1
|
Xu Y, Liu H, Zhang Y, Luo J, Li H, Lai C, Shi L, Heng B. piRNAs and circRNAs acting as diagnostic biomarkers in clear cell renal cell carcinoma. Sci Rep 2025; 15:7774. [PMID: 40044829 PMCID: PMC11882777 DOI: 10.1038/s41598-025-90874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
The discovery of diverse functions and mechanisms in cancer has underscored the significance of emerging non-coding RNAs (ncRNAs), such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs), within the clinical context of cancer. Understanding their role in clear cell renal cell carcinoma (ccRCC) is imperative and necessitates comprehensive investigation. This study aims to further explore the diagnostic potential of piRNAs and circRNAs for ccRCC. The dysregulated piRNAs and circRNAs in ccRCC were identified using small RNA (sRNA) high-throughput sequencing technology, while their expression in clinical samples was assessed by RT-qPCR. A paired t-test was performed to compare the expression levels of piRNAs and circRNAs between ccRCC and adjacent tissues. Additionally, ROC curve analysis was conducted to evaluate the diagnostic specificity, sensitivity, and area under the curve (AUC) of piRNAs and circRNAs. High-throughput sequencing revealed a significant downregulation of 17 piRNAs and 694 circRNAs in ccRCC tissues, accompanied by a significant upregulation of 5 piRNAs and 490 circRNAs. RT-qPCR analysis demonstrated markedly lower expression levels of piR-has-150997, 133872, 132556, 154502, and uniq-84737 in the ccRCC group compared to the adjacent tissue group (p < 0.05). When considering the combined detection of piR-hsa-150997, piR-hsa-133872, piR-hsa-132556, piR-hsa-154502, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037, the diagnostic AUC for ccRCC was found to be high at an approximate value of AUC = 0.878. The diagnostic performance of piR-has-150997, 133872, 132556, 154502, uniq-84737, circABCC1, circNETO2_006, and circARID1B_037 demonstrates promise for ccRCC. A model incorporating piR-hsa-150997, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037 could serve as an ideal diagnostic marker system with significant clinical utility.
Collapse
Affiliation(s)
- Yin Xu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The People's Hospital of Longhua Shenzhen, No. 38, Jianshe East Road, Shenzhen, 518109, China.
| | - Huiling Liu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Yingzhi Zhang
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Physical Examination, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Haomin Li
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The Sixth Affiliated Hospital of Jinan University, No. 88, Changdong Road, Dongguan, 523560, China.
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
| | - Baoli Heng
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Yingde Center, Institute of Kidney Surgery, Jinan University, Yingde, Guangdong, China.
| |
Collapse
|
2
|
Silvia BJ, Shetty S, Behera R, Khandelwal A, Gore M, Bairy M, Ajjanagadde A, Shaheeda A, Bhat GK, Kabekkodu SP. A comprehensive review on the role of PIWI-interacting RNA (piRNA) in gynecological cancers. Life Sci 2024; 357:123065. [PMID: 39299387 DOI: 10.1016/j.lfs.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are currently a major public health concern due to increase in incidence and mortality globally. PIWI-interacting RNA (piRNA) are small non-coding RNA consisting of 24-32 nucleotides that plays regulatory role by interacting with piwi family of protein. Recent studies have revealed that piRNAs are expressed in various kinds of human tissues and influences key signalling pathways at transcriptional and post transcriptional levels. Studies have also that suggested piRNA and PIWI proteins display frequently altered expression in several cancers. Recent research has indicated that abnormal expression of piRNA may play a significant role in development and progression of gynecological cancers. Clinical studies suggested that, abnormally expressed piRNAs may serve as diagnostic and prognostic marker, and as potential therapeutic targets in these cancers. In the present review article, we discussed the emerging role of piRNA and their utility as diagnostic and prognostic marker in gynecological cancers.
Collapse
Affiliation(s)
- Bobby J Silvia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Sachin Shetty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Roopal Behera
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Medha Bairy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Anagha Ajjanagadde
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Aishath Shaheeda
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Gahan Krishna Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India.
| |
Collapse
|
3
|
Lin L, Zou X, Nong W, Ge Y, Li F, Luo B, Zhang Q, Xie X. The potential value of cancer-testis antigens in ovarian cancer: Prognostic markers and targets for immunotherapy. Immun Inflamm Dis 2024; 12:e1284. [PMID: 38896069 PMCID: PMC11186301 DOI: 10.1002/iid3.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tumor immunotherapy has become an important adjuvant therapy after surgery, radiotherapy, and chemotherapy. In recent years, the role of tumor-associated antigen (TAA) in tumor immunotherapy has become increasingly prominent. Cancer-testis antigen (CTA) is a kind of TAA that is highly restricted in a variety of tumors and can induce an immune response. AIMS This review article aimed to evaluate the role of CTA on the progression of ovarian cancer, its diagnostic efficacy, and the potential for immunotherapy. METHODS We analyzed publications and outlined a comprehensive of overview the regulatory mechanism, immunogenicity, clinical expression significance, tumorigenesis, and application prospects of CTA in ovarian cancer, with a particular focus on recent progress in CTA-based immunotherapy. RESULTS The expression of CTA affects the occurrence, development, and prognosis of ovarian cancer and is closely related to tumor immunity. CONCLUSION CTA can be used as a biomarker for the diagnosis and prognosis evaluation of ovarian cancer and is an ideal target for antitumor immunotherapy. These findings provide novel insights on CTA in the improvement of diagnosis and treatment for ovarian cancer. The successes, current challenges and future prospects were also discussed to portray its significant potential.
Collapse
Affiliation(s)
- Lina Lin
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| |
Collapse
|
4
|
Wei J, Dai J, Shi X, Zhao R, Fu G, Li R, Xia C, Zhang L, Zhou T, Wang H, Shi Y. Cadmium disrupts spermatogenic cell cycle via piRNA-DQ717867/p53 pathway. Reprod Toxicol 2024; 125:108554. [PMID: 38331007 DOI: 10.1016/j.reprotox.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cadmium (Cd) is a harmful environmental pollutant that disrupts public health, including respiratory, digestive, and reproductive systems. In this study, male rats were exposed to CdCl2 at a dose of 3 mg/kg by oral for 28 days to investigate the impact on spermatogenesis. Testis tissue samples were collected after sacrifice, and piRNA expression levels were measured using piRNA microarray and qPCR. PiRNAs, specialized molecules involved in spermatogenesis, were examined. CdCl2 exposure led to disrupted piRNA expression, particularly in piRNA-DQ759395 in rats. This piRNA was found to have a binding site with p53, and a similar piRNA-DQ717867 was discovered in mice. In GC-2spd cells, CdCl2 exposure increased piRNA-DQ717867 expression, which resulted in cell cycle arrest and abnormal expression of cell cycle-related proteins. The activation of p53-related pathways and disruptions in cell cycle regulation were also observed. Antagomir-717867 transfections and PFT-a pretreatment in GC-2spd cells supported the involvement of piRNA-DQ717867 in regulating cell cycle-related proteins. This study suggests that Cd exposure induces abnormal expression of piRNA-DQ759395 in rat testis and that piRNA-DQ717867 may regulate p53, causing cell cycle abnormalities in GC-2spd cells. These findings help understand the mechanisms of male reproductive toxicity caused by Cd exposure and emphasize the role of piRNAs in cell cycle regulation and male reproductive health.
Collapse
Affiliation(s)
- Jiaoyang Wei
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Xiaofan Shi
- Qinghai centers for Disease Prevention and Control, China
| | - Ruixue Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | | | - Rui Li
- Central China Normal University, China
| | - Chao Xia
- Ezhou centers for Disease Prevention and Control, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Huaiji Wang
- Wuhan centers for Disease Prevention and Control, China.
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
5
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
6
|
Yousefi B, Sadoughi F, Asemi Z, Mansournia MA, Hallajzadeh J. Novel Perspectives for the Diagnosis and Treatment of Gynecological Cancers using Dysregulation of PIWI Protein and PiRNAs as Biomarkers. Curr Med Chem 2024; 31:453-463. [PMID: 36786140 DOI: 10.2174/0929867330666230214101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023]
Abstract
The term "gynecological cancer" is used for a group of cancers occurring in the female reproductive system. Some of these cancers are ranked as the leading causes of death in developed and developing countries. The lack of proper diagnostic strategies is one of the most important reasons that make them lethal. PIWI-interacting RNAs or piRNAs are a class of small non-coding RNAs, which contain 24-32 nucleotides. These RNAs take part in some cellular mechanisms, and their role in diverse kinds of cancer is confirmed by accumulative evidence. In this review, we gather some information on the roles of these RNAs and members of the PIWI protein family to provide new insight into accurate diagnostic biomarkers and more effective anti-cancer drugs with fewer side effects.
Collapse
Affiliation(s)
- Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
7
|
Liu S, Yan Y, Cui Z, Feng H, Zhong F, Liu Z, Li Y, Ou X, Li W. Relationship between PIWIL1 gene polymorphisms and epithelial ovarian cancer susceptibility among southern Chinese woman: a three-center case-control study. BMC Cancer 2023; 23:1149. [PMID: 38012622 PMCID: PMC10680212 DOI: 10.1186/s12885-023-11651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE To investigate the potential correlation between piwi-like RNA-mediated gene silencing 1 (PIWIL1) polymorphisms and susceptibility to epithelial ovarian cancer (EOC). METHODS A case-control study was conducted to evaluate the susceptibility of EOC using multinomial logistic regression analysis. The study analyzed the relationship between five functional single nucleotide polymorphisms (SNPs) in the PIWIL1 gene and EOC risk. Genotyping of 288 cases and 361 healthy samples from South China was identified using a TaqMan assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the relationship between the five selected SNPs and EOC susceptibility. RESULTS Among the five SNPs analyzed, the rs10848087 G > A and rs7957349 G > C variants significantly increased the susceptibility of EOC, rs10773771 C > T was associated with a decreased risk of EOC, while the rs35997018 and rs1106042 variants were not in Hardy-Weinberg equilibrium (p < 0.05). The rs10848087 G > A was significantly associated with increased risk of EOC in individuals with metastasis, FIGO stage I and III, low and high pathological grade, tumor numbers ≤ 3 and > 3, tumor size > 3 cm and ≤ 3 cm, pregnant more than 3 times, pre-menopausal status, and strong positive expression of ER (estrogen receptor), PR (progesterone receptor), PAX8 (paired-box 8), wild-type p53 (tumor protein 53), WT1 (Wilm's tumor gene), P16 (cyclin-dependent kinase inhibitor 2A). In addition, rs10848087 G > A enhanced the EOC risk of cases with negative/mild positive expression of wild p53 and Ki67, and with or without mutant p53 expression. The rs7957349 G > C variant was linked to an increased risk of EOC in subgroups with certain characteristics, including age equal or less than 53 years, metastasis, clinical stage I, low pathological grade, tumor number, tumor size, pregnant times, post-menopause, pre-menopause, and strong positive expression of wild p53 and Ki67 (Antigen identified by monoclonal antibody Ki-67), as well as without mutant p53 expression. The rs10773771 CT/TT alleles were identified to have a protective effect on EOC in women aged 53 years or older, as well as in cases with metastasis, advanced clinical stage, high pathological grade, multiple tumors, tumor size equal to or less than 3 cm, history of pregnancy, post-menopausal status, and strong positive expression of ER, PR, wild-type p53, PAX8, WT1, P16, and Ki67. Furthermore, rs10773771 CT/TT also showed a protective effect in patients with negative or mildly positive expression of PR, PAX8, wild-type p53, WT1, and P16, as well as positive expression of mutant p53. Compared to the reference haplotype GCG, individuals harboring haplotypes GTG were found to have a significantly decreased susceptibility to EOC. PIWIL1 was significantly expressed in the thyroid, pituitary, and adrenal glands with rs7957349 CC alleles. CONCLUSIONS PIWIL1 rs10848087 and rs7957349 were associated with increased risk of EOC, while rs10773771 may have a protective effect against EOC. These genetic variants may serve as potential biomarkers for EOC susceptibility in the South China population.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhizhong Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, China
