechanistic studies show that SORBS2 binds the 3' untranslated regions (UTRs) of WFDC1 (WAP four-disulfide core domain 1) and IL-17D (Interleukin-17D), two secreted molecules that are shown to act as metastasis suppressors. Enhanced expression of either WFDC1 or IL-17D potently represses SORBS2 depletion-mediated cancer metastasis promotion. By enhancing the stability of these gene transcripts, SORBS2 suppresses ovarian cancer invasiveness and affects monocyte to myeloid-derived suppressor cell and M2-like macrophage polarization, eliciting a tumor-suppressive immune microenvironment. CONCLUSIONS Our data illustrate a novel post-transcriptional network that links cancer progression and immunomodulation within the tumor microenvironment through SORBS2-mediated transcript stabilization.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shuang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xiu Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Jinjin Wang
- College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Qiuhong Shen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Chenlu Wang
- College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Xiaobing Le
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Min Feng
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Santa Clara, CA, USA
| | - Shaohua Yao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
36
|
Kanska J, Aspuria PJP, Taylor-Harding B, Spurka L, Funari V, Orsulic S, Karlan BY, Wiedemeyer WR. Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT. Oncotarget 2018; 8:26200-26220. [PMID: 28412735 PMCID: PMC5432250 DOI: 10.18632/oncotarget.15429] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose is considered the primary energy source for all cells, and some cancers are addicted to glucose. Here, we investigated the functional consequences of chronic glucose deprivation in serous ovarian cancer cells. We found that cells resistant to glucose starvation (glucose-restricted cells) demonstrated increased metabolic plasticity that was dependent on NNMT (Nicotinamide N-methyltransferase) expression. We further show that ZEB1 induced NNMT, rendered cells resistant to glucose deprivation and recapitulated metabolic adaptations and mesenchymal gene expression observed in glucose-restricted cells. NNMT depletion reversed metabolic plasticity in glucose-restricted cells and prevented de novo formation of glucose-restricted colonies. In addition to its role in glucose independence, we found that NNMT was required for other ZEB1-induced phenotypes, such as increased migration. NNMT protein levels were also elevated in metastatic and recurrent tumors compared to matched primary carcinomas, while normal ovary and fallopian tube tissue had no detectable NNMT expression. Our studies define a novel ZEB1/NNMT signaling axis, which elicits mesenchymal gene expression, as well as phenotypic and metabolic plasticity in ovarian cancer cells upon chronic glucose starvation. Understanding the causes of cancer cell plasticity is crucial for the development of therapeutic strategies to counter intratumoral heterogeneity, acquired drug resistance and recurrence in high-grade serous ovarian cancer (HGSC).
Collapse
Affiliation(s)
- Justyna Kanska
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul-Joseph P Aspuria
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barbie Taylor-Harding
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lindsay Spurka
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vincent Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
| | - W Ruprecht Wiedemeyer
- Women's Cancer Program at the Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget 2018; 7:24194-207. [PMID: 27013584 PMCID: PMC5029694 DOI: 10.18632/oncotarget.8254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/06/2016] [Indexed: 11/25/2022] Open
Abstract
Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60–80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.
Collapse
|
38
|
Tiberio P, Lozneanu L, Angeloni V, Cavadini E, Pinciroli P, Callari M, Carcangiu ML, Lorusso D, Raspagliesi F, Pala V, Daidone MG, Appierto V. Involvement of AF1q/MLLT11 in the progression of ovarian cancer. Oncotarget 2017; 8:23246-23264. [PMID: 28423573 PMCID: PMC5410301 DOI: 10.18632/oncotarget.15574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/12/2017] [Indexed: 12/15/2022] Open
Abstract
The functional role of AF1q/MLLT11, an oncogenic factor involved in a translocation t(1;11)(q21;q23) responsible for acute myeloid leukaemia, has been investigated in hematological and solid malignancies and its expression was found to be linked to tumor progression and poor clinical outcome. In addition to its oncogenic function, AF1q has been shown to play a role in the onset of basal and drug-induced apoptosis in cancer cells of different histotypes, including ovarian cancer. Through in vitro, ex vivo, and in silico approaches, we demonstrated here that AF1q is also endowed with protumorigenic potential in ovarian cancer. In ovarian cancer cell lines, stable AF1q overexpression caused activation of epithelial-to-mesenchymal transition and increased motility/migratory/invasive abilities accompanied by gene expression changes mainly related to Wnt signaling and to signaling pathways involving in ERK/p38 activation. The potential role of AF1q in ovarian cancer progression was confirmed by immunohistochemical and in silico analyses performed in ovarian tumor specimens which revealed that the protein was absent in normal ovarian epithelium and became detectable when atypical proliferation was present. Moreover, AF1q was significantly lower in borderline ovarian tumors (i.e., tumors of low malignant potential without stromal invasion) than in invasive tumors, thus corroborating the association between high AF1q expression and increased migratory/invasive cell behavior and confirming its potential role in ovarian cancer progression. Our findings demonstrated, for the first time, that AF1q is endowed with protumorigenic activity in ovarian cancer, thus highlighting a dual behavior (i.e., protumorigenic and proapoptotic functions) of the protein in the malignancy.
Collapse
Affiliation(s)
- Paola Tiberio
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ludmila Lozneanu
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Morphofunctional Sciences-Histology, Patology, "Grigore T. Popa" University of Medicine and Pharmacy, Iassy, Romania
| | - Valentina Angeloni
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Cavadini
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pinciroli
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maria Luisa Carcangiu
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenica Lorusso
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Pala
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Appierto
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Farahmand L, Darvishi B, Salehi M, Samadi Kouchaksaraei S, Majidzadeh-A K. Functionalised nanomaterials for eradication of CSCs, a promising approach for overcoming tumour heterogeneity. J Drug Target 2017; 26:649-657. [DOI: 10.1080/1061186x.2017.1405426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Lawler K, Papouli E, Naceur-Lombardelli C, Mera A, Ougham K, Tutt A, Kimbung S, Hedenfalk I, Zhan J, Zhang H, Buus R, Dowsett M, Ng T, Pinder SE, Parker P, Holmberg L, Gillett CE, Grigoriadis A, Purushotham A. Gene expression modules in primary breast cancers as risk factors for organotropic patterns of first metastatic spread: a case control study. Breast Cancer Res 2017; 19:113. [PMID: 29029636 PMCID: PMC5640935 DOI: 10.1186/s13058-017-0881-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastases from primary breast cancers can involve single or multiple organs at metastatic disease diagnosis. Molecular risk factors for particular patterns of metastastic spread in a clinical population are limited. METHODS A case-control design including 1357 primary breast cancers was used to study three distinct clinical patterns of metastasis, which occur within the first six months of metastatic disease: bone and visceral metasynchronous spread, bone-only, and visceral-only metastasis. Whole-genome expression profiles were obtained using whole genome (WG)-DASL assays from formalin-fixed paraffin-embedded (FFPE) samples. A systematic protocol was developed for handling FFPE samples together with stringent data quality controls to identify robust expression profiling data. A panel of published and novel gene sets were tested for association with these specific patterns of metastatic spread and odds ratios (ORs) were calculated. RESULTS Metasynchronous metastasis to bone and viscera was found in all intrinsic breast cancer subtypes, while immunohistochemically (IHC)-defined receptor status and specific IntClust subgroups were risk factors for visceral-only or bone-only first metastases. Among gene modules, those related to proliferation increased the risk of metasynchronous metastasis (OR (95% CI) = 2.3 (1.1-4.8)) and visceral-only first metastasis (OR (95% CI) = 2.5 (1.2-5.1)) but not bone-only metastasis (OR (95% CI) = 0.97 (0.56-1.7)). A 21-gene module (BV) was identified in estrogen-receptor-positive breast cancers with metasynchronous metastasis to bone and viscera (area under the curve = 0.77), and its expression increased the risk of bone and visceral metasynchronous spread in this population. BV was further orthogonally validated with NanoString nCounter in primary breast cancers, and was reproducible in their matched lymph nodes metastases and an external cohort. CONCLUSION This case-control study of WG-DASL global expression profiles from FFPE tumour samples, after careful quality control and RNA selection, revealed that gene modules in the primary tumour have differing risks for clinical patterns of metasynchronous first metastases. Moreover, a novel gene module was identified as a putative risk factor for metasynchronous bone and visceral first metastatic spread, with potential implications for disease monitoring and treatment planning.
Collapse
Affiliation(s)
- Katherine Lawler
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Hodgkin Building, Guy’s Campus, London, SE1 1UL UK
| | - Efterpi Papouli
- NIHR Comprehensive Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, WC2R 2LS UK
| | - Cristina Naceur-Lombardelli
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Anca Mera
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
- Cancer Epidemiology Unit, King’s College London, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Kayleigh Ougham
- Cancer Bioinformatics, King’s College London, Innovation Centre, Cancer Centre at Guy’s Hospital, London, SE1 9RT UK
| | - Andrew Tutt
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
| | - Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People’s Republic of China, Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People’s Republic of China, Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Richard Buus
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Tony Ng
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, WC1E 6DD UK
| | - Sarah E. Pinder
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Peter Parker
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- London Research Institute, Lincoln’s Inn Fields, London, WC2A 3LY UK
| | - Lars Holmberg
- Cancer Epidemiology Unit, King’s College London, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- Uppsala University, Department of Surgical Sciences, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Cheryl E. Gillett
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Anita Grigoriadis
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
- Cancer Bioinformatics, King’s College London, Innovation Centre, Cancer Centre at Guy’s Hospital, London, SE1 9RT UK
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
| | - Arnie Purushotham
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
41
|
Choi JH, Kim MJ, Park YK, Im JY, Kwon SM, Kim HC, Woo HG, Wang HJ. Mutations acquired by hepatocellular carcinoma recurrence give rise to an aggressive phenotype. Oncotarget 2017; 8:22903-22916. [PMID: 28038442 PMCID: PMC5410272 DOI: 10.18632/oncotarget.14248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) even after curative resection causes dismal outcomes of patients. Here, to delineate the driver events of genomic and transcription alteration during HCC recurrence, we performed RNA-Seq profiling of the paired primary and recurrent tumors from two patients with intrahepatic HCC. By comparing the mutational and transcriptomic profiles, we identified somatic mutations acquired by HCC recurrence including novel mutants of GOLGB1 (E2721V) and SF3B3 (H804Y). By performing experimental evaluation using siRNA-mediated knockdown and overexpression constructs, we demonstrated that the mutants of GOLGB1 and SF3B3 can promote cell proliferation, colony formation, migration, and invasion of liver cancer cells. Transcriptome analysis also revealed that the recurrent HCCs reprogram their transcriptomes to acquire aggressive phenotypes. Network analysis revealed CXCL8 (IL-8) and SOX4 as common downstream targets of the mutants. In conclusion, we suggest that the mutations of GOLGB1 and SF3B3 are potential key drivers for the acquisition of an aggressive phenotype in recurrent HCC.
Collapse
Affiliation(s)
- Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Min Jae Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Yong Keun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Jong-Yeop Im
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hyung Chul Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
42
|
Hao D, Li J, Jia S, Meng Y, Zhang C, Wang L, Di LJ. Integrated Analysis Reveals Tubal- and Ovarian-Originated Serous Ovarian Cancer and Predicts Differential Therapeutic Responses. Clin Cancer Res 2017; 23:7400-7411. [PMID: 28939742 DOI: 10.1158/1078-0432.ccr-17-0638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The relative importance of fallopian tube (FT) compared with ovarian surface epithelium (OSE) in the genesis of serous type of ovarian cancer (SOC) is still unsettled. Here, we followed an integrated approach to study the tissue origin of SOC, as well as its association with clinical outcome and response to therapeutic drugs.Experimental Design: A collection of transcriptome data of 80 FTs, 89 OSEs, and 2,668 SOCs was systematically analyzed to determine the characteristic of FT-like and OSE-like tumors. A molecular signature was developed for identifying tissue origin of SOC and then was used to reevaluate the prognostic genes and therapeutic biomarkers of SOC of different tissue origins. IHC staining of tissue array and functional experiments on a panel of ovarian cancer cell lines were used to further validate the key findings.Results: The expression patterns of tissue-specific genes, prognostic genes, and molecular markers all support a dualistic tissue origin of SOC, from either FT or OSE. A molecular signature was established to identify the tissue identity of SOCs. Surprisingly, the signature showed a strong association with overall survival (OSE-like vs. FT-like, HR = 4.16; 95% CI, 2.67-6.48; P < 10-9). The pharmacogenomic approach revealed AXL to be a therapeutic target of the aggressive OSE-derived SOC.Conclusions: SOC has two subtypes originated from either FT or OSE, which show different clinical and pathologic features. Clin Cancer Res; 23(23); 7400-11. ©2017 AACR.
Collapse
Affiliation(s)
- Dapeng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shanshan Jia
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Meng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chao Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Wang
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
43
|
Vafaee F, Colvin EK, Mok SC, Howell VM, Samimi G. Functional prediction of long non-coding RNAs in ovarian cancer-associated fibroblasts indicate a potential role in metastasis. Sci Rep 2017; 7:10374. [PMID: 28871211 PMCID: PMC5583324 DOI: 10.1038/s41598-017-10869-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to the poor prognosis of ovarian cancer. Unlike in tumour cells, DNA mutations are rare in CAFs, raising the likelihood of other mechanisms that regulate gene expression such as long non-coding RNAs (lncRNAs). We aimed to identify lncRNAs that contribute to the tumour-promoting phenotype of CAFs. RNA expression from 67 ovarian CAF samples and 10 normal ovarian fibroblast (NOF) samples were analysed to identify differentially expressed lncRNAs and a functional network was constructed to predict those CAF-specific lncRNAs involved in metastasis. Of the 1,970 lncRNAs available for analysis on the gene expression array used, 39 unique lncRNAs were identified as differentially expressed in CAFs versus NOFs. The predictive power of differentially expressed lncRNAs in distinguishing CAFs from NOFs were assessed using multiple multivariate models. Interrogation of known transcription factor-lncRNA interactions, transcription factor-gene interactions and construction of a context-specific interaction network identified multiple lncRNAs predicted to play a role in metastasis. We have identified novel lncRNAs in ovarian cancer that are differentially expressed in CAFs compared to NOFs and are predicted to contribute to the metastasis-promoting phenotype of CAFs.
Collapse
Affiliation(s)
- Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia. .,Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
| | - Goli Samimi
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
Li S, Li H, Xu Y, Lv X. Identification of candidate biomarkers for epithelial ovarian cancer metastasis using microarray data. Oncol Lett 2017; 14:3967-3974. [PMID: 28943904 DOI: 10.3892/ol.2017.6707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a common cancer in women worldwide. The present study assessed effective biomarkers for the prognosis of EOC metastasis. The GSE30587 dataset, containing 9 EOC primary tumor samples and 9 matched omental metastasis samples, was analyzed. Following normalization, the differentially expressed genes (DEGs) between these samples were identified using the limma package for R. Subsequently, pathway enrichment analysis was performed using ClueGO, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database. The microRNA (mRNA/miR)-target network was established using the multiMiR package. A set of 272 DEGs was identified in metastatic EOC samples, including 189 upregulated and 83 downregulated genes. Collagen type I α 1 chain (COL1A1), COL1A2, collagen type XI α 1 chain (COL11A1) and thrombospondin (THBS)1 were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), focal adhesion and extracellular matrix (ECM)-receptor interaction signaling pathways. THBS1 and tissue inhibitor of metalloproteinase (TIMP)3 were two dominant nodes in the PPI network and were key in the miRNA-target network, being targeted by hsa-miR-1. Multiple DEGs and miRNAs were identified as potential biomarkers for the prognosis of EOC metastasis in the present study, which likely affected metastasis by regulating the PI3K/Akt, ECM-receptor interaction and cell adhesion signaling pathways. In addition, THBS1 and TIMP3 were identified as potential targets of hsa-miR-1.
Collapse
Affiliation(s)
- Su Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Department of Obstetrics and Gynecology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250014, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Shandong Coal Taishan Sanatorium, Taian, Shandong 271000, P.R. China
| | - Xiaomei Lv
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
45
|
|
46
|
Smebye ML, Haugom L, Davidson B, Trope CG, Heim S, Skotheim RI, Micci F. Bilateral ovarian carcinomas differ in the expression of metastasis-related genes. Oncol Lett 2017; 13:184-190. [PMID: 28123539 PMCID: PMC5245063 DOI: 10.3892/ol.2016.5384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
The mechanisms behind bilaterality of ovarian carcinomas are not fully understood, as the two tumors could possibly represent two primary tumors, a primary tumor and a metastasis, or two metastases. The gene expression profiles from bilateral high-grade serous carcinomas (HGSCs) and clear cell carcinomas (CCCs) of the ovary were compared to study the association between the tumors of the two sides. A separate analysis of genes from chromosome 19 was also performed, since this chromosome is frequently rearranged in ovarian carcinomas. Tumors from four patients were included (three pairs of HGSC and one pair of CCC). The gene expression was analyzed at the exon level, and bilateral tumors were compared to identify within-pair differences. Gene expression data were also compared with genomic information on the same tumors. Similarities in gene expression were observed between the tumors within each pair, as expected if the two tumors were clonally related. However, certain genes exhibited differences in expression between the two sides, indicating metastasis involvement. Among the most differently expressed genes, one gene was common to all four pairs: Immunoglobulin J. In all HGSC pairs, serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin family E member 1 and phospholipase A2, group IIA (platelets, synovial fluid) were also among the differentially expressed genes. The specific analysis of chromosome 19 highlighted expression differences in the zinc finger protein 36 gene. These results indicate that bilateral ovarian tumors represent different stages during progression of a single clonal process. Several of the genes observed to be differently expressed are known to be metastasis-related, and are likely to be also involved in spreading from one side to the other in the bilateral cancer cases examined.
Collapse
Affiliation(s)
- Marianne Lislerud Smebye
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Lisbeth Haugom
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Claes Göran Trope
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Rolf Inge Skotheim
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
47
|
Antony J, Tan TZ, Kelly Z, Low J, Choolani M, Recchi C, Gabra H, Thiery JP, Huang RYJ. The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci Signal 2016; 9:ra97. [PMID: 27703030 DOI: 10.1126/scisignal.aaf8175] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is a complex disease with heterogeneity among the gene expression molecular subtypes (GEMS) between patients. Patients with tumors of a mesenchymal ("Mes") subtype have a poorer prognosis than patients with tumors of an epithelial ("Epi") subtype. We evaluated GEMS of ovarian cancer patients for molecular signaling profiles and assessed how the differences in these profiles could be leveraged to improve patient clinical outcome. Kinome enrichment analysis identified AXL as a particularly abundant kinase in Mes-subtype tumor tissue and cell lines. In Mes cells, upon activation by its ligand GAS6, AXL coclustered with and transactivated the receptor tyrosine kinases (RTKs) cMET, EGFR, and HER2, producing sustained extracellular signal-regulated kinase (ERK) activation. In Epi-A cells, AXL was less abundant and induced a transient activation of ERK without evidence of RTK transactivation. AXL-RTK crosstalk also stimulated sustained activation of the transcription factor FRA1, which correlated with the induction of the epithelial-mesenchymal transition (EMT)-associated transcription factor SLUG and stimulation of motility exclusively in Mes-subtype cells. The AXL inhibitor R428 attenuated RTK and ERK activation and reduced cell motility in Mes cells in culture and reduced tumor growth in a chick chorioallantoic membrane model. A higher concentration of R428 was needed to inhibit ERK activation and cell motility in Epi-A cells. Silencing AXL in Mes-subtype cells reversed the mesenchymal phenotype in culture and abolished tumor formation in an orthotopic xenograft mouse model. Thus, AXL-targeted therapy may improve clinical outcome for patients with Mes-subtype ovarian cancer.
Collapse
Affiliation(s)
- Jane Antony
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore. Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Zoe Kelly
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Jeffrey Low
- Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore
| | - Chiara Recchi
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Hani Gabra
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore. Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore. Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
48
|
Rezniczek GA, Jüngst F, Jütte H, Tannapfel A, Hilal Z, Hefler LA, Reymond MA, Tempfer CB. Dynamic changes of tumor gene expression during repeated pressurized intraperitoneal aerosol chemotherapy (PIPAC) in women with peritoneal cancer. BMC Cancer 2016; 16:654. [PMID: 27542596 PMCID: PMC4992274 DOI: 10.1186/s12885-016-2668-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intraperitoneal chemotherapy is used to treat peritoneal cancer. The pattern of gene expression changes of peritoneal cancer during intraperitoneal chemotherapy has not been studied before. Pressurized intraperitoneal aerosol chemotherapy is a new form of intraperitoneal chemotherapy using repeated applications and allowing repeated tumor sampling during chemotherapy. Here, we present the analysis of gene expression changes during pressurized intraperitoneal aerosol chemotherapy with doxorubicin and cisplatin using a 22-gene panel. METHODS Total RNA was extracted from 152 PC samples obtained from 63 patients in up to six cycles of intraperitoneal chemotherapy. Quantitative real-time PCR was used to determine the gene expression levels. For select genes, immunohistochemistry was used to verify gene expression changes observed on the transcript level on the protein level. Observed (changes in) expression levels were correlated with clinical outcomes. RESULTS Gene expression profiles differed significantly between peritoneal cancer and non- peritoneal cancer samples and between ascites-producing and non ascites-producing peritoneal cancers. Changes of gene expression patterns during repeated intraperitoneal chemotherapy cycles were prognostic of overall survival, suggesting a molecular tumor response of peritoneal cancer. Specifically, downregulation of the whole gene panel during intraperitoneal chemotherapy was associated with better treatment response and survival. CONCLUSIONS In summary, molecular changes of peritoneal cancer during pressurized intraperitoneal aerosol chemotherapy can be documented and may be used to refine individual treatment and prognostic estimations.
Collapse
Affiliation(s)
- Günther A Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany. .,Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany.
| | - Friederike Jüngst
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| | - Hendrik Jütte
- Department of Pathology, Ruhr-Universität Bochum, Bochum, Germany
| | - Andrea Tannapfel
- Department of Pathology, Ruhr-Universität Bochum, Bochum, Germany
| | - Ziad Hilal
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| | - Lukas A Hefler
- Department of Obstetrics and Gynecology, Krankenhaus der Barmherzigen Schwestern, Linz, Austria
| | - Marc-André Reymond
- Department of Surgery, Ruhr-Universität Bochum, Bochum, Germany.,Present Address: Department of General, Gastrointestinal and Transplantation Surgery, University of Tübingen, Tübingen, Germany
| | - Clemens B Tempfer
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
49
|
Yin X, Wang X, Shen B, Jing Y, Li Q, Cai MC, Gu Z, Yang Q, Zhang Z, Liu J, Li H, Di W, Zhuang G. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis. Sci Rep 2016; 6:31079. [PMID: 27498762 PMCID: PMC4976329 DOI: 10.1038/srep31079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.
Collapse
Affiliation(s)
- Xia Yin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boqiang Shen
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Yang
- Lingyun Community Health Service Center of Xuhui District, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Zhang S, Jing Y, Zhang M, Zhang Z, Ma P, Peng H, Shi K, Gao WQ, Zhuang G. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci Rep 2015; 5:16066. [PMID: 26530441 PMCID: PMC4632004 DOI: 10.1038/srep16066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation of subtype regulatory networks, we identified the transcriptional modules containing master regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal master regulators were associated with poor prognosis, while Immunoreactive master regulators positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor microenvironment.
Collapse
Affiliation(s)
- Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meiying Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixin Peng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaixuan Shi
- School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|