1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Li Z, Cui C, Xu L, Ding M, Wang Y. Metformin suppresses metabolic dysfunction-associated fatty liver disease by ferroptosis and apoptosis via activation of oxidative stress. Free Radic Res 2024; 58:686-701. [PMID: 39422606 DOI: 10.1080/10715762.2024.2417279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Metformin is known for its antioxidant properties and ability to ameliorate metabolic dysfunction-associated fatty liver disease (MAFLD) and is the focus of this study. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is linked to MAFLD risk. This study investigated the effects of metformin on ferroptosis in free fatty acid (FFA)-treated Huh7 hepatoma cells and its association with MAFLD risk. Using Western blot, immunofluorescence, and ELISA, this study revealed that FFA treatment led to increased intracellular fat and iron accumulation, heightened Lp-PLA2 expression, reduced levels of the cysteine transporter SLC7A11 and glutathione peroxidase 4 (GPX4), altered glutathione (GSH)/oxidized glutathione (GSSG) ratios, generation of reactive oxygen species (ROS), and initiation of lipid peroxidation, which ultimately resulted in cell ferroptosis. Importantly, metformin reversed FFA-induced iron accumulation, and this effect was attenuated by ferrostatin-1 but enhanced by erastin, RSL3, and si-GPX4. Additionally, metformin activated antioxidant and antiapoptotic mechanisms, which reduced lipid peroxidation and suppressed Lp-PLA2 expression in FFA-treated Huh7 cells. In conclusion, our findings indicate that metformin may protect against MAFLD by inhibiting iron accumulation and Lp-PLA2 expression through the ROS, ferroptosis, and apoptosis signaling pathways. This study highlights potential therapeutic strategies for managing MAFLD-related risks and emphasizes the diverse roles of metformin in maintaining hepatocyte balance.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liang Xu
- Department of Cardiology, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Mingfeng Ding
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yinghui Wang
- Department of Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Alharbi KS. Noncoding RNAs in hepatitis: Unraveling the apoptotic pathways. Pathol Res Pract 2024; 255:155170. [PMID: 38324964 DOI: 10.1016/j.prp.2024.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
4
|
Xie F, Zhang Y, Li J, Sun L, Zhang L, Qi M, Zhang S, Jian F, Li X, Li J, Ning C, Wang R. MiR-942-5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection. Parasit Vectors 2022; 15:291. [PMID: 35974384 PMCID: PMC9382849 DOI: 10.1186/s13071-022-05415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are involved in the regulation of both the innate and adaptive immune response to Cryptosporidium parvum infection. We previously reported that C. parvum upregulated miR‑942‑5p expression in HCT‑8 cells via TLR2/TLR4‑NF‑κB signaling. In the present study, the role of miRNA-942-5p in the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated HCT-8 cell apoptosis induced by C. parvum was investigated. METHODS Quantitative real-time polymerase chain reaction, western blotting, flow cytometry, and immunofluorescence were used for analysis. RESULTS Forced expression of miRNA-942-5p resulted in decreased apoptosis and an increased C. parvum burden in HCT-8 cells. The opposite results were observed using the suppressed expression of miRNA-942-5p. The miRNA-942-5p led to the translational suppression of IFI27 gene through targeting the 3'-untranslated region of the IFI27 gene. Moreover, overexpression of the IFI27 gene produced a high apoptotic ratio and low C. parvum burden. In contrast, a low apoptotic ratio and a high C. parvum burden were observed following downregulation of the IFI27 gene. Both miR-942-5p and the IFI27 gene influenced TRAIL and caspase-8 expression induced by C. parvum in HCT-8 cells. Moreover, TRAIL promoted HCT-8 cell apoptosis in a concentration-dependent manner. CONCLUSIONS These data suggested that C. parvum induced the downregulation of IFI27 via relief of miR-942-5p-mediated translational suppression. IFI27 downregulation was affected the burden of C. parvum by regulating HCT-8 cell apoptosis through TRAIL-dependent pathways. Future studies should determine the mechanisms by which C. parvum infection increases miR-942-5p expression and the role of miR-942-5p in hosts' anti-C. parvum immunity in vivo.
Collapse
Affiliation(s)
- Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yajun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lulu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Changsheng Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
6
|
Heat Shock-Binding Protein 21 Regulates the Innate Immune Response to Viral Infection. J Virol 2022; 96:e0000122. [DOI: 10.1128/jvi.00001-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied.
Collapse
|
7
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
8
|
Sun L, Li Y, Misumi I, González-López O, Hensley L, Cullen JM, McGivern DR, Matsuda M, Suzuki R, Sen GC, Hirai-Yuki A, Whitmire JK, Lemon SM. IRF3-mediated pathogenicity in a murine model of human hepatitis A. PLoS Pathog 2021; 17:e1009960. [PMID: 34591933 PMCID: PMC8509855 DOI: 10.1371/journal.ppat.1009960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2’-5’ oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol. Hepatitis A is a common and potentially serious disease involving inflammation and liver cell death resulting from infection with the picornavirus, hepatitis A virus (HAV). The pathogenesis of the disease is incompletely understood. Here, we have profiled changes in the RNA transcriptome of livers from mice with various genetic deficiencies in the innate immune response to HAV. We show that the liver injury associated with HAV infection in these mice results from the induction of genes under transcriptional control of interferon regulatory factor 3 (IRF3). We use high-throughput RNA sequencing to identify sets of genes induced in mice with wild-type versus transcriptionally-incompetent IRF3, rule out roles for type III interferons and IFIT proteins in disease pathogenesis, and identify genes with intrahepatic expression correlating closely with HAV-mediated liver pathology.
Collapse
Affiliation(s)
- Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ichiro Misumi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lucinda Hensley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David R. McGivern
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Asuka Hirai-Yuki
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jason K. Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wei J, Wang B, Gao X, Sun D. Prognostic Value of a Novel Signature With Nine Hepatitis C Virus-Induced Genes in Hepatic Cancer by Mining GEO and TCGA Databases. Front Cell Dev Biol 2021; 9:648279. [PMID: 34336819 PMCID: PMC8322788 DOI: 10.3389/fcell.2021.648279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/25/2021] [Indexed: 01/29/2023] Open
Abstract
Background Hepatitis C virus-induced genes (HCVIGs) play a critical role in regulating tumor development in hepatic cancer. The role of HCVIGs in hepatic cancer remains unknown. This study aimed to construct a prognostic signature and assess the value of the risk model for predicting the prognosis of hepatic cancer. Methods Differentially expressed HCVIGs were identified in hepatic cancer data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases using the library (“limma”) package of R software. The protein–protein interaction (PPI) network was constructed using the Cytoscape software. Functional enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Univariate and multivariate Cox proportional hazard regression analyses were applied to screen for prognostic HCVIGs. The signature of HCVIGs was constructed. Gene Set Enrichment Analysis (GSEA) compared the low-risk and high-risk groups. Finally, the International Cancer Genome Consortium (ICGC) database was used to validate this prognostic signature. Polymerase chain reaction (PCR) was performed to validate the expression of nine HCVIGs in the hepatic cancer cell lines. Results A total of 143 differentially expressed HCVIGs were identified in TCGA hepatic cancer dataset. Functional enrichment analysis showed that DNA replication was associated with the development of hepatic cancer. The risk score signature was constructed based on the expression of ZIC2, SLC7A11, PSRC1, TMEM106C, TRAIP, DTYMK, FAM72D, TRIP13, and CENPM. In this study, the risk score was an independent prognostic factor in the multivariate Cox regression analysis [hazard ratio (HR) = 1.433, 95% CI = 1.280–1.605, P < 0.001]. The overall survival curve revealed that the high-risk group had a poor prognosis. The Kaplan–Meier Plotter online database showed that the survival time of hepatic cancer patients with overexpression of HCVIGs in this signature was significantly shorter. The prognostic signature-associated GO and KEGG pathways were significantly enriched in the risk group. This prognostic signature was validated using external data from the ICGC databases. The expression of nine prognostic genes was validated in HepG2 and LO-2. Conclusion This study evaluates a potential prognostic signature and provides a way to explore the mechanism of HCVIGs in hepatic cancer.
Collapse
Affiliation(s)
- Jianming Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xibo Gao
- Department of Dermatology, Tianjin Children's Hospital, Tianjin, China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Wang H, Lin X, Li J, Zeng G, Xu T. Long Noncoding RNA SOX2-OT Aggravates Doxorubicin-Induced Apoptosis of Cardiomyocyte by Targeting miR-942-5p/DP5. Drug Des Devel Ther 2021; 15:481-492. [PMID: 33603338 PMCID: PMC7886105 DOI: 10.2147/dddt.s267474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) play important roles in doxorubicin (DOX)-induced apoptosis of cardiomyocytes. However, the function of lncRNA SOX2-OT is unclear. This study was carried out to investigate the function of SOX2-OT in doxorubicin-induced cardiomyocyte apoptosis. METHODS qRT-PCR and immunoblotting were used to detect the expression levels of SOX2-OT, miR-942-5p and death protein-5 (DP5) in DOX-treated primary cardiomyocytes and rat models. The relationship among miR-942-5p, SOX2-OT, and DP5 was explored by luciferase reporter assay. The effects of SOX2-OT, miR-942-5p and DP5 on doxorubicin-induced cardiomyocyte apoptosis were evaluated by Annexin V-FITC/PI method and caspase-3 activity assay. The effect of SOX2-OT on cardiomyocyte apoptosis was analyzed by TUNEL staining and echocardiography. RESULTS SOX2-OT and DP5 were highly expressed, while miR-942-5p was down-regulated in DOX-treated primary cardiomyocytes and rat model. SOX2-OT can upregulate DP5 as a sponge of miR-942-5p, which was a direct target of miR-942-5p. In addition, miR-942-5p reversed the protective effect of knockdown of SOX2-OT on cardiomyocytes by inhibiting the expression of DP5 in vitro and in vivo. CONCLUSION Knockdown of SOX2-OT down-regulated DP5 via sponging miR-942-5p and inhibiting DOX-induced apoptosis of primary cardiomyocytes.
Collapse
Affiliation(s)
- Haining Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Xiule Lin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Jilin Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515000, People’s Republic of China
| | - Guoning Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Tan Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| |
Collapse
|
11
|
Wang F, Fan M, Zhou X, Yu Y, Cai Y, Wu H, Zhang Y, Liu J, Huang S, He N, Hu Z, Ding G, Jin X. A positive feedback loop between TAZ and miR-942-3p modulates proliferation, angiogenesis, epithelial-mesenchymal transition process, glycometabolism and ROS homeostasis in human bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:44. [PMID: 33499877 PMCID: PMC7836562 DOI: 10.1186/s13046-021-01846-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
Background Transcriptional coactivator with PDZ-binding motif (TAZ) has been reported to be involved in tumor progression, angiogenesis, epithelial-mesenchymal transition (EMT), glycometabolic modulation and reactive oxygen species (ROS) buildup. Herein, the underlying molecular mechanisms of the TAZ-induced biological effects in bladder cancer were discovered. Methods qRT-PCR, western blotting and immunohistochemistry were performed to determine the levels of TAZ in bladder cancer cells and tissues. CCK-8, colony formation, tube formation, wound healing and Transwell assays and flow cytometry were used to evaluate the biological functions of TAZ, miR-942-3p and growth arrest-specific 1 (GAS1). QRT-PCR and western blotting were used to determine the expression levels of related genes. Chromatin immunoprecipitation and a dual-luciferase reporter assay were performed to confirm the interaction between TAZ and miR-942. In vivo tumorigenesis and colorimetric glycolytic assays were also conducted. Results We confirmed the upregulation and vital roles of TAZ in bladder cancer. TAZ-induced upregulation of miR-942-3p expression amplified upstream signaling by inhibiting the expression of large tumor suppressor 2 (LATS2, a TAZ inhibitor). MiR-942-3p attenuated the impacts on cell proliferation, angiogenesis, EMT, glycolysis and ROS levels induced by TAZ knockdown. Furthermore, miR-942-3p restrained the expression of GAS1 to modulate biological behaviors. Conclusion Our study identified a novel positive feedback loop between TAZ and miR-942-3p that regulates biological functions in bladder cancer cells via GAS1 expression and illustrated that TAZ, miR-942-3p and GAS1 might be potential therapeutic targets for bladder cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01846-5.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P.R. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jiaxin Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China.
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
12
|
Li X, Yang R, Xu Y, Zhang Y. Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta 2020; 104:40-50. [PMID: 33253995 DOI: 10.1016/j.placenta.2020.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a common pregnancy disorder with multisystem complications. The growing data suggest that circular RNAs (circRNAs) involve in the development of PE. This study proposed to investigate the function and potential mechanisms of circ_0001438 in PE. METHODS The expression of circ_0001438, miR-942 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expression at the protein level of NLRP3, interleukin 1 beta (IL-1β), interleukin 10 (IL-10), B-cell lymphoma 2 (Bcl-2), Cleaved-caspase-3 (Cleaved-casp-3), N-cadherin and E-cadherin was detected by Western blot. Cell proliferation was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and colony formation assay. Cell apoptosis was determined by flow cytometry assay. Cell migration and invasion were monitored by transwell assay. The target genes were obtained and verified by the online bioinformatics tool and dual-luciferase reporter assay. RESULTS The expression of circ_0001438 and NLRP3 was enhanced in PE placenta tissues. Circ_0001438 knockdown promoted cell proliferation, migration and invasion but inhibited apoptosis and inflammatory responses in HTR-8/Svneo cells, and these effects were reversed by the inhibition of miR-942, a target of circ_0001438. Moreover, NLRP3 was bounded by miR-942. The enrichment of miR-942 accelerated cell proliferation, migration and invasion but depleted apoptosis and inflammatory responses, while these impacts were partly abolished by NLRP3 overexpression. DISCUSSION Circ_0001438 sponged miR-942 to regulate the expression of NLRP3, and circ_0001438 aggravated the dysfunctions of human villous trophoblasts by mediating the miR-942/NLRP3 axis at least in part.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Obstetrics, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Rui Yang
- Department of Outpatient, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Ying Xu
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Shandong, China
| | - Yongshui Zhang
- Department of Medicine, Jinan Maternal and Child Health Hospital, Shandong, China.
| |
Collapse
|
13
|
Deng R, Zuo C, Li Y, Xue B, Xun Z, Guo Y, Wang X, Xu Y, Tian R, Chen S, Liu Q, Chen J, Wang J, Huang X, Li H, Guo M, Wang X, Yang M, Wu Z, Wang J, Ma J, Hu J, Li G, Tang S, Tu Z, Ji H, Zhu H. The innate immune effector ISG12a promotes cancer immunity by suppressing the canonical Wnt/β-catenin signaling pathway. Cell Mol Immunol 2020; 17:1163-1179. [PMID: 32963356 DOI: 10.1038/s41423-020-00549-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
The ability to harness innate immunity is a promising solution for improving cancer immunotherapy. Interferon (IFN) induces expression of IFN-stimulated genes (ISGs) by activating the JAK-STAT signaling pathway to promote innate immunity and inhibit malignant tumor growth, but the functions and mechanisms of most ISGs in cancer regulation are unknown. As an innate immune effector, ISG12a promotes the innate immune response to viral infection. In this study, ISG12a was found to be expressed at low levels in gastrointestinal cancer, represented by hepatocellular cancer (HCC) and gastric cancer (GC), and it identified as a tumor suppressor that affects clinical prognosis. ISG12a silencing accelerated the malignant transformation and epithelial-mesenchymal transition of cancer cells. Mechanistically, ISG12a promoted β-catenin proteasomal degradation by inhibiting the degradation of ubiquitinated Axin, thereby suppressing the canonical Wnt/β-catenin signaling pathway. Notably, β-catenin was identified as a transcription factor for PD-L1. Inhibition of Wnt/β-catenin signaling by ISG12a suppressed expression of the immune checkpoint PD-L1, rendering cancer cells sensitive to NK cell-mediated killing. This study reveals a mechanism underlying the anticancer effects of IFN. Some ISGs, as represented by ISG12a, may be useful in cancer therapy and prevention. The identified interrelations among innate immunity, Wnt/β-catenin signaling, and cancer immunity may provide new insight into strategies that will improve the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Chaohui Zuo
- Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
| | - Yongqi Li
- Institute of Translational Medicine, Institute of Liver Diseases, the First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Zhen Xun
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Yanxia Guo
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Xiaohong Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Jinwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Jingjing Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Xiang Huang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Xintao Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Miaomiao Yang
- Institute of Translational Medicine, Institute of Liver Diseases, the First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Zhihui Wu
- Institute of Translational Medicine, Institute of Liver Diseases, the First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Jinfeng Wang
- Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
| | - Jiahuan Ma
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Jun Hu
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, Hunan, China
| | - Guangdi Li
- Department of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Zhengkun Tu
- Institute of Translational Medicine, Institute of Liver Diseases, the First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Hongbin Ji
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200120, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China. .,Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Zhang G, Zhang Y, Niu Z, Wang C, Xie F, Li J, Zhang S, Qi M, Jian F, Ning C, Zhang L, Wang R. Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling. Parasit Vectors 2020; 13:435. [PMID: 32867835 PMCID: PMC7461316 DOI: 10.1186/s13071-020-04312-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background Micro (mi)RNAs are small noncoding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. This study investigated host miRNA activity in the innate immune response to Cryptosporidium parvum infection. Methods In vitro infection model adopts HCT-8 human ileocecal adenocarcinoma cells infected with C. parvum. The expression of miR-942-5p was estimated using quantitative real-time polymerase chain reaction (qPCR). The TLRs-NF-κB signaling was confirmed by qPCR, western blotting, TLR4- and TLR2-specific short-interfering (si)RNA, and NF-κB inhibition. Results HCT-8 cells express all known toll-like receptors (TLRs). Cryptosporidium parvum infection of cultured HCT-8 cells upregulated TLR2 and TLR4, and downstream TLR effectors, including NF-κB and suppressed IκBα (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha). The expression of miR-942-5p was significantly upregulated at 4, 8, 12 and 24 h post-infection, and especially at 8 hpi. The results of TLR4- and TLR2-specific siRNA and NF-κB inhibition showed that upregulation of miR-942-5p was promoted by p65 subunit-dependent TLR2/TLR4-NF-κB pathway signaling. Conclusions miR-942-5p of HCT-8 cells was significantly upregulated after C. parvum infection, especially at 8 hpi, in response to a p65-dependent TLR2/TLR4-NF-κB signaling. TLR4 appeared to play a dominant role.![]()
Collapse
Affiliation(s)
- Guiling Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yajun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Ziwen Niu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Chenrong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang, P. R. China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
15
|
Caparosa EM, Sedgewick AJ, Zenonos G, Zhao Y, Carlisle DL, Stefaneanu L, Jankowitz BT, Gardner P, Chang YF, Lariviere WR, LaFramboise WA, Benos PV, Friedlander RM. Regional Molecular Signature of the Symptomatic Atherosclerotic Carotid Plaque. Neurosurgery 2020; 85:E284-E293. [PMID: 30335165 DOI: 10.1093/neuros/nyy470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many studies have explored molecular markers of carotid plaque development and vulnerability to rupture, usually having examined whole carotid plaques. However, there are regional differences in plaque morphology and known shear-related mechanisms in areas surrounding the lipid core. OBJECTIVE To determine whether there are regional differences in protein expression along the long axis of the carotid plaque and how that might produce gaps in our understanding of the carotid plaque molecular signature. METHODS Levels of 7 inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12 p70, IFN-γ, and TNF-α) and caspase-3 were analyzed in prebifurcation, bifurcation, and postbifurcation segments of internal carotid plaques surgically removed from symptomatic and asymptomatic patients. Expression profiles of miRNAs and mRNAs were determined with microarrays for the rupture-prone postbifurcation segment for comparison with published whole plaque results. RESULTS Expression levels of all proteins examined, except IL-10, were lowest in the prebifurcation segment and significantly higher in the postbifurcation segment. Patient group differences in protein expression were observed for the prebifurcation segment; however, no significant differences were observed in the postbifurcation segment between symptomatic and asymptomatic patients. Expression profiles from postbifurcation carotid plaques identified 4 novel high priority miRNAs differentially expressed between patient groups (miR-214, miR-484, miR-942, and miR-1287) and 3 high-confidence miRNA:mRNA targets, including miR-214:APOD, miR-484:DACH1, and miR-942:GPR56. CONCLUSION The results demonstrate regional differences in protein expression for the first time and show that focus on the rupture-prone postbifurcation region leads to prioritization for further study of novel miRNA gene regulation mechanisms.
Collapse
Affiliation(s)
- Ellen M Caparosa
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Sedgewick
- Joint Carnegie-Mellon -University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Georgios Zenonos
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yin Zhao
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Diane L Carlisle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lucia Stefaneanu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian T Jankowitz
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Gardner
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William R Lariviere
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Joint Carnegie-Mellon -University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Wang C, Tang X, Wang J, Xu Y. Patterns of immune infiltration in lung adenocarcinoma revealed a prognosis-associated microRNA-mast cells network. Hum Cell 2019; 33:205-219. [PMID: 31863291 DOI: 10.1007/s13577-019-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Immune infiltration of tumor microenvironment is an important determinant for immune response and outcomes. To investigate the diversity and clinical relevance of immune infiltration in lung adenocarcinoma (LUAD), we performed a comprehensive analysis using the bulk tumor transcriptomes. The prognosis significance for immune infiltration was systematically evaluated and sufficient immune infiltration was associated with better outcomes. Resting mast cells emerged as the most strongly associated with better overall survival (OS) and disease-free survival (DFS), whereas the activated mast cells were correlated with adverse survival. Immune infiltration-based classification exhibited clinical relevance and provided a close link between cancer cell-intrinsic genetic events and immune landscape. The immune infiltration-miRNA functional network analysis showed that the resting mast cell-associated miRNAs are mainly involved in the enrichment of development, mRNA metabolic process, myeloid cell differentiation, Wnt, calcium modulating, interferon, p53 pathways. Additionally, we found one promoter (miR-30a) and one suppressor (miR-550a) of resting mast cells. Coupling the detailed analyses of the cellular immune infiltration and the implicated modulation role of miRNAs provides novel type of candidates for LUAD immunotherapy.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Xi Tang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Jiaojian Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Yanhua Xu
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China.
| |
Collapse
|
17
|
Xu CY, Dong JF, Chen ZQ, Ding GS, Fu ZR. MiR-942-3p Promotes the Proliferation and Invasion of Hepatocellular Carcinoma Cells by Targeting MBL2. Cancer Control 2019; 26:1073274819846593. [PMID: 31046434 PMCID: PMC6501494 DOI: 10.1177/1073274819846593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs), a subgroup of small noncoding RNAs, play critical roles in tumor growth and metastasis. Accumulating evidence shows that the dysregulation of miRNAs is associated with the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism by which miR-942-3p contributes to HCC remains undocumented. The association between miR-942-3p expression and the clinicopathological characteristics in HCC patients was analyzed by The Cancer Genome Atlas data set. The targets of miR-942-3p were identified by bioinformatic analysis and dual luciferase report assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays were performed to assess the functional role of miR-942-3p in HCC cells. Consequently, we found that miR-942-3p expression level was elevated in HCC tissues and cell lines as compared with the normal tissues and was associated with the pathological stage and tumor node metastasis (TNM) stage, acting as an independent prognostic factor of poor survival in patients with HCC. Ectopic expression of miR-942-3p enhanced the proliferation and invasive potential of HCC cells, but inhibition of miR-942-3p expression had the opposite effects. Mannose-binding lectin 2 (MBL2) was further identified as a direct target of miR-942-3p and possessed a negative correlation with miR-942-3p expression and unfavorable survival in patients with HCC. Restoration of MBL2 inhibited the progression of HCC cells and attenuated the tumor-promoting effects induced by miR-942-3p. In conclusion, miR-942-3p may act as an oncogenic factor in HCC cells by targeting MBL2 and provide a potential marker for patients with HCC.
Collapse
Affiliation(s)
- Chun-Yang Xu
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Feng Dong
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zi-Qi Chen
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guo-Shan Ding
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Ren Fu
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Wang C, Liu L, Zhu H, Zhang L, Wang R, Zhang Z, Huang J, Zhang S, Jian F, Ning C, Zhang L. MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection. BMC Genomics 2019; 20:37. [PMID: 30642246 PMCID: PMC6332841 DOI: 10.1186/s12864-018-5410-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background Cryptosporidium parvum is an important zoonotic parasitic disease worldwide, but the molecular mechanisms of the host–parasite interaction are not fully understood. Noncoding microRNAs (miRNAs) are considered key regulators of parasitic diseases. Therefore, we used microarray, qPCR, and bioinformatic analyses to investigate the intestinal epithelial miRNA expression profile after Cryptosporidium parvum infection. Results Twenty miRNAs were differentially expressed after infection (four upregulated and 16 downregulated). Further analysis of the differentially expressed miRNAs revealed that many important cellular responses were triggered by Cryptosporidium parvum infection, including cell apoptosis and the inflammatory and immune responses. Conclusions This study demonstrates for the first time that the miRNA expression profile of human intestinal epithelium cells is altered by C. parvum infection. This dysregulation of miRNA expression may contribute to the regulation of host biological processes in response to C. parvum infection, including cell apoptosis and the immune responses. These results provide new insight into the regulatory mechanisms of host miRNAs during cryptosporidiosis, which may offer potential targets for future C. parvum control strategies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5410-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenrong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Limin Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Lu Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Zhenjie Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Jianying Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
19
|
Tao L, Xue D, Shen D, Ma W, Zhang J, Wang X, Zhang W, Wu L, Pan K, Yang Y, Nwosu ZC, Dooley S, Seki E, Liu C. MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis. Arch Toxicol 2018; 92:2935-2946. [PMID: 30097701 DOI: 10.1007/s00204-018-2278-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA)-mediated gene regulation contributes to liver pathophysiology, including hepatic stellate cell (HSC) activation and fibrosis progression. Here, we investigated the role of miR-942 in human liver fibrosis. The expression of miR-942, HSC activation markers, transforming growth factor-beta pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI), as well as collagen deposition, were investigated in 100 liver specimens from patients with varying degree of hepatitis B virus (HBV)-related fibrosis. Human primary HSCs and the immortalized cell line (LX2 cells) were used for functional studies. We found that miR-942 expression was upregulated in activated HSCs and correlated inversely with BAMBI expression in liver fibrosis progression. Transforming growth factor beta (TGF-β) and lipopolyssacharide (LPS), two major drivers of liver fibrosis and inflammation, induce miR-942 expression in HSCs via Smad2/3 respective NF-κB/p50 binding to the miR-942 promoter. Mechanistically, the induced miR-942 degrades BAMBI mRNA in HSCs, thereby sensitizing the cells for fibrogenic TGF-β signaling and also partly mediates LPS-induced proinflammatory HSC fate. In conclusion, the TGF-β and LPS-induced miR-942 mediates HSC activation through downregulation of BAMBI in human liver fibrosis. Our study provides new insights on the molecular mechanism of HSC activation and fibrosis.
Collapse
Affiliation(s)
- Le Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, China
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dongying Xue
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dongxiao Shen
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, China
| | - Wenting Ma
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xuefei Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, China
| | - Wei Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, China
| | - Liu Wu
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Kai Pan
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yanqin Yang
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zeribe C Nwosu
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Cheng Liu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, China.
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| |
Collapse
|
20
|
Qiu L, Wang T, Tang Q, Li G, Wu P, Chen K. Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Front Microbiol 2018; 9:1621. [PMID: 30072977 PMCID: PMC6060254 DOI: 10.3389/fmicb.2018.01621] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines providing a robust first line of host innate defense against pathogenic infection, and have now been part of the standard treatment for viral infection. However, IFN based therapy can best be described as modestly effective. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding RNAs that are capable of regulating gene expression at different levels, including chromatin, transcription, post-transcription, and translation. Recently, lncRNAs are found to be deregulated upon viral infection or IFN treatment, and some of them can modulate viral infection in an IFN-dependent or -independent manner. Due to the crucial roles of lncRNAs in viral infection and the IFN antiviral response, the modulation of specific lncRNAs may be involved to increase the IFN antiviral response and improve the clinical result of IFN-based therapy. In this review, we summarize lncRNAs that are deregulated by viral infection, with special focus on the functions and underlying mechanisms of some essential lncRNAs, and discuss their roles in viral infection and the antiviral response of IFN.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Tao Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
TRIM21 Promotes Innate Immune Response to RNA Viral Infection through Lys27-Linked Polyubiquitination of MAVS. J Virol 2018; 92:JVI.00321-18. [PMID: 29743353 DOI: 10.1128/jvi.00321-18] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Human innate immunity responds to viral infection by activating the production of interferons (IFNs) and proinflammatory cytokines. The mitochondrial adaptor molecule MAVS plays a critical role in innate immune response to viral infection. In this study, we show that TRIM21 (tripartite motif-containing protein 21) interacts with MAVS to positively regulate innate immunity. Under viral infection, TRIM21 is upregulated through the IFN/JAK/STAT signaling pathway. Knockdown of TRIM21 dramatically impairs innate immune response to viral infection. Moreover, TRIM21 interacts with MAVS and catalyzes its K27-linked polyubiquitination, thereby promoting the recruitment of TBK1 to MAVS. Specifically, the PRY-SPRY domain of TRIM21 is the key domain for its interaction with MAVS, while the RING domain of TRIM21 facilitates the polyubiquitination chains of MAVS. In addition, the MAVS-mediated innate immune response is enhanced by both the PRY-SPRY and RING domains of TRIM21. Mutation analyses of all the lysine residues of MAVS further revealed that Lys325 of MAVS is catalyzed by TRIM21 for the K27-linked polyubiquitination. Overall, this study reveals a novel mechanism by which TRIM21 promotes the K27-linked polyubiquitination of MAVS to positively regulate innate immune response, thereby inhibiting viral infection.IMPORTANCE Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. MAVS plays a critical role in innate immune response to RNA viral infection. In this study, we demonstrated that TRIM21 targets MAVS to positively regulate innate immunity. Notably, TRIM21 targets and catalyzes K27-linked polyubiquitination of MAVS and then promotes the recruitment of TBK1 to MAVS, leading to upregulation of innate immunity. Our study outlines a novel mechanism by which the IFN signaling pathway blocks RNA virus to escape immune elimination.
Collapse
|
22
|
NLRX1 Mediates MAVS Degradation To Attenuate the Hepatitis C Virus-Induced Innate Immune Response through PCBP2. J Virol 2017; 91:JVI.01264-17. [PMID: 28956771 DOI: 10.1128/jvi.01264-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. However, attenuation or termination of signaling is also necessary for preventing immune-mediated tissue damage and spontaneous autoimmunity. Here, we identify nucleotide binding oligomerization domain (NOD)-like receptor X1 (NLRX1) as a negative regulator of the mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathway during hepatitis C virus (HCV) infection. The depletion of NLRX1 enhances the HCV-triggered activation of interferon (IFN) signaling and causes the suppression of HCV propagation in hepatocytes. NLRX1, a HCV-inducible protein, interacts with MAVS and mediates the K48-linked polyubiquitination and subsequent degradation of MAVS via the proteasomal pathway. Moreover, poly(rC) binding protein 2 (PCBP2) interacts with NLRX1 to participate in the NLRX1-induced degradation of MAVS and the inhibition of antiviral responses during HCV infection. Mutagenic analyses further revealed that the NOD of NLRX1 is essential for NLRX1 to interact with PCBP2 and subsequently induce MAVS degradation. Our study unlocks a key mechanism of the fine-tuning of innate immunity by which NLRX1 restrains the retinoic acid-inducible gene I-like receptor (RLR)-MAVS signaling cascade by recruiting PCBP2 to MAVS for inducing MAVS degradation through the proteasomal pathway. NLRX1, a negative regulator of innate immunity, is a pivotal host factor for HCV to establish persistent infection.IMPORTANCE Innate immunity needs to be tightly regulated to maximize the antiviral response and minimize immune-mediated pathology, but the underlying mechanisms are poorly understood. In this study, we report that NLRX1 is a proviral host factor for HCV infection and functions as a negative regulator of the HCV-triggered innate immune response. NLRX1 recruits PCBP2 to MAVS and induces the K48-linked polyubiquitination and degradation of MAVS, leading to the negative regulation of the IFN signaling pathway and promoting HCV infection. Overall, this study provides intriguing insights into how innate immunity is regulated during viral infection.
Collapse
|
23
|
Ji L, Zhou X, Liang W, Liu J, Liu B. Porcine Interferon Stimulated Gene 12a Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication in MARC-145 Cells. Int J Mol Sci 2017; 18:ijms18081613. [PMID: 28757561 PMCID: PMC5578005 DOI: 10.3390/ijms18081613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We found that porcine ISG12A was localized in mitochondria and significantly decreased the number of cells in G2/S phase. Porcine ISG12A mRNA was up-regulated in cells/tissues of Tongcheng (TC) pigs and Large White (LW) pigs after PRRSV challenge. More importantly, the ectopic overexpression of ISG12A could significantly suppress PRRSV replication at 24, 36 and 48 h post challenge (hpc), which was confirmed by detecting PRRSV ORF7 mRNA with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and PRRSV N protein with indirect immunofluorescence assay (IFA) in MARC-145 cells. Meanwhile, knockdown of endogenic ISG12A could obviously facilitate PRRSV replication in MARC-145 cells at 36 hpc. The results will lead to a better understanding of the interaction between host immune system and PRRSV, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Likai Ji
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianjian Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
24
|
Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp. J Virol 2017; 91:JVI.02261-16. [PMID: 28179524 DOI: 10.1128/jvi.02261-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023] Open
Abstract
In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp (Marsupenaeus japonicus). Dorsal, the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction.IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions.
Collapse
|
25
|
Gytz H, Hansen MF, Skovbjerg S, Kristensen ACM, Hørlyck S, Jensen MB, Fredborg M, Markert LD, McMillan NA, Christensen EI, Martensen PM. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins. Biol Cell 2016; 109:94-112. [DOI: 10.1111/boc.201600034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Heidi Gytz
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Mariann F. Hansen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Signe Skovbjerg
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | | | - Sofie Hørlyck
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Mette B. Jensen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Marlene Fredborg
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Lotte D. Markert
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
| | - Nigel A. McMillan
- Centre of Immunological and Cancer Research; Queensland University; Brisbane Australia
| | | | - Pia M. Martensen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus 8000 Denmark
- Centre of Immunological and Cancer Research; Queensland University; Brisbane Australia
| |
Collapse
|
26
|
ISG12a inhibits HCV replication and potentiates the anti-HCV activity of IFN-α through activation of the Jak/STAT signaling pathway independent of autophagy and apoptosis. Virus Res 2016; 227:231-239. [PMID: 27777077 DOI: 10.1016/j.virusres.2016.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022]
Abstract
Interferon stimulated (sensitive) genes (ISGs) are the effector molecules downstream of type I/III interferon (IFN) signaling pathways in host innate immunity. ISG12a can be induced by IFN-α. Although ISG12a has been reported to inhibit the replication of HCV, the exact mechanism remains to be determined. In this study, we investigated the possible mechanisms of ISG12a anti- HCV property by exploring the production of type I IFN and the activation of Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling pathway, apoptosis and autophagy in Huh7.5.1 cells transiently transfected with ISG12a over-expression plasmid. Interestingly, we found that ISG12a inhibited HCV replication in both Con1b replicon and the HCV JFH1-based cell culture system and potentiated the anti-HCV activity of IFN-α. ISG12a promoted the production of IFN α/β and activated the type I IFN signaling pathway as shown by increased p-STAT1 level, higher Interferon sensitive response element (ISRE) activity and up-regulated ISG levels. However, ISG12a over-expression did not affect cell autophagy and apoptosis. Data from our current study collectively indicated that ISG12a inhibited HCV replication and potentiated the anti-HCV activity of IFN-α possibly through induced production of type I IFNs and activation of Jak/STAT signaling pathway independent of autophagy and cell apoptosis.
Collapse
|
27
|
ISG12a Restricts Hepatitis C Virus Infection through the Ubiquitination-Dependent Degradation Pathway. J Virol 2016; 90:6832-45. [PMID: 27194766 DOI: 10.1128/jvi.00352-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Interferons (IFNs) restrict various kinds of viral infection via induction of hundreds of IFN-stimulated genes (ISGs), while the functions of the majority of ISGs are broadly unclear. Here, we show that a high-IFN-inducible gene, ISG12a (also known as IFI27), exhibits a nonapoptotic antiviral effect on hepatitis C virus (HCV) infection. Viral NS5A protein is targeted specifically by ISG12a, which mediates NS5A degradation via a ubiquitination-dependent proteasomal pathway. K374R mutation in NS5A domain III abrogates ISG12a-induced ubiquitination and degradation of NS5A. S-phase kinase-associated protein 2 (SKP2) is identified as an ubiquitin E3 ligase for NS5A. ISG12a functions as a crucial adaptor that promotes SKP2 to interact with and degrade viral protein. Moreover, the antiviral effect of ISG12a is dependent on the E3 ligase activity of SKP2. These findings uncover an intriguing mechanism by which ISG12a restricts viral infection and provide clues for understanding the actions of innate immunity. IMPORTANCE Upon virus invasion, IFNs induce numerous ISGs to control viral spread, while the functions of the majority of ISGs are broadly unclear. The present study shows a novel antiviral mechanism of ISGs and elucidated that ISG12a recruits an E3 ligase, SKP2, for ubiquitination and degradation of viral protein and restricts viral infection. These findings provide important insights into exploring the working principles of innate immunity.
Collapse
|
28
|
Lucas TM, Richner JM, Diamond MS. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol 2015; 90:2600-15. [PMID: 26699642 PMCID: PMC4810731 DOI: 10.1128/jvi.02463-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues. IMPORTANCE The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Meng X, Yang D, Yu R, Zhu H. EPSTI1 Is Involved in IL-28A-Mediated Inhibition of HCV Infection. Mediators Inflamm 2015; 2015:716315. [PMID: 26146465 PMCID: PMC4469844 DOI: 10.1155/2015/716315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022] Open
Abstract
It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-α synergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.
Collapse
Affiliation(s)
- Xianghe Meng
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Darong Yang
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Rong Yu
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Haizhen Zhu
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha 410013, China
| |
Collapse
|
30
|
Yang DR, Zhu HZ. Hepatitis C virus and antiviral innate immunity: Who wins at tug-of-war? World J Gastroenterol 2015; 21:3786-3800. [PMID: 25852264 PMCID: PMC4385526 DOI: 10.3748/wjg.v21.i13.3786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.
Collapse
|