| | - Haipeng Feng
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Fengmei Zhong
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Ziguang Liu
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Yan Li
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Xiang Ou
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
| | - Wenjuan Li
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
8
|
Vlasenkova R, Konysheva D, Nurgalieva A, Kiyamova R. Characterization of Cancer/Testis Antigens as Prognostic Markers of Ovarian Cancer. Diagnostics (Basel) 2023; 13:3092. [PMID: 37835834 PMCID: PMC10572515 DOI: 10.3390/diagnostics13193092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The main goal of this study was to characterize cancer/testis antigens (CTAs) as potential molecular markers of ovarian cancer. First, we gathered and analyzed a significantly large dataset of 21 selected CTAs that are encoded by 32 genes; the dataset consisted of the mutation data, expression data, and survival data of patients with ovarian cancer (n = 15,665). The 19 functionally significant missense mutations were identified in 9 CTA genes: ACRBP, CCT4, KDM5B, MAGEA1, MAGEA4, PIWIL1, PIWIL2, PRAME, and SPA17. The analysis of the mRNA expression levels of 21 CTAs in healthy and tumor ovarian tissue showed an up-regulation in the expression level of AKAP3, MAGEA4, PIWIL1, and PRAME in tumor samples and a down-regulation in the expression level of CTAG1A, CTAG1B, MAGEC1, and PIWIL2. The CCT4 up-regulation and PRAME mutations were correlated with a good prognosis for ovarian cancer, while higher levels of GAGE2A and CT45A1 mRNAs were correlated with a poor prognosis for ovarian cancer patients. Thus, GAGE2, CT45, CCT4, and PRAME cancer/testis antigens can be considered as potential prognostic markers for ovarian tumors, and GAGE2, CCT4, and PRAME were revealed to be correlated with the prognosis for ovarian cancer patients for the first time.
Collapse
Affiliation(s)
| | | | | | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (R.V.)
| |
Collapse
|
9
|
Alsadat Mahmoudian R, Amirhosein M, Mahmoudian P, Fardi Golyan F, Mokhlessi L, Maftooh M, Khazaei M, Nassiri M, Mahdi Hassanian S, Ghayour-Mobarhan M, Ferns GA, Shahidsales S, Avan A. The therapeutic potential value of Cancer-testis antigens in immunotherapy of gastric cancer. Gene 2023; 853:147082. [PMID: 36464170 DOI: 10.1016/j.gene.2022.147082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cause of mortality and the fifth for incidence, globally. Diagnosis, early prognosis, and therapy remains challenging for this condition, and new tumor-associated antigens are required for its detection and immunotherapy. Cancer-testis antigens (CTAs) are a subfamily of tumor-associated antigens (TAAs) that have been identified as potential biomarkers and targets for cancer immunotherapy. The CTAs-restricted expression pattern in tumor cells and their potential immunogenicity identify them as attractive target candidates in CTA-based diagnosis or prognosis or immunotherapy. To date, numerous studies have reported the dysregulation of CTAs in GC. Several clinical trials have been done to assess CTA-based immunotherapeutic potential in the treatment of GC patients. NY-ESO-1, MAGE, and KK-LC-1 have been used in GC clinical trials. We review recent studies that have investigated the potential of the CTAs in GC regarding the expression, function, aggressive phenotype, prognosis, and immunological responses as well as their possible clinical significance as immunotherapeutic targets with a focus on challenges and future interventions.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maharati Amirhosein
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leila Mokhlessi
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany.
| | - Mina Maftooh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK.
| | | | - Amir Avan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Sohn EJ, Oh SO. P-Element-Induced Wimpy Testis Proteins and P-Element-Induced Wimpy Testis-Interacting RNAs Expression in Ovarian Cancer Stem Cells. Genet Test Mol Biomarkers 2023; 27:56-64. [PMID: 36853842 DOI: 10.1089/gtmb.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Background: P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNA and are predominantly expressed in germline cells. piRNAs function as gene regulators and potential biomarkers for the development of a number of malignancies. The biological importance of piRNAs in ovarian cancer is still unknown. In this study, we investigated the expression of piRNAs in ovarian cancer stem cells and compared it with that in adherent cells. Methods: To assess changes in the expression levels of PIWIL1/HIWI, PIWIL2/HILI, PIWIL3, and PIWIL4/HIWI2, we used quantitative reverse-transcription polymerase chain reaction (RT-qPCR) analysis. Changes in piRNA expression levels in ovarian cancer stem cells were analyzed using Arraystar piRNA microarray screening. Gene Ontology (GO) enrichment analysis was conducted to determine the potential functions of piRNAs. Results: Using microarray analysis, we identified a cohort of differentially expressed piRNAs. Fifteen piRNAs, including DQ570763 and DQ597396, were downregulated, and 58 piRNAs were upregulated when compared with those in adherent A2780 and SKOV3 cells (p > 0.05, >2.0, respectively). GO functions of the downregulated piRNAs (DQ570763 and DQ570797) suggest that their roles are commonly associated with the Golgi apparatus. In addition, A2780-SP and SKOV3-SP cells had higher PIWIL3 and PIWIL4 mRNA levels than adherent cells (A2780 and SKOV3). Moreover, we determined, using receiver operating characteristic plot, that the expression level of PIWIL4 was lower in responders than in nonresponders after treatment with platins in patients with ovarian cancer. Finally, in ovarian cancer, PIWIL4 expression was associated with somatic mutations of dynein axonemal heavy chain 2, signal induced proliferation associated 1 like 2, YTH N6-methyladenosine RNA-binding protein 1, TBC1 domain family member 8, and LPS responsive Beige-like anchor protein. Conclusion: Our study showed that PIWI proteins and piRNAs are potential diagnostic and prognostic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
11
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
12
|
Gupta R, Jit BP, Kumar S, Mittan S, Tanwer P, Ray MD, Mathur S, Perumal V, Kumar L, Rath GK, Sharma A. Leveraging epigenetics to enhance the efficacy of cancer-testis antigen: a potential candidate for immunotherapy. Epigenomics 2022; 14:865-886. [DOI: 10.2217/epi-2021-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in women. The phenotype is characterized by delayed diagnosis, recurrence and drug resistance. Inherent immunogenicity potential, oncogenic function and expression of cancer-testis/germline antigen (CTA) in ovarian cancer render them a potential candidate for immunotherapy. Revolutionary clinical findings indicate that tumor antigen-mediated T-cell and dendritic cell-based immunotherapeutic approaches provide an excellent strategy for targeting tumors. Currently, dendritic cell vaccination for the treatment of B-cell lymphoma and CTA-based T-cell receptor transduced T-cell therapy involving MAGE-A4 and NY-ESO-1 are well documented and shown to be effective. This review highlighted the mechanical aspects of epigenetic drugs that can elicit a CTA-based humoral and cellular immune response and implicate T-cell and dendritic cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Rashmi Gupta
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Santosh Kumar
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep Mittan
- Montefiore Medical Center, Albert Einstein College of Medicine, NY 10467, USA
| | - Pranay Tanwer
- Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M D Ray
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vanamail Perumal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - G K Rath
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Department of Biochemistry, National Cancer Institute – India, Jhajjar Campus, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
13
|
He WP, Yang GP, Yang ZX, Shen HW, You ZS, Yang GF. Maelstrom promotes tumor metastasis through regulation of FGFR4 and epithelial-mesenchymal transition in epithelial ovarian cancer. J Ovarian Res 2022; 15:55. [PMID: 35513870 PMCID: PMC9074322 DOI: 10.1186/s13048-022-00992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence has indicated that Maelstrom (MAEL) plays an oncogenic role in various human carcinomas. However, the exact function and mechanisms by which MAEL acts in epithelial ovarian cancer (EOC) remain unclear. RESULTS This study demonstrated that MAEL was frequently overexpressed in EOC tissues and cell lines. Overexpression of MAEL was positively correlated with the histological grade of tumors, FIGO stage, and pT/pN/pM status (p < 0.05), and it also acted as an independent predictor of poor patient survival (p < 0.001). Ectopic overexpression of MAEL substantially promoted invasiveness/metastasis and induced epithelial-mesenchymal transition (EMT), whereas silencing MAEL by short hairpin RNA effectively inhibited its oncogenic function and attenuated EMT. Further study demonstrated that fibroblast growth factor receptor 4 (FGFR4) was a critical downstream target of MAEL in EOC, and the expression levels of FGFR4 were significantly associated with MAEL. (P < 0.05). CONCLUSION Our findings suggest that overexpression of MAEL plays a crucial oncogenic role in the development and progression of EOC through the upregulation of FGFR4 and subsequent induction of EMT, and also provide new insights on its potential as a therapeutic target for EOC.
Collapse
Affiliation(s)
- Wei-Peng He
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Gui-Ping Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Zun-Xian Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Hong-Wei Shen
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Ze-Shan You
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Guo-Fen Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Chen X, Wen F, Li Z, Li W, Zhou M, Sun X, Zhao P, Zou C, Liu T. Identification of MAEL as a promoter for the drug resistance model of iPSCs derived from T-ALL. Cancer Med 2022; 11:3479-3490. [PMID: 35488386 PMCID: PMC9487874 DOI: 10.1002/cam4.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of the drug‐resistant and highly recurrent refractory T cell acute lymphoblastic leukemia (T‐ALL). Primary tumor cell‐derived induced pluripotent stem cells (iPSCs) have become very useful tumor models for cancer research including drug sensitivity tests. In the present study, we investigated the mechanism underlying drug resistance in T‐ALL using the T‐ALL‐derived iPSCs (T‐iPSCs) model. T‐ALL cells were transformed using iPSC reprogramming factors (Sox‐2, Klf4, Oct4, and Myc) via nonintegrating Sendai virus. T‐iPSCs with the Notch1 mutation were then identified through genomic sequencing. Furthermore, T‐iPSCs resistant to 80 μM LY411575, a γ‐secretase and Notch signal inhibitor, were also established. We found a significant difference in the expression of drug resistance‐related genes between the drug‐resistant T‐iPSCs and drug‐sensitive groups. Among the 27 genes, six most differently expressed genes (DEGs) based on Log2FC >5 were identified. Knockdown analyses using RNA interference (RNAi) revealed that MAEL is the most important gene associated with drug resistance in T‐ALL cells. Also, MAEL knockdown downregulated expression of MRP and LRP in drug‐resistant T‐iPSCs. Interestingly, this phenomenon partially restored the sensitivity of the cells to LY411575. Furthermore, overexpression of the MAEL gene enhanced drug resistance against LY411575. Conclusively, MAEL promotes LY411575 resistance in T‐ALL cells increasing the expression of MRP and LRP genes.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhu Li
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Weiran Li
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Meiling Zhou
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Xizhuo Sun
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Pan Zhao
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Chang Zou
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Tao Liu
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
15
|
Mokarram P, Niknam M, Sadeghdoust M, Aligolighasemabadi F, Siri M, Dastghaib S, Brim H, Ashktorab H. PIWI interacting RNAs perspectives: a new avenues in future cancer investigations. Bioengineered 2021; 12:10401-10419. [PMID: 34723746 PMCID: PMC8809986 DOI: 10.1080/21655979.2021.1997078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a currently identified small non-coding RNAs (ncRNAs) category, the PIWI-interacting RNAs (piRNAs) are crucial mediators of cell biology. The human genome comprises over 30.000 piRNA genes. Although considered a new field in cancer research, the piRNA pathway is shown by the existing evidence as an active pathway in a variety of different types of cancers with critical impacts on main aspects of cancer progression. Among the regulatory molecules that contribute to maintaining the dynamics of cancer cells, the P-element Induced WImpy testis (PIWI) proteins and piRNAs, as new players, have not been broadly studied so far. Therefore, the identification of cancer-related piRNAs and the assessment of target genes of piRNAs may lead to better cancer prevention and therapy strategies. This review articleaimed to highlight the role and function of piRNAs based on existing data. Understanding the role of piRNA in cancer may provide perspectives on their applications as particular biomarker signature in diagnosis in early stage, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran,CONTACT Pooneh Mokarram Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Niknam
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Brim
- Pathology and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, Dc, USA
| |
Collapse
|
16
|
Yuan C, Qin H, Ponnusamy M, Chen Y, Lin Z. PIWI‑interacting RNA in cancer: Molecular mechanisms and possible clinical implications (Review). Oncol Rep 2021; 46:209. [PMID: 34328192 DOI: 10.3892/or.2021.8160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022] Open
Abstract
PIWI‑interacting RNA is a class of non‑coding small RNA that is ~30 nt long and is primarily found in mammalian germ cells from mice and humans. In cooperation with the members of PIWI protein family, this macromolecule participates in germ cell development, inhibits DNA self‑-replication and maintains genomic stability. Increasing evidence has demonstrated that PIWI‑interacting RNA (piRNAs) are abnormally expressed in various human cancers, such as liver cancer, stomach cancer, colorectal cancer, osteosarcoma, breast cancer, lung cancer, prostate cancer, etc. piRNAs abnormal expression is also associated with the occurrence and development of human cancers, such as liver cancer, stomach cancer, colorectal cancer, etc. Despite their unclear molecular mechanisms, piRNAs may act as oncogenes or tumor suppressors by interacting with multiple cancer‑related signal pathways including STAT3/Bcl‑xl or coding genes, such as heat shock transcription factor‑1. Hence, piRNAs may be potential markers and targets and provide new opportunities for cancer diagnosis, treatment or prognosis monitoring. The current review mainly aims to highlight the latest research progress made in the biological functions and regulation of piRNAs in mammals, their involvement in various cancer forms and their potential clinical applications.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Murugavel Ponnusamy
- Department of Basic Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yong Chen
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhijuan Lin
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
17
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
18
|
Zivarpour P, Asemi Z, Jamilian H, Hallajzadeh J. PiRNAs and PIWI proteins as new biomarkers for diagnosis and treatment of liver cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Abbaszadegan MR, Taghehchian N, Aarabi A, Akbari F, Saburi E, Moghbeli M. MAEL as a diagnostic marker for the early detection of esophageal squamous cell carcinoma. Diagn Pathol 2021; 16:36. [PMID: 33902648 PMCID: PMC8077922 DOI: 10.1186/s13000-021-01098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Esophageal cancer is one of the most common malignancies among Iranians and is categorized as adenocarcinoma and squamous cell carcinoma. Various environmental and genetic factors are involved in this malignancy. Despite the recent advances in therapeutic modalities there is still a noticeable mortality rate among such patients which can be related to the late diagnosis. Regarding high ratio of esophageal squamous cell carcinoma (ESCC) in Iran, therefore it is required to assess molecular biology of ESCC to introduce novel diagnostic markers. In present study we assessed the role of Maelstrom (MAEL) cancer testis gene in biology of ESCC among Iranian patients. Methods Forty-five freshly normal and tumor tissues were enrolled to evaluate the levels of MAEL mRNA expression using Real time polymerase chain reaction. Results MAEL under and over expressions were observed in 12 (26.7%) and 9 (20%) of patients, respectively. MAEL fold changes were ranged between -4.33 to -1.87 (mean SD: -2.90± 0.24) and 1.92 to 7.72 (mean SD: 3.97± 0.69) in under and over expressed cases, respectively. There was a significant association between stage and MAEL expression in which majority of MAEL over expressed tumors (8/9, 88.9%) were in stage I/II (p<0.001). There was also a significant correlation between MAEL expression and depth of invasion in which tumor with T1/2 had higher levels of MAEL expression compared with T3/4 tumors (p=0.017). Moreover, there were significant correlations between MAEL expression, tumor size (p=0.028), and grade (p=0.003) among male patients. Conclusions Our data showed that the MAEL was mainly involved in primary stages of tumor progression and it has a declining expression levels toward the advanced stages and higher depth of tumor invasions. Therefore, MAEL can be efficiently introduced as an early detection marker among Iranian ESCC patients.
Collapse
Affiliation(s)
| | - Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Aarabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faride Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
|
21
|
Lee E, Lokman NA, Oehler MK, Ricciardelli C, Grutzner F. A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers (Basel) 2020; 13:cancers13010004. [PMID: 33374923 PMCID: PMC7792616 DOI: 10.3390/cancers13010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Although ovarian cancer (OC) is one of the most lethal gynecological cancers, its development and progression remain poorly understood. The piRNA pathway is important for transposon defense and genome stability. piRNA maturation and function involve a number of genes known as the piRNA pathway genes. These genes have recently been implicated in cancer development and progression but information about their role in OC is limited. Our work aimed to provide a better understanding of the roles of piRNA pathway genes in OC. Through analyzing changes in the abundance of 10 piRNA pathway genes, we discovered gene expression differences in benign vs. cancer, chemosensitive vs. chemoresistant and post hormone treatment in OC samples and cells. Furthermore, we observed the differential effects of these genes on patient survival and OC cell invasion. Overall, this work supports a role of the piRNA pathway genes in OC progression and encourages further study of their clinical relevance. Abstract Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: PIWIL1-4, DDX4, HENMT1, MAEL, PLD6, TDRD1,9 and mutants of PIWIL1 (P1∆17) and PIWIL2 (PL2L60). High-throughput qRT-PCR (n = 45) and CSIOVDB (n = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC). Significant correlation of disparate piRNA pathway gene expression levels with better progression free, post-progression free and overall survival suggests a complex role of this pathway in OC. We discovered PIWIL3 expression in chemosensitive but not chemoresistant primary HGSOC cells, providing a potential target against chemoresistant disease. As a first, we revealed that follicle stimulating hormone increased PIWIL2 expression in OV-90 cells. PIWIL1, P1∆17, PIWIL2, PL2L60 and MAEL overexpression in vitro and in vivo decreased motility and invasion of OVCAR-3 and OV-90 cells. Interestingly, P1∆17 and PL2L60, induced increased motility and invasion compared to PIWIL1 and PIWIL2. Our results in HGSOC highlight the intricate role piRNA pathway genes play in the development of malignant neoplasms.
Collapse
Affiliation(s)
- Eunice Lee
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| | - Frank Grutzner
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| |
Collapse
|
22
|
Trypanosoma cruzi Modulates PIWI-Interacting RNA Expression in Primary Human Cardiac Myocytes during the Early Phase of Infection. Int J Mol Sci 2020; 21:ijms21249439. [PMID: 33322418 PMCID: PMC7764157 DOI: 10.3390/ijms21249439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma cruzi dysregulates the gene expression profile of primary human cardiomyocytes (PHCM) during the early phase of infection through a mechanism which remains to be elucidated. The role that small non-coding RNAs (sncRNA) including PIWI-interacting RNA (piRNA) play in regulating gene expression during the early phase of infection is unknown. To understand how T. cruzi dysregulate gene expression in the heart, we challenged PHCM with T. cruzi trypomastigotes and analyzed sncRNA, especially piRNA, by RNA-sequencing. The parasite induced significant differential expression of host piRNAs, which can target and regulate the genes which are important during the early infection phase. An average of 21,595,866 (88.40%) of clean reads mapped to the human reference genome. The parasite induced 217 unique piRNAs that were significantly differentially expressed (q ≥ 0.8). Of these differentially expressed piRNAs, 6 were known and 211 were novel piRNAs. In silico analysis showed that some of the dysregulated known and novel piRNAs could target and potentially regulate the expression of genes including NFATC2, FOS and TGF-β1, reported to play important roles during T. cruzi infection. Further evaluation of the specific functions of the piRNAs in the regulation of gene expression during the early phase of infection will enhance our understanding of the molecular mechanism of T. cruzi pathogenesis. Our novel findings constitute the first report that T. cruzi can induce differential expression of piRNAs in PHCM, advancing our knowledge about the involvement of piRNAs in an infectious disease model, which can be exploited for biomarker and therapeutic development.
Collapse
|
23
|
Abbaszadegan MR, Taghehchian N, Aarabi A, Moghbeli M. MAEL Cancer-Testis Antigen as a Diagnostic Marker in Primary Stages of Gastric Cancer with Helicobacter pylori Infection. J Gastrointest Cancer 2020; 51:17-22. [PMID: 30488287 DOI: 10.1007/s12029-018-0183-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Gastric cancer (GC) is the third leading cause of cancer related deaths in the world. Cancer testis antigens (CTAs) are involved in tumor progression of various cancers. These markers have not any expression or minimally expression in normal tissues, highlighting them as efficient methods for molecular targeted therapy. In the present study, we assessed the role of MAEL as a CTA in biology of GC and risk of Helicobacter Pylori (H pylori) infection. METHODS Levels of MAEL mRNA expression in 80 GC tumor tissues were compared to their corresponding normal margins using the real-time polymerase chain reaction. RESULTS There was a significant correlation between MAEL expression and tumor stage (p = 0.050). There were also significant correlations between MAEL expression and tumor grade (p = 0.015) and depth of invasion (p = 0.030) among the H pylori negative cases. CONCLUSIONS MAEL is probably associated with aggressiveness of primary-stage tumors and can be introduced as an efficient marker for the early detection and also H pylori infected tumors in GC patients.
Collapse
Affiliation(s)
- Mohammad Reza Abbaszadegan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Aarabi
- Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Abstract
Targeted cancer therapy aims to achieve specific elimination of cancerous but not normal cells. Recently, PIWI proteins, a subfamily of the PAZ-PIWI domain (PPD) protein family, have emerged as promising candidates for targeted cancer therapy. PPD proteins are essential for small noncoding RNA pathways. The Argonaute subfamily partners with microRNA and small interfering RNA, whereas the PIWI subfamily partners with PIWI-interacting RNA (piRNA). Both PIWI proteins and piRNA are mostly expressed in the germline and best known for their function in transposon silencing, with no detectable function in mammalian somatic tissues. However, PIWI proteins become aberrantly expressed in multiple types of somatic cancers, thus gaining interest in targeted therapy. Despite this, little is known about the regulatory mechanism of PIWI proteins in cancer. Here we report that one of the four PIWI proteins in humans, PIWIL1, is highly expressed in gastric cancer tissues and cell lines. Knocking out the PIWIL1 gene (PIWIL1-KO) drastically reduces gastric cancer cell proliferation, migration, metastasis, and tumorigenesis. RNA deep sequencing of gastric cancer cell line SNU-1 reveals that KO significantly changes the transcriptome, causing the up-regulation of most of its associated transcripts. Surprisingly, few bona fide piRNAs exist in gastric cancer cells. Furthermore, abolishing the piRNA-binding activity of PIWIL1 does not affect its oncogenic function. Thus, PIWIL1 function in gastric cancer cells is independent of piRNA. This piRNA-independent regulation involves interaction with the UPF1-mediated nonsense-mediated mRNA decay (NMD) mechanism. Altogether, our findings reveal a piRNA-independent function of PIWIL1 in promoting gastric cancer.
Collapse
|
25
|
PIWIL2 is overexpressed in adenomyotic lesions of women with diffuse adenomyosis. Arch Gynecol Obstet 2020; 302:925-933. [PMID: 32613450 DOI: 10.1007/s00404-020-05660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Adenomyosis has been studied throughout the years, however, its aetiology and physiopathology are still unknown. The aim of this study was to identify the presence of PIWI proteins in women with adenomyosis. METHODS We included 72 participants to be part of this study and were divided into two groups based on their anatomopathological diagnosis, control (n = 36) or adenomyosis (n = 36). All samples were tested for PIWIL1, PIWIL2 and PIWIL4 proteins by immunohistochemistry. The evaluation of protein expression was performed by the digital histological score (DHSCORE) and by the pathologist's analysis. RESULTS The participants had a mean age of 44.28 ± 5.76 years and 45.81 ± 4.86 years in the control and adenomyosis groups, respectively (p ≥ 0.05). Other clinical characteristics of the participants showed no statistical difference as well. PIWIL2 is highly expressed in the adenomyosis in comparison to the control group (p = 0.0001). The PIWIL1 is downregulated in the adenomyosis (p = 0.003) and PIWIL4 showed no difference in its expression (p = 0.05). CONCLUSION PIWIL2 might be involved in cellular survival and PIWIL1 may be downregulated due to the loss of tissue's function and response to the hostile environment of the myometrium. This is the first time that PIWI proteins are studied in the adenomyosis.
Collapse
|
26
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Garcia-Foncillas J. The Prognosis Value of PIWIL1 and PIWIL2 Expression in Pancreatic Cancer. J Clin Med 2019; 8:1275. [PMID: 31443431 PMCID: PMC6780139 DOI: 10.3390/jcm8091275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly aggressive manifestation of cancer, and currently presents poor clinical outcome due to its late diagnosis with metastasic disease. Surgery is the only approach with a curative intend; however, the survival rates seen in this type of patient are still low. After surgery, there is a lack of predictive prognosis biomarkers to predict treatment response and survival to establish a personalized medicine. Human P-element-induced wimpy testis 1 (PIWIL1) and P-element-induced wimpy testis 2 (PIWIL2) proteins act as protectors of germline, and their aberrant expression has been described in several types of tumors. In this study, we aimed to assess an association between PIWIL1 and PIWIL2 expression and the prognosis of biliopancreatic cancer patients. For this, we analyzed protein expression in complete resected tumor samples, and found a significant association between PIWIL2 expression and both progression-free and overall survival (p = 0.036 and p = 0.012, respectively). However, PIWIL2 expression was significantly associated with progression-free survival (p = 0.029), and overall survival (p = 0.025) of such tumors originated in the pancreas, but not in the bile duct or ampulla of Vater. Further analysis revealed that PIWIL1 and PIWIL2, at both mRNA and protein expression levels, correlated positively with factors associated to the progenitor molecular subtype of pancreatic cancer. Based on these findings, PIWIL1 and PIWIL2 expression may be considered a potential prognostic biomarker for resectable pancreatic cancer and may serve to guide subsequent adjuvant treatment decisions.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria J Fernandez-Aceñero
- Pathology Department, University Hospital Gregorio Marañon, C/del Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| |
Collapse
|
27
|
Gomes Fernandes M, He N, Wang F, Van Iperen L, Eguizabal C, Matorras R, Roelen BAJ, Chuva De Sousa Lopes SM. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis. Hum Reprod 2019; 33:258-269. [PMID: 29237021 PMCID: PMC5850288 DOI: 10.1093/humrep/dex365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/23/2017] [Indexed: 01/30/2023] Open
Abstract
STUDY QUESTION What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. WHAT IS KNOWN ALREADY In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. STUDY DESIGN, SIZE, DURATION This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). PARTICIPANTS/MATERIALS, SETTING, METHODS Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. MAIN RESULTS AND THE ROLE OF CHANCE PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. LARGE SCALE DATA Non-applicable. LIMITATIONS, REASONS FOR CAUTION This study is limited by the restricted number of samples and consequently stages analyzed. WIDER IMPLICATIONS OF THE FINDINGS In the germline, PIWILs ensure the integrity of the human genome protecting it from ‘parasitic sequences’. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. STUDY FUNDING/COMPETING INTEREST(S) M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Fang Wang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Reproductive Medical Centre, First Affiliated Hospital Zhengzhou University, No.1 Jianshe east road, Zhengzhou 450052, China
| | - Liesbeth Van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Cristina Eguizabal
- Cell Therapy and Stem Cells Group, Basque Centre for Blood Transfusion and Human Tissues, Barrio Labeaga s/n, Galdakao 48960, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo 48903, Spain
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht3584 CM, The Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
28
|
Xie K, Fu C, Wang S, Xu H, Liu S, Shao Y, Gong Z, Wu X, Xu B, Han J, Xu J, Xu P, Jia X, Wu J. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J Ovarian Res 2019; 12:1. [PMID: 30609934 PMCID: PMC6318940 DOI: 10.1186/s13048-018-0475-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer remains the most fatal gynecologic malignancy worldwide due to delayed diagnosis as well as recurrence and drug resistance. Thus, the development of new tumor-related molecules with high sensitivity and specificity to replace or supplement existing tools is urgently needed. Cancer-testis antigens (CTAs) are exclusively expressed in normal testis tissues but abundantly found in several types of cancers, including ovarian cancer. Numerous novel CTAs have been identified by high-throughput sequencing techniques, and some aberrantly expressed CTAs are associated with ovarian cancer initiation, clinical outcomes and chemotherapy resistance. More importantly, CTAs are immunogenic and may be novel targets for antigen-specific immunotherapy in ovarian cancer. In this review, we attempt to characterize the expression of candidate CTAs in ovarian cancer and their clinical significance as biomarkers, activation mechanisms, function in malignant phenotypes and applications in immunotherapy.
Collapse
Affiliation(s)
- Kaipeng Xie
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Chenyang Fu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Suli Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Hanzi Xu
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Siyu Liu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yang Shao
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Zhen Gong
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiaoli Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Han
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Juan Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Pengfei Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xuemei Jia
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Jiangping Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| |
Collapse
|
29
|
Li P, Chen X, Qin G, Yue D, Zhang Z, Ping Y, Wang D, Zhao X, Song M, Zhao Q, Li J, Liu S, Wang D, Zhang C, Lian J, Cao L, Li F, Huang L, Wang L, Yang L, Huang J, Li H, Zhang B, Zhang Y. Maelstrom Directs Myeloid-Derived Suppressor Cells to Promote Esophageal Squamous Cell Carcinoma Progression via Activation of the Akt1/RelA/IL8 Signaling Pathway. Cancer Immunol Res 2018; 6:1246-1259. [PMID: 30082413 DOI: 10.1158/2326-6066.cir-17-0415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Maelstrom (MAEL) is a novel cancer/testis-associated gene, which is not only expressed in the male testicular germ cells among human normal tissues, but is also aberrantly expressed in various cancer tissues. In our study, MAEL was characterized as a tumor-promoting gene and was significantly associated with esophageal squamous cell carcinoma (ESCC) recurrence and unfavorable prognosis. Kaplan-Meier analysis showed that patients with high MAEL expression had a shorter survival time. Functional experiments showed that MAEL promoted tumor cell growth and inhibited cell apoptosis. These results prompted us to investigate the factors affecting the tumorigenicity of MAEL Further experimentation demonstrated that MAEL enhanced the expression of phosphorylated Akt1, with subsequent phosphorylation of nuclear factor kappa B (NF-κB) subunit RelA in tumor cells, and chemoattracted myeloid-derived suppressor cells (MDSCs) by upregulating interleukin-8 (IL8) to accelerate tumor progression in the tumor microenvironment. We also found that TGFβ secreted by MDSCs could upregulate MAEL by inducing Smad2/Smad3 phosphorylation. In summary, this study revealed a mechanism by which MAEL could upregulate IL8 through Akt1/RelA to direct MDSCs homing into the tumor, suggesting that MAEL could be an attractive therapeutic target and a prognostic marker against ESCC. Cancer Immunol Res; 6(10); 1246-59. ©2018 AACR.
Collapse
Affiliation(s)
- Pupu Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjia Song
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyao Lian
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Cao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianmin Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, Illinois
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| |
Collapse
|
30
|
El-Mogy M, Lam B, Haj-Ahmad TA, McGowan S, Yu D, Nosal L, Rghei N, Roberts P, Haj-Ahmad Y. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genomics 2018; 19:408. [PMID: 29843592 PMCID: PMC5975555 DOI: 10.1186/s12864-018-4785-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Small RNAs are critical components in regulating various cellular pathways. These molecules may be tissue-associated or circulating in bodily fluids and have been shown to associate with different tumors. Next generation sequencing (NGS) on small RNAs is a powerful tool for profiling and discovery of microRNAs (miRNAs). RESULTS In this study, we isolated total RNA from various bodily fluids: blood, leukocytes, serum, plasma, saliva, cell-free saliva, urine and cell-free urine. Next, we used Illumina's NGS platform and intensive bioinformatics analysis to investigate the distribution and signature of small RNAs in the various fluids. Successful NGS was accomplished despite the variations in RNA concentrations among the different fluids. Among the fluids studied, blood and plasma were found to be the most promising fluids for small RNA profiling as well as novel miRNA prediction. Saliva and urine yielded lower numbers of identifiable molecules and therefore were less reliable in small RNA profiling and less useful in predicting novel molecules. In addition, all fluids shared many molecules, including 139 miRNAs, the most abundant tRNAs, and the most abundant piwi-interacting RNAs (piRNAs). Fluids of similar origin (blood, urine or saliva) displayed closer clustering, while each fluid still retains its own characteristic signature based on its unique molecules and its levels of the common molecules. Donor urine samples showed sex-dependent differential clustering, which may prove useful for future studies. CONCLUSIONS This study shows the successful clustering and unique signatures of bodily fluids based on their miRNA, tRNA and piRNA content. With this information, cohorts may be differentiated based on multiple molecules from each small RNA class by a multidimensional assessment of the overall molecular signature.
Collapse
Affiliation(s)
- Mohamed El-Mogy
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
- Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt
| | - Bernard Lam
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
| | | | - Shannon McGowan
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1 Canada
| | - Darrick Yu
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
| | - Lucas Nosal
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
| | - Nezar Rghei
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
| | - Pam Roberts
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
| | - Yousef Haj-Ahmad
- Norgen Biotek Corp, Thorold, ON L2V 4Y6 Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1 Canada
| |
Collapse
|
31
|
Kim SH, Park ER, Cho E, Jung WH, Jeon JY, Joo HY, Lee KH, Shin HJ. Mael is essential for cancer cell survival and tumorigenesis through protection of genetic integrity. Oncotarget 2018; 8:5026-5037. [PMID: 27926513 PMCID: PMC5354889 DOI: 10.18632/oncotarget.13756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
Germ line-specific genes are activated in somatic cells during tumorigenesis, and are accordingly referred to as cancer germline genes. Such genes that act on piRNA (Piwi-interacting RNA) processing play an important role in the progression of cancer cells. Here, we show that the spermatogenic transposon silencer maelstrom (Mael), a piRNA-processing factor, is required for malignant transformation and survival of cancer cells. A specific Mael isoform was distinctively overexpressed in diverse human cancer cell lines and its depletion resulted in cancer-specific cell death, characterized by apoptosis and senescence, accompanied by an increase in reactive oxygen-species and DNA damage. These biochemical changes and death phenotypes induced by Mael depletion were dependent on ATM. Interestingly Mael was essential for Myc/Ras-induced transformation, and its overexpression inhibited Ras-induced senescence. In addition, Mael repressed retrotransposon activity in cancer cells. These results suggest that Mael depletion induces ATM-dependent DNA damage, consequently leading to cell death specifically in cancer cells. Moreover, Mael possesses oncogenic potential that can protect against genetic instability.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Eun-Ran Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Eugene Cho
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Won-Hee Jung
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ju-Yeon Jeon
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hyun-Yoo Joo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hyun-Jin Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| |
Collapse
|
32
|
Zhang X, Ning Y, Xiao Y, Duan H, Qu G, Liu X, Du Y, Jiang D, Zhou J. MAEL contributes to gastric cancer progression by promoting ILKAP degradation. Oncotarget 2017; 8:113331-113344. [PMID: 29371914 PMCID: PMC5768331 DOI: 10.18632/oncotarget.22970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer-testis gene MAEL is involved in the development and progression of bladder, liver and colorectal cancers. However, its role in other cancers is unclear. By systematically analyzing transcriptomics and genomics data from various cancer databases, we identified that the MAEL gene is aberrantly elevated in gastric cancer (GC) tissues and that its expression is strongly negatively correlated with DNA methