1
|
Lei Z, Feng Y, Zhang W, Jiang Y, Chen M, Jiang W, Xin F. Research progress and development prospects of microbial synthesis of ergothioneine. World J Microbiol Biotechnol 2025; 41:184. [PMID: 40415044 DOI: 10.1007/s11274-025-04415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Ergothioneine (Egt) is a rare sulfur-containing amino acid widely distributed in edible fungi and bacteria. As a natural antioxidant, Egt has demonstrated significant application potential in the food, pharmaceutical, and cosmetic industries. However, conventional Egt production predominantly relies on chemical synthesis and biological extraction methods, which suffer from low titers and cannot meet the escalating market demand. With advances in synthetic biology, genetic engineering of suitable microbial chassis strains coupled with fermentation process optimization has emerged as a research hotspot for enhancing Egt biosynthesis efficiency. This review systematically examines Egt's applications, metabolic pathways, microbial synthesis strategies, and fermentation optimization approaches, while also prospecting future research directions and technical challenges in Egt production.
Collapse
Affiliation(s)
- Zhixiao Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China
- Shandong Yahua Biological Technology Co.,Ltd, Anqiu, Weifang, 262100, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, P. R. China.
- Shandong Yahua Biological Technology Co.,Ltd, Anqiu, Weifang, 262100, P.R. China.
| |
Collapse
|
2
|
Kang X, Wang Y, Liang Q, Luo W. Enhancing Ergothioneine Production by Combined Protein and Metabolic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9234-9245. [PMID: 40181711 DOI: 10.1021/acs.jafc.5c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ergothioneine (ERG), a sulfur-containing histidine derivative recognized for its high stability, is of significant value across multiple sectors, including food, cosmetics, and medicine. In comparison to chemical synthesis, the establishment of microbial cell factories for ERG production represents a more efficient, environmentally friendly, and sustainable strategy. In this study, we achieved de novo synthesis of ERG in Escherichia coli by introducing genes from Trichoderma reesei. Protein engineering was subsequently employed to enable the soluble expression of the key genes Tr1 and Tr2, which resulted in a 198.1% increase in ERG production. Furthermore, strain modifications, including the knockout of competing pathways and optimization of key gene copies, were used to enhance ERG production. Following strategic combinations and medium optimization, strain E25 produced 430.9 mg/L ERG in an Erlenmeyer flask and 2331.58 mg/L via fed-batch fermentation in a 5 L bioreactor. This study not only establishes a solid foundation for the efficient and sustainable scale-up production of ERG and its derivatives but also provides valuable insights and references for its industrial production.
Collapse
Affiliation(s)
- Xiyue Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, 1 Shields Ave, Davis, California 95616, United States
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
3
|
Sato S, Saika A, Koshiyama T, Higashiyama Y, Fukuoka T, Morita T. Biosynthesis of ergothioneine: current state, achievements, and perspectives. Appl Microbiol Biotechnol 2025; 109:93. [PMID: 40220171 PMCID: PMC11993508 DOI: 10.1007/s00253-025-13476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Ergothioneine (EGT) is a derivative of the amino acid L-histidine that is well known for its strong antioxidant properties. Recent studies on the functional characterization of EGT in both in vivo and in vitro systems have demonstrated its potential applications in pharmaceuticals, food, and cosmetics. The growing demand for EGT in novel applications necessitates the development of safe and cost-effective mass production technologies. Consequently, microbial fermentation for EGT biosynthesis has attracted significant attention. This review focuses on the biosynthesis of EGT via microbial fermentation, explores its biosynthetic mechanisms, and summarizes the latest advancements for industrial EGT production using engineered microbial strains. KEY POINTS: • Ergothioneine (EGT) is an L-histidine derivative with strong antioxidant property. • Recent studies have revealed certain groups of microbes produce EGT naturally. • Superior EGT producers by genetic modification have been created.
Collapse
Affiliation(s)
- Shun Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tatsuyuki Koshiyama
- New Business Division, Kureha Corporation, 3-3-2 Nihonbashi-Hamacho, Chuo-ku, Tokyo, 103-8552, Japan
| | - Yukihiro Higashiyama
- New Business Division, Kureha Corporation, 3-3-2 Nihonbashi-Hamacho, Chuo-ku, Tokyo, 103-8552, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
4
|
Li YZ, Wang Q, Cheng C, Chen C, Zhang FL, Zou Y, Li J, Zhao XQ. Genome mining of an endophytic natural yeast isolate Rhodotorula sp. Y090 and production of the potent antioxidant ergothioneine. J Biotechnol 2025; 404:18-26. [PMID: 40169100 DOI: 10.1016/j.jbiotec.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Endophytic yeast strains are promising sources of various valuable bioactive compounds. However, studies on endophytic strains derived from lichen samples remain limited. In this study, we isolated and characterized Rhodotorula sp. Y090 from a Usnea longissima lichen sample, and investigated its biosynthetic potential. Genome mining revealed distinct genetic features that differed from its closest relative strain R. graminis WP1. Ergothioneine (EGT) is a potent antioxidant and rare sulfur-containing histidine derivative. However, so far, the EGT biosynthetic enzymes by natural yeast strains have been limitedly studied. In this study, combining genome mining and transcriptomic analysis, genes encoding the potential enzymes for the production of EGT and xylose utilization were identified in Rhodotorula sp. Y090. Further studies demonstrated that Rhodotorula sp. Y090 was capable of producing EGT using xylose, glucose, glycerol, or sucrose as the sole carbon source, and the highest titer reached 363.6 mg/L in shake flask culture, which is significantly higher than that of the most reported levels in the other natural yeasts. Rhodotorula sp. Y090 also exhibited a good ability of EGT export, which could facilitate cost-effective production. These findings suggest that the lichen-derived endophytic yeast Rhodotorula sp. Y090 represents a promising natural candidate for bio-production of the potent antioxidant.
Collapse
Affiliation(s)
- Yu-Zhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Biotechnology and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zou
- Shanghai CHANDO Group Co., Ltd, Shanghai 200233, China
| | - Jun Li
- Shanghai CHANDO Group Co., Ltd, Shanghai 200233, China.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Madabeni A, Bortoli M, Nogara PA, Ribaudo G, Dalla Tiezza M, Flohé L, Rocha JBT, Orian L. 50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories. Chemistry 2024; 30:e202403003. [PMID: 39304519 PMCID: PMC11639659 DOI: 10.1002/chem.202403003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloOslo0315Norway
| | - Pablo A. Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul)Av. Leonel de Moura Brizola, 250196418-400Bagé, RSBrasil
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
| | - Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Leopold Flohé
- Department of Molecular MedicineUniversity of PadovaItaly
- Departamento de BioquímicaUniversidad de la RepúblicaMontevideoUruguay
| | - João B. T. Rocha
- Departamento de BioquímicaUniversidade Federaldo Rio Grande do Sul (UFRGS)90035-003Porto Alegre, RSBrazil
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
6
|
Peer F, Kuehnelt D. High levels of the health-relevant antioxidant selenoneine identified in the edible mushroom Boletus edulis. J Trace Elem Med Biol 2024; 86:127536. [PMID: 39321647 DOI: 10.1016/j.jtemb.2024.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Selenoneine, the selenium analogue of the sulfur antioxidant ergothioneine, has been ascribed a multitude of beneficial health effects. Natural nutritional sources for this selenium species are, hence, of high interest. So far marine fish is the only significant selenoneine source consumed by larger parts of the population worldwide. METHODS As selenoneine and ergothioneine share their biosynthetic pathways and transport mechanisms and the popular edible porcini mushroom Boletus edulis is rich in ergothioneine and selenium, we conducted a preliminary study investigating a composite sample of two specimens of B. edulis for their selenoneine content by HPLC coupled to elemental and molecular mass spectrometry after aqueous extraction. RESULTS Selenium speciation analysis by HPLC-ICPMS revealed that ca. 860 µg Se kg-1 wet mass (81 % of the total Se) co-eluted with a selenoneine standard and a minor selenium species with Se-methylselenoneine. The presence of selenoneine was rigorously proven by HPLC-ESI-Orbitrap MS. The selenoneine content of the investigated specimens of B. edulis was higher than that of commonly consumed muscle of marine fish species, like tuna or mackerel. CONCLUSION This is the first report of a terrestrial food source containing significant selenoneine levels. Our results suggest that B. edulis might represent a complementary natural supply with this health-relevant selenium species for humans.
Collapse
Affiliation(s)
- Franziska Peer
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria.
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria.
| |
Collapse
|
7
|
Tang C, Zhang L, Wang J, Zou C, Zhang Y, Yuan J. Engineering Saccharomyces boulardii for Probiotic Supplementation of l-Ergothioneine. Biotechnol J 2024; 19:e202400527. [PMID: 39562168 DOI: 10.1002/biot.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Chaoqun Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Congjia Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yalin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
8
|
Kim M, Jung J, Kim W, Park Y, Jeon CO, Park W. Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems. J Microbiol 2024; 62:933-950. [PMID: 39377859 DOI: 10.1007/s12275-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
10
|
Gao L, Li X, Li Y, Zhang Z, Wang J, Xu C, Wu X. Biochemical characterization, biosynthesis mechanism, and functional evaluation of selenium-enriched Aspergillus oryzae A02. Int J Biol Macromol 2024; 275:133714. [PMID: 38977051 DOI: 10.1016/j.ijbiomac.2024.133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2-3 times. Selenium exists in two predominant forms within A. oryzae A02: selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Xiaolin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Jialu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Chao Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
| |
Collapse
|
11
|
Seko T, Uchida H, Sato Y, Imamura S, Ishihara K, Yamashita Y, Yamashita M. Selenoneine Is Methylated in the Bodies of Mice and then Excreted in Urine as Se-Methylselenoneine. Biol Trace Elem Res 2024; 202:3672-3685. [PMID: 37932617 DOI: 10.1007/s12011-023-03936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Oral intake of purified selenoneine and seafoods has been reported to result in selenoneine accumulation in erythrocytes in mice and human. In addition, Se-methylselenoneine was suggested to be produced as a metabolite of selenoneine in the urine and whole blood of humans. In order to confirm the molecular mechanism of production of Se-methylselenoneine, a stable isotope (Se-76) labeled selenoneine was biosynthesized using genetically modified fission yeast and administered to mice. The Se-76-labeled Se-methylselenoneine was detected in urine but Se-78 and Se-80-labeled Se-methylselenoneine arising from natural isotopes of Se was hardly detected. These results suggest that Se-methylselenoneine was a metabolite and the excreted form of selenoneine. The methylation of selenoneine in mice administered selenoneine continuously was evaluated by the analyses of organs using an online liquid chromatograph system with an inductively coupled plasma mass spectrometer (LC-ICP-MS). These experiments indicate that selenoneine is methylated in the liver and (or) kidneys.
Collapse
Affiliation(s)
- Takuya Seko
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Yoko Sato
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Shintaro Imamura
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Kenji Ishihara
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Yumiko Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Michiaki Yamashita
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi, 759-6595, Japan
| |
Collapse
|
12
|
Xiong K, Xue S, Guo H, Dai Y, Ji C, Dong L, Zhang S. Ergothioneine: new functional factor in fermented foods. Crit Rev Food Sci Nutr 2024; 64:7505-7516. [PMID: 36891762 DOI: 10.1080/10408398.2023.2185766] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Ergothioneine (EGT) is a high-value natural sulfur-containing amino acid and has been shown to possess extremely potent antioxidant and cytoprotective activities. At present, EGT has been widely used in food, functional food, cosmetics, medicine, and other industries, but its low yield is still an urgent problem to overcome. This review briefly introduced the biological activities and functions of EGT, and expounded its specific applications in food, functional food, cosmetic, and medical industries, introduced and compared the main production methods of EGT and respective biosynthetic pathways in different microorganisms. Furthermore, the use of genetic and metabolic engineering methods to improve EGT production was discussed. In addition, the incorporation of some food-derived EGT-producing strains into fermentation process will allow the EGT to act as a new functional factor in the fermented foods.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Liang Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
13
|
Zhang H, Zhang Y, Zhao M, Zabed HM, Qi X. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14264-14273. [PMID: 38860833 DOI: 10.1021/acs.jafc.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.
Collapse
Affiliation(s)
- Huifang Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu K, Xiang G, Li L, Liu T, Ke J, Xiong L, Wei D, Wang F. Engineering non-conventional yeast Rhodotorula toruloides for ergothioneine production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:65. [PMID: 38741169 DOI: 10.1186/s13068-024-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a distinctive sulfur-containing histidine derivative, which has been recognized as a high-value antioxidant and cytoprotectant, and has a wide range of applications in food, medical, and cosmetic fields. Currently, microbial fermentation is a promising method to produce EGT as its advantages of green environmental protection, mild fermentation condition, and low production cost. However, due to the low-efficiency biosynthetic process in numerous cell factories, it is still a challenge to realize the industrial biopreparation of EGT. The non-conventional yeast Rhodotorula toruloides is considered as a potential candidate for EGT production, thanks to its safety for animals and natural ability to synthesize EGT. Nevertheless, its synthesis efficiency of EGT deserves further improvement. RESULTS In this study, out of five target wild-type R. toruloides strains, R. toruloides 2.1389 (RT1389) was found to accumulate the highest EGT production, which could reach 79.0 mg/L at the shake flask level on the 7th day. To achieve iterative genome editing in strain RT1389, CRISPR-assisted Cre recombination (CACR) method was established. Based on it, an EGT-overproducing strain RT1389-2 was constructed by integrating an additional copy of EGT biosynthetic core genes RtEGT1 and RtEGT2 into the genome, the EGT titer of which was 1.5-fold increase over RT1389. As the supply of S-adenosylmethionine was identified as a key factor determining EGT production in strain RT1389, subsequently, a series of gene modifications including S-adenosylmethionine rebalancing were integrated into the strain RT1389-2, and the resulting mutants were rapidly screened according to their EGT production titers with a high-throughput screening method based on ergothionase. As a result, an engineered strain named as RT1389-3 was selected with a production titer of 267.4 mg/L EGT after 168 h in a 50 mL modified fermentation medium. CONCLUSIONS This study characterized the EGT production capacity of these engineered strains, and demonstrated that CACR and high-throughput screening method allowed rapid engineering of R. toruloides mutants with improved EGT production. Furthermore, this study provided an engineered RT1389-3 strain with remarkable EGT production performance, which had potential industrial application prospects.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gedan Xiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lekai Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liangbin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
15
|
Ding YX, Chen JW, Ke J, Hu FY, Wen JC, Dong YG, Wang FQ, Xiong LB. Co-augmentation of a transport gene mfsT1 in Mycolicibacterium neoaurum with genome engineering to enhance ergothioneine production. J Basic Microbiol 2024; 64:e2300705. [PMID: 38253966 DOI: 10.1002/jobm.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.
Collapse
Affiliation(s)
- Ya-Xue Ding
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jun-Wei Chen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Ke
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Fei-Yang Hu
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jia-Chen Wen
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu-Guo Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liang-Bin Xiong
- Department of General Surgery, Jinshan District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H, Li H, Zhang L, Chen L, Tian X, Shen Z, Song Z, Fan X, Zong JF, Guo Z, Ma X, Xiao M, Liao G, Liu CH, Yin WB, Dong Z, Yang F, Jiang YY, Perlin DS, Chen Y, Fu YV, Wang L. Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe 2024; 32:276-289.e7. [PMID: 38215741 DOI: 10.1016/j.chom.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoning Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Fa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cui Hua Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuan-Ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Yihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu V Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Sato S, Saika A, Ushimaru K, Koshiyama T, Higashiyama Y, Fukuoka T, Morita T. Biosynthetic ability of diverse basidiomycetous yeast strains to produce the natural antioxidant ergothioneine. AMB Express 2024; 14:20. [PMID: 38337099 PMCID: PMC10858013 DOI: 10.1186/s13568-024-01672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Sixteen strains of basidiomycetous yeasts were evaluated for their capability to produce ergothioneine (EGT), an amino acid derivative with strong antioxidant activity. The cells were cultured in either two synthetic media or yeast mold (YM) medium for 72 h, after which cytosolic constituents were extracted from the cells with hot water. After analyzing the extracts via liquid chromatography-mass spectrometry (LC-MS), we found that all strains produced varying amounts of EGT. The EGT-producing strains, including Ustilago siamensis, Anthracocystis floculossa, Tridiomyces crassus, Ustilago shanxiensis, and Moesziomyces antarcticus, were subjected to flask cultivation in YM medium. U. siamensis CBS9960 produced the highest amount of EGT at 49.5 ± 7.0 mg/L after 120 h, followed by T. crassus at 30.9 ± 1.8 mg/L. U. siamensis was also cultured in a jar fermenter and produced slightly higher amounts of EGT than under flask cultivation. The effects of culture conditions, particularly the addition of precursor amino acids, on EGT production by the selected strains were also evaluated. U. siamensis showed a 1.5-fold increase in EGT production with the addition of histidine, while U. shanxiensis experienced a 1.8-fold increase in EGT production with the addition of methionine. These results suggest that basidiomycetous yeasts could serve an abundant source for natural EGT producers.
Collapse
Affiliation(s)
- Shun Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazunori Ushimaru
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tatsuyuki Koshiyama
- Research and Development Division, Kureha Corporation, 16, Ochiai, Nishiki-Machi, Iwaki, Fukushima, 974-8686, Japan
| | - Yukihiro Higashiyama
- Research and Development Division, Kureha Corporation, 16, Ochiai, Nishiki-Machi, Iwaki, Fukushima, 974-8686, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
19
|
Liu M, Yang Y, Huang JW, Dai L, Zheng Y, Cheng S, He H, Chen CC, Guo RT. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int J Biol Macromol 2024; 256:128428. [PMID: 38013086 DOI: 10.1016/j.ijbiomac.2023.128428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon‑selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingyu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shujing Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hailin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
20
|
Achouba A, Dumas P, Ayotte P. Simultaneous determination of ergothioneine, selenoneine, and their methylated metabolites in human blood using ID-LC-MS/MS. Anal Bioanal Chem 2023; 415:7259-7267. [PMID: 37914954 DOI: 10.1007/s00216-023-04994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Ergothioneine and selenoneine are structurally related dietary antioxidants and cytoprotectants that may help prevent several chronic diseases associated with inflammation and aging. Both compounds share pharmacokinetic characteristics such as cellular uptake through the ergothioneine transporter, accumulation in red blood cells, and biotransformation to methylated metabolites. A rapid, sensitive, specific, precise, and cost-effective analytical method is required to further investigate the potential health benefits of these compounds, individually or combined, in large epidemiological studies. We developed and validated an isotope-dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) method for the simultaneous specific quantification of these analytes in human blood following a simple sample preparation consisting of dilution in aqueous dithiothreitol followed by centrifugal filtration. Chromatographic separation of the analytes is achieved using a reversed-phase chromatography within an 8-min run. Analyte detection is performed using triple quadrupole mass spectrometry in multiple reaction monitoring mode. Each analyte is quantified against its corresponding isotopically labeled internal standard either commercially available or synthesized in-house (77Se-labeled selenoneine compounds). The validated method demonstrates excellent linearity and very good precision (all CV < 10%). Matrix effects are minimal, suggesting that this method could easily be adapted to other matrices. Freeze/thaw cycles have little effect on methylated metabolites but significantly reduced concentrations of the parent compounds. The method was successfully applied to a small set of volunteer blood samples containing low levels of the analytes. The developed ID-LC-MS/MS method opens new avenues for exploring the roles of these bioactive compounds and their metabolites in human health and disease.
Collapse
Affiliation(s)
- Adel Achouba
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Pierre Dumas
- Centre de toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada.
- Centre de toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada.
- Département de médecine sociale et préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
21
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
22
|
Rabot C, Chen Y, Lin SY, Miller B, Chiang YM, Oakley CE, Oakley BR, Wang CCC, Williams TJ. Polystyrene Upcycling into Fungal Natural Products and a Biocontrol Agent. J Am Chem Soc 2023; 145:5222-5230. [PMID: 36779837 PMCID: PMC11062757 DOI: 10.1021/jacs.2c12285] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Polystyrene (PS) is one of the most used yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or limited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologically active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engineered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic-derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived benzoic acid.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089 United States
| | - Yuhao Chen
- Department of Chemistry, Donald P. and Katherine B. Loker Hydrocarbon Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089 United States
- Wrigley Institute for Environmental Studies, 3454 Trousdale Parkway, Los Angeles, California 90089 United States
| | - Shu-Yi Lin
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089 United States
| | - Ben Miller
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089 United States
- Department of Chemistry, Donald P. and Katherine B. Loker Hydrocarbon Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089 United States
| | - Yi-Ming Chiang
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089 United States
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045 United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045 United States
| | - Clay C C Wang
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089 United States
- Department of Chemistry, Donald P. and Katherine B. Loker Hydrocarbon Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089 United States
- Wrigley Institute for Environmental Studies, 3454 Trousdale Parkway, Los Angeles, California 90089 United States
| | - Travis J Williams
- Department of Chemistry, Donald P. and Katherine B. Loker Hydrocarbon Institute, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089 United States
- Wrigley Institute for Environmental Studies, 3454 Trousdale Parkway, Los Angeles, California 90089 United States
| |
Collapse
|
23
|
Hirasawa T, Shimoyamada Y, Tachikawa Y, Satoh Y, Kawano Y, Dairi T, Ohtsu I. Ergothioneine production by Corynebacterium glutamicum harboring heterologous biosynthesis pathways. J Biosci Bioeng 2023; 135:25-33. [PMID: 36334975 DOI: 10.1016/j.jbiosc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
In this study, Corynebacterium glutamicum was engineered to produce ergothioneine, an amino acid derivative with high antioxidant activity. The ergothioneine biosynthesis genes, egtABCDE, from Mycolicibacterium smegmatis were introduced into wild-type and l-cysteine-producing strains of C. glutamicum to evaluate their ergothioneine production. In the l-cysteine-producing strain, ergothioneine production reached approximately 40 mg L-1 after 2 weeks, and the amount was higher than that in the wild-type strain. As C. glutamicum possesses an ortholog of M. smegmatis egtA, which encodes an enzyme responsible for γ-glutamyl-l-cysteine synthesis, the effect of introducing egtBCDE genes on ergothioneine production in the l-cysteine-producing strain was evaluated, revealing that a further increase to more than 70 mg L-1 was achieved. As EgtBs from Methylobacterium bacteria are reported to use l-cysteine as a sulfur donor in ergothioneine biosynthesis, egtB from Methylobacterium was expressed with M. smegmatis egtDE in the l-cysteine-producing strain. As a result, ergothioneine production was further improved to approximately 100 mg L-1. These results indicate that utilization of the l-cysteine-producing strain and introduction of heterologous biosynthesis pathways from M. smegmatis and Methylobacterium bacteria are effective for improved ergothioneine production by C. glutamicum.
Collapse
Affiliation(s)
- Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Yuki Shimoyamada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yukio Tachikawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuharu Satoh
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Kawano
- Gradutate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Iwao Ohtsu
- Gradutate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
24
|
Wischhusen P, Betancor MB, Sprague M, Ortega A, de la Gándara F, Tocher DR, Mourente G. Molecular Antioxidant Functions are Enhanced in Atlantic Bluefin Tuna ( Thunnus Thynnus, L.) Larvae Fed Selenium-Enriched Rotifers Brachionus Rotundiformis. Antioxidants (Basel) 2022; 12:antiox12010026. [PMID: 36670887 PMCID: PMC9854485 DOI: 10.3390/antiox12010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium (Se) is an essential trace element for fish with more than 40 selenoproteins identified, many exhibiting antioxidant functions. This study investigated the effect of dietary Se supplementation on physiological parameters, selenoprotein and antioxidant enzyme gene expression in Atlantic bluefin tuna (ABT, Thunnus thynnus) larvae. First-feeding ABT larvae were divided into triplicate groups and fed rotifers Brachionus rotundiformis enriched with five different levels of Se (0, 3, 10, 30, and 100 µg Se·L-1) until 14 days after hatching. Both rotifers and ABT larvae effectively accumulated Se achieving maximum levels in the Se100 treatment (30.05 μg Se·g-1 and 194 ± 38 μg Se·g-1 dry mass, respectively). Larvae showed highest total length when fed Se3 rotifers, whereas flexion index was highest in larvae fed Se10. Selenium supplementation increased the gene expression of selenoproteins gpx1, msrb1, trxr2, selenom, selenop, and selenoe compared to the non-supplemented control (Se0), but only marginal differences were detected between supplementation levels. In contrast, expression of the antioxidant enzymes cat and sod1 were lowest in larvae fed Se100. To conclude, non-Se-enriched rotifers may be suboptimal for first feeding ABT larvae, which showed improved selenoprotein and antioxidant gene expression when fed a diet containing 4.42 μg Se·g-1 dry mass.
Collapse
Affiliation(s)
- Pauline Wischhusen
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
- Correspondence: ; Tel.: +44-1786-467993
| | - Matthew Sprague
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Aurelio Ortega
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón (Murcia), Spain
| | - Fernando de la Gándara
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón (Murcia), Spain
| | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
25
|
Wu P, Gu Y, Liao L, Wu Y, Jin J, Wang Z, Zhou J, Shaik S, Wang B. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angew Chem Int Ed Engl 2022; 61:e202214235. [DOI: 10.1002/anie.202214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yang Gu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yanfei Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jiaoyu Jin
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhanfeng Wang
- Center for Advanced Materials Research Beijing Normal University Zhuhai 519087 China
| | - Jiahai Zhou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
26
|
A Single Aspergillus fumigatus Gene Enables Ergothioneine Biosynthesis and Secretion by Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms231810832. [PMID: 36142753 PMCID: PMC9502471 DOI: 10.3390/ijms231810832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The naturally occurring sulphur-containing histidine derivative, ergothioneine (EGT), exhibits potent antioxidant properties and has been proposed to confer human health benefits. Although it is only produced by select fungi and prokaryotes, likely to protect against environmental stress, the GRAS organism Saccharomyces cerevisiae does not produce EGT naturally. Herein, it is demonstrated that the recombinant expression of a single gene, Aspergillus fumigatus egtA, in S. cerevisiae results in EgtA protein presence which unexpectedly confers complete EGT biosynthetic capacity. Both High Performance Liquid Chromatography (HPLC) and LC−mass spectrometry (MS) analysis were deployed to detect and confirm EGT production in S. cerevisiae. The localisation and quantification of the resultant EGT revealed a significantly (p < 0.0001) larger quantity of EGT was extracellularly present in culture supernatants than intracellularly accumulated in 96 h yeast cultures. Methionine addition to cultures improved EGT production. The additional expression of two candidate cysteine desulfurases from A. fumigatus was thought to be required to complete EGT biosynthesis, namely AFUA_2G13295 and AFUA_3G14240, termed egt2a and egt2b in this study. However, the co-expression of egtA and egt2a in S. cerevisiae resulted in a significant decrease in the observed EGT levels (p < 0.05). The AlphaFold prediction of A. fumigatus EgtA 3-Dimensional structure illuminates the bidomain structure of the enzyme and the opposing locations of both active sites. Overall, we clearly show that recombinant S. cerevisiae can biosynthesise and secrete EGT in an EgtA-dependent manner which presents a facile means of producing EGT for biotechnological and biomedical use.
Collapse
|
27
|
Kayrouz CM, Huang J, Hauser N, Seyedsayamdost MR. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 2022; 610:199-204. [PMID: 36071162 DOI: 10.1038/s41586-022-05174-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 01/02/2023]
Abstract
Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Jonathan Huang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Nicole Hauser
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
28
|
Chen BX, Xue LN, Wei T, Ye ZW, Li XH, Guo LQ, Lin JF. Enhancement of ergothioneine production by discovering and regulating its metabolic pathway in Cordyceps militaris. Microb Cell Fact 2022; 21:169. [PMID: 35999536 PMCID: PMC9396837 DOI: 10.1186/s12934-022-01891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cordyceps militaris is a traditional medicinal fungus contains a variety of functional ingredients and has been developed as an important mushroom food recently. Ergothioneine, one of the antioxidative compounds in C. militaris, is benefits on aging-related diseases and therefore became a novel functional food nutritive fortifier. Currently, the main diet source of ergothioneine is mushroom food. However, the mushroom farming faces the problems such as rather low ingredient yield and spontaneous degeneration associated fruiting body that restricts large scale production of ergothioneine. Results In this study, we excavated the ergothioneine synthetases in mushroom and modified the genes in C. militaris to construct a new ergothioneine synthesis pathway. By further introducing this pathway into C. militaris genome, we succeeded to increase the ingredients’ production of engineering strain, the highest amount of ergothioneine and cordycepin were up to 2.5 g/kg dry weight and 2 g/L, respectively. Additionally, the expression of ergothioneine synthetase genes in the shape-mutated degenerative C. militaris could recover the ability of degenerative strain to produce high amount of ingredients, suggesting the metabolic regulation of ergothioneine might release the symptom of mushroom degeneration. Conclusion This study reveals a new pathway to fulfill the market needs of functional mushroom food and food fortifier ergothioneine. It implied the mycelium of C. militaris could be engineered as a novel medicinal mushroom food which could produce higher amount of valuable ingredients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01891-5.
Collapse
Affiliation(s)
- Bai-Xiong Chen
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Ling-Na Xue
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Tao Wei
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Zhi-Wei Ye
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Xue-Hai Li
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Jun-Fang Lin
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| |
Collapse
|
29
|
Chen Z, He Y, Wu X, Wang L, Dong Z, Chen X. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Microb Cell Fact 2022; 21:76. [PMID: 35525939 PMCID: PMC9077841 DOI: 10.1186/s12934-022-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. Results Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. Conclusions Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01807-3.
Collapse
Affiliation(s)
- Zhihui Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyu Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Cordell GA, Lamahewage SNS. Ergothioneine, Ovothiol A, and Selenoneine-Histidine-Derived, Biologically Significant, Trace Global Alkaloids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092673. [PMID: 35566030 PMCID: PMC9103826 DOI: 10.3390/molecules27092673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
Abstract
The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Sujeewa N. S. Lamahewage
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Department of Chemistry, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
31
|
Kim M, Jeong DW, Oh JW, Jeong HJ, Ko YJ, Park SE, Han SO. Efficient Synthesis of Food-Derived Antioxidant l-Ergothioneine by Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1516-1524. [PMID: 35088592 DOI: 10.1021/acs.jafc.1c07541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
l-Ergothioneine (EGT) is a strong antioxidant used in industry, and it is commonly extracted from mushrooms; however, its production is limited. As an alternative, we developed metabolically engineered Corynebacterium glutamicum with reinforced sulfur assimilation and pentose phosphate pathways, which led to the accumulation of 45.0 and 63.2 mg/L EGT, respectively. Additionally, the overexpression of cysEKR resulted in further promoted EGT production in ET4 (66.5 mg/L) and ET7 (85.0 mg/L). Based on this result, we developed the strain ET11, in which all sulfur assimilatory, PP, and l-cysteine synthetic pathways were reinforced, and it synthesized 264.4 mg/L EGT. This study presents the first strategy for EGT synthesis that does not require precursor addition in C. glutamicum, and the production time was shortened. In addition, the synthesized EGT showed high radical scavenging activity (70.7%), thus confirming its antioxidant function. Consequently, this study showed the possibility of EGT commercialization by overcoming the limitations of industrial processes.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jin Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Eun Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Kondoh H, Teruya T, Kameda M, Yanagida M. Decline of ergothioneine in frailty and cognition impairment. FEBS Lett 2022; 596:1270-1278. [PMID: 35090053 DOI: 10.1002/1873-3468.14299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Ergothioneine is a well-known anti-oxidant that is abundant in both human red blood cells and in fission yeast responding to nutritional stress. In frail elderly people, whose aging organs undergo functional decline, there is a correlation between ergothioneine levels and cognitive, but not skeletal muscle decline. In patients suffering from dementia, including Alzheimer's disease with hippocampal atrophy, deteriorating cognitive ability is correlated with declining ergothioneine levels. S-methyl-ergothioneine, trimethyl-histidine, and three other trimethyl-ammonium compounds also decrease sharply in dementia, whereas compounds such as indoxyl-sulfate and quinolinic acid increase, possibly exacerbating the disease. Using these opposing dementia markers, not only diagnosis, but also therapeutic interventions to mitigate cognitive decline may now become possible.
Collapse
Affiliation(s)
- Hiroshi Kondoh
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Masahiro Kameda
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| |
Collapse
|
33
|
Qiu Y, Chen Z, Su E, Wang L, Sun L, Lei P, Xu H, Li S. Recent Strategies for the Biosynthesis of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13682-13690. [PMID: 34757754 DOI: 10.1021/acs.jafc.1c05280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ergothioneine (EGT) is a unique naturally occurring amino acid that is usually biosynthesized by bacteria and fungi. As a food-derived antioxidant and cytoprotectant, it has several physiological benefits and has a wide range of applications in food, medicine, and cosmetics. Traditional production of EGT is mainly through biological extraction or chemical synthesis; however, these methods are inefficient, making large-scale production to meet the growing market demand difficult. Nowadays, the rapid development of synthetic biology has greatly accelerated the research on the EGT production by microbial fermentation. In this paper, the biological characteristics, applications, biosynthesis, separation, and detection methods of EGT were fully reviewed. Furthermore, the approaches and challenges for engineering microbial cells to efficiently synthesize EGT were also discussed. This work provides new ideas and future research potentials in EGT production.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, P. R. China
| | - Zhonglin Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Libin Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
34
|
Wu MX, Zou Y, Yu YH, Chen BX, Zheng QW, Ye ZW, Wei T, Ye SQ, Guo LQ, Lin JF. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Res Int 2021; 147:110540. [PMID: 34399517 DOI: 10.1016/j.foodres.2021.110540] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The Pleurotus tuoliensis (Pt), a precious edible mushroom with high economic value, is widely popular for its rich nutrition and meaty texture. However, rapid postharvest deterioration depreciates the commercial value of Pt and severely restricts its marketing. By RNA-Seq transcriptomic and TMT-MS MS proteomic, we study the regulatory mechanisms of the postharvest storage of Pt fruitbodies at 25 ℃ for 0, 38, and 76 h (these three-time points recorded as groups A, B, and C, respectively). 2,008 DEGs (Differentially expressed genes) were identified, and all DEGs shared 265 factors with all DEPs (Differentially expressed proteins). Jointly, the DEGs and DEPs of two-omics showed that the category of the metabolic process contained the most DEGs and DEPs in the biological process by GO (Gene Ontology) classification. The top 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways with the highest sum of DEG and DEP numbers in groups B/A (38 h vs. 0 h) and C/A (76 h vs. 0 h) and pathways closely related to energy metabolism were selected for analysis and discussion. Actively expression of CAZymes (Carbohydrate active enzymes), represented by laccase, chitinase, and β-glucanase, directly leads to the softening of fruitbodies. The transcription factor Rlm1 of 1,3-β-glucan synthase attracted attention with a significant down-regulation of gene levels in the C/A group. Laccase also contributes, together with phenylalanine ammonia-lyase (PAL), to the discoloration reaction in the first 76 h of the fruitbodies. Significant expression of several crucial enzymes for EMP (Glycolysis), Fatty acid degradation, and Valine, leucine and isoleucine degradation at the gene or protein level supply substantial amounts of acetyl-CoA to the TCA cycle. Citrate synthase (CS), isocitrate dehydrogenase (ICDH), and three mitochondrial respiratory complexes intensify respiration and produce high levels of ROS (Reactive oxygen species) by significant up-regulation. In the ROS scavenging system, only Mn-SOD was significantly up-regulated at the gene level and was probably interacted with Hsp60 (Heat shock protein 60), which was significantly up-regulated at the protein level, to play a dominant role in antioxidation. Three types of stresses - cell wall stress, starvation, and oxidative stress - were suffered by Pt fruitbodies postharvest, resulting in cell cycle arrest and gene expression disorder.
Collapse
Affiliation(s)
- Mu-Xiu Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Ying-Hao Yu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Bai-Xiong Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Qian-Wang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Tao Wei
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Si-Qiang Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
35
|
Cheng R, Lai R, Peng C, Lopez J, Li Z, Naowarojna N, Li K, Wong C, Lee N, Whelan SA, Qiao L, Grinstaff MW, Wang J, Cui Q, Liu P. Implications for an imidazol-2-yl carbene intermediate in the rhodanase-catalyzed C-S bond formation reaction of anaerobic ergothioneine biosynthesis. ACS Catal 2021; 11:3319-3334. [PMID: 34745712 DOI: 10.1021/acscatal.0c04886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the anaerobic ergothioneine biosynthetic pathway, a rhodanese domain containing enzyme (EanB) activates tne hercynine's sp2 ε-C-H Dona ana replaces it with a C-S bond to produce ergothioneine. The key intermediate for this trans-sulfuration reaction is the Cys412 persulfide. Substitution of the EanB-Cys412 persulfide with a Cys412 perselenide does not yield the selenium analog of ergothioneine, selenoneine. However, in deuterated buffer, the perselenide-modified EanB catalyzes the deuterium exchange between hercynine's sp2 ε-C-H bond and D2O. Results from QM/MM calculations suggest that the reaction involves a carbene intermediate and that Tyr353 plays a key role. We hypothesize that modulating the pKa of Tyr353 will affect the deuterium-exchange rate. Indeed, the 3,5-difluoro tyrosine containing EanB catalyzes the deuterium exchange reaction with k ex of ~10-fold greater than the wild-type EanB (EanBWT). With regards to potential mechanisms, these results support the involvement of a carbene intermediate in EanB-catalysis, rendering EanB as one of the few carbene-intermediate involving enzymatic systems.
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Rui Lai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Stephen A. Whelan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
36
|
Han Y, Tang X, Zhang Y, Hu X, Ren LJ. The current status of biotechnological production and the application of a novel antioxidant ergothioneine. Crit Rev Biotechnol 2021; 41:580-593. [PMID: 33550854 DOI: 10.1080/07388551.2020.1869692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ergothioneine is a sulfur-containing histidine derivative, that possessesexcellent antioxidant activity and has been used in the food and cosmetics industries. It plays a significant role in anti-aging and the prevention of various diseases. This review will briefly introduce the functions and applications of ergothioneine, elaborate the biosynthetic pathways of ergothioneine and describe several strategies to increase the production of ergothioneine. Then the efficient extraction and detection methods of ergothioneine will be presented. Finally, several proposals are put forward to increase the yield of ergothioneine, and the development prospects of ergothioneine will be discussed.
Collapse
Affiliation(s)
- Yiwen Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiuyang Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China.,Jiangsu TianKai Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Seko T, Uchida H, Yamashita Y, Yamashita M. Novel method for separating selenoneine reduced monomer and ergothioneine from fission yeast extracts. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Whole Blood Metabolomics in Aging Research. Int J Mol Sci 2020; 22:ijms22010175. [PMID: 33375345 PMCID: PMC7796096 DOI: 10.3390/ijms22010175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Diversity is observed in the wave of global aging because it is a complex biological process exhibiting individual variability. To assess aging physiologically, markers for biological aging are required in addition to the calendar age. From a metabolic perspective, the aging hypothesis includes the mitochondrial hypothesis and the calorie restriction (CR) hypothesis. In experimental models, several compounds or metabolites exert similar lifespan-extending effects, like CR. However, little is known about whether these metabolic modulations are applicable to human longevity, as human aging is greatly affected by a variety of factors, including lifestyle, genetic or epigenetic factors, exposure to stress, diet, and social environment. A comprehensive analysis of the human blood metabolome captures complex changes with individual differences. Moreover, a non-targeted analysis of the whole blood metabolome discloses unexpected aspects of human biology. By using such approaches, markers for aging or aging-relevant conditions were identified. This information should prove valuable for future diagnosis or clinical interventions in diseases relevant to aging.
Collapse
|
39
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
40
|
Yu YH, Pan HY, Guo LQ, Lin JF, Liao HL, Li HY. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact 2020; 19:164. [PMID: 32811496 PMCID: PMC7437059 DOI: 10.1186/s12934-020-01421-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. Results Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. Conclusion A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Hong-Yu Pan
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Han-Lu Liao
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| | - Hao-Ying Li
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
41
|
The catalytic mechanism of sulfoxide synthases. Curr Opin Chem Biol 2020; 59:111-118. [PMID: 32726707 DOI: 10.1016/j.cbpa.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Sulfoxide synthases are non-heme iron enzymes that catalyze oxidative carbonsulfur bond formation in the biosynthesis of thiohistidines such as ergothioneine and ovothiol. The catalytic mechanism of these enzymes has been studied by protein crystallography, steady-state kinetics, non-natural amino acid incorporation and computational modeling. This review discusses the current status of this research and also highlights similarities between the CS bond forming activity of sulfoxide synthases with that of synthetic coordination compounds.
Collapse
|
42
|
Kamide T, Takusagawa S, Tanaka N, Ogasawara Y, Kawano Y, Ohtsu I, Satoh Y, Dairi T. High Production of Ergothioneine in Escherichia coli using the Sulfoxide Synthase from Methylobacterium strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6390-6394. [PMID: 32436380 DOI: 10.1021/acs.jafc.0c01846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We previously constructed a heterologous production system for ergothioneine (ERG) in Escherichia coli using five ERG biosynthesis genes (egtABCDE) from Mycobacterium smegmatis. However, significant amounts of hercynine (HER), an intermediate of ERG, as ERG were accumulated, suggesting that the reaction of EgtB catalyzing the attachment of γ-glutamylcysteine (γGC) to HER to yield hercynyl-γ-glutamylcysteine sulfoxide was a bottleneck. In this study, we searched for other EgtBs and found many egtB orthologs in diverse microorganisms. Among these, Methylobacterium strains possessed EgtBs that catalyze the direct conversion of HER into hercynylcysteine sulfoxide with l-cysteine (l-Cys) as a sulfur donor, in a manner similar to those of acidobacterial CthEgtB and fungal Egt1. An in vitro study with recombinant EgtBs from Methylobacterium brachiatum and Methylobacterium pseudosasicola clearly showed that both enzymes accepted l-Cys but not γGC. We reconstituted the ERG production system in E. coli with egtB from M. pseudosasicola; ERG productivity reached 657 mg L-1.
Collapse
Affiliation(s)
- Tomoyuki Kamide
- Graduate School of Chemical Science and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Shun Takusagawa
- Graduate School of Chemical Science and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoyuki Tanaka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Kawano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Iwao Ohtsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuharu Satoh
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
43
|
Goncharenko KV, Flückiger S, Liao C, Lim D, Stampfli AR, Seebeck FP. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Chemistry 2020; 26:1328-1334. [PMID: 31545545 DOI: 10.1002/chem.201903898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 01/03/2023]
Abstract
Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.
Collapse
Affiliation(s)
- Kristina V Goncharenko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Sebastian Flückiger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Cangsong Liao
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - David Lim
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Anja R Stampfli
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
44
|
Traynor AM, Sheridan KJ, Jones GW, Calera JA, Doyle S. Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Front Microbiol 2019; 10:2859. [PMID: 31921039 PMCID: PMC6923255 DOI: 10.3389/fmicb.2019.02859] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Fungal sulfur uptake is required for incorporation into the sidechains of the amino acids cysteine and methionine, and is also essential for the biosynthesis of the antioxidant glutathione (GSH), S-adenosylmethionine (SAM), the key source of methyl groups in cellular transmethylation reactions, and S-adenosylhomocysteine (SAH). Biosynthesis of redox-active gliotoxin in the opportunistic fungal pathogen Aspergillus fumigatus has been elucidated over the past 10 years. Some fungi which produce gliotoxin-like molecular species have undergone unexpected molecular rewiring to accommodate this high-risk biosynthetic process. Specific disruption of gliotoxin biosynthesis, via deletion of gliK, which encodes a γ-glutamyl cyclotransferase, leads to elevated intracellular antioxidant, ergothioneine (EGT), levels, and confirms crosstalk between the biosynthesis of both sulfur-containing moieties. Gliotoxin is ultimately formed by gliotoxin oxidoreductase GliT-mediated oxidation of dithiol gliotoxin (DTG). In fact, DTG is a substrate for both GliT and a bis-thiomethyltransferase, GtmA. GtmA converts DTG to bisdethiobis(methylthio)gliotoxin (BmGT), using 2 mol SAM and resultant SAH must be re-converted to SAM via the action of the Methyl/Met cycle. In the absence of GliT, DTG fluxes via GtmA to BmGT, which results in both SAM depletion and SAH overproduction. Thus, the negative regulation of gliotoxin biosynthesis via GtmA must be counter-balanced by GliT activity to avoid Methyl/Met cycle dysregulation, SAM depletion and trans consequences on global cellular biochemistry in A. fumigatus. DTG also possesses potent Zn2+ chelation properties which positions this sulfur-containing metabolite as a putative component of the Zn2+ homeostasis system within fungi. EGT plays an essential role in high-level redox homeostasis and its presence requires significant consideration in future oxidative stress studies in pathogenic filamentous fungi. In certain filamentous fungi, sulfur is additionally indirectly required for the formation of EGT and the disulfide-bridge containing non-ribosomal peptide, gliotoxin, and related epipolythiodioxopiperazines. Ultimately, interference with emerging sulfur metabolite functionality may represent a new strategy for antifungal drug development.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
45
|
van der Hoek SA, Darbani B, Zugaj KE, Prabhala BK, Biron MB, Randelovic M, Medina JB, Kell DB, Borodina I. Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 2019; 7:262. [PMID: 31681742 PMCID: PMC6797849 DOI: 10.3389/fbioe.2019.00262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
L-(+)-Ergothioneine (ERG) is an unusual, naturally occurring antioxidant nutraceutical that has been shown to help reduce cellular oxidative damage. Humans do not biosynthesise ERG, but acquire it from their diet; it exploits a specific transporter (SLC22A4) for its uptake. ERG is considered to be a nutraceutical and possible vitamin that is involved in the maintenance of health, and seems to be at too low a concentration in several diseases in vivo. Ergothioneine is thus a potentially useful dietary supplement. Present methods of commercial production rely on extraction from natural sources or on chemical synthesis. Here we describe the engineering of the baker's yeast Saccharomyces cerevisiae to produce ergothioneine by fermentation in defined media. After integrating combinations of ERG biosynthetic pathways from different organisms, we screened yeast strains for their production of ERG. The highest-producing strain was also engineered with known ergothioneine transporters. The effect of amino acid supplementation of the medium was investigated and the nitrogen metabolism of S. cerevisiae was altered by knock-out of TOR1 or YIH1. We also optimized the media composition using fractional factorial methods. Our optimal strategy led to a titer of 598 ± 18 mg/L ergothioneine in fed-batch culture in 1 L bioreactors. Because S. cerevisiae is a GRAS ("generally recognized as safe") organism that is widely used for nutraceutical production, this work provides a promising process for the biosynthetic production of ERG.
Collapse
Affiliation(s)
- Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karolina E. Zugaj
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bala Krishna Prabhala
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Bernfried Biron
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacqueline B. Medina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
47
|
Lim D, Gründemann D, Seebeck FP. Total Synthesis and Functional Characterization of Selenoneine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David Lim
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Dirk Gründemann
- Department of Pharmacology University of Cologne, Faculty of Medicine and University Hospital Cologne Gleueler Straße 24 50931 Cologne Germany
| | - Florian P. Seebeck
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
48
|
Lim D, Gründemann D, Seebeck FP. Total Synthesis and Functional Characterization of Selenoneine. Angew Chem Int Ed Engl 2019; 58:15026-15030. [DOI: 10.1002/anie.201908967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- David Lim
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Dirk Gründemann
- Department of Pharmacology University of Cologne, Faculty of Medicine and University Hospital Cologne Gleueler Straße 24 50931 Cologne Germany
| | - Florian P. Seebeck
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
49
|
Achouba A, Dumas P, Ouellet N, Little M, Lemire M, Ayotte P. Selenoneine is a major selenium species in beluga skin and red blood cells of Inuit from Nunavik. CHEMOSPHERE 2019; 229:549-558. [PMID: 31100626 DOI: 10.1016/j.chemosphere.2019.04.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Nunavimmiut (Inuit of Nunavik, Northern Quebec, Canada) exhibit a high selenium (Se) status because of their frequent consumption of marine mammal foods. Indirect evidence from our previous studies had suggested that selenoneine - a novel selenocompound - may be accumulating in the blood of Nunavimmiut. We used a liquid-chromatography/inductively coupled tandem mass spectrometry (LC-ICP-MS/MS) method to measure concentrations of selenoneine and its methylated metabolite Se-methylselenoneine in archived red blood cells (RBC) obtained from 210 Nunavimmiut living in communities along the Hudson Strait, where marine mammal hunting and consumption are most frequent in Nunavik. This method was adapted to quantify selenoneine and its methylated metabolite in beluga mattaaq, an Inuit delicacy consisting of the skin with the underlying layer of fat and the major dietary source of Se for Nunavimmiut. Total selenium concentration was also measured in RBC and beluga mattaaq samples by isotope dilution ICP-MS/MS. The median selenoneine concentration in RBC was 413 μg Se/L (range = 3.20-3230 μg Se/L), representing 54% (median) of total Se content (range = 1.6-91%). Quantification of selenoneine in five beluga mattaaq samples (skin layer) from Nunavik revealed a median concentration of 1.8 μg Se/g wet wt (range = 1.2-7.4 μg Se/g), constituting 54% (median) of the total Se content (range = 44-74%). Se-methylselenoneine was also detected in Inuit RBC but not in beluga mattaaq, suggesting that selenoneine undergoes methylation in humans. Selenoneine may protect Nunavimmiut from methylmecury toxicity by increasing its demethylation in RBC and in turn decreasing its distribution to target organs.
Collapse
Affiliation(s)
- Adel Achouba
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Pierre Dumas
- Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada
| | - Nathalie Ouellet
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Matthew Little
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Mélanie Lemire
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada; Département de médecine préventive et sociale, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC, G1V 0A6, Canada
| | - Pierre Ayotte
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada; Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada; Département de médecine préventive et sociale, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
50
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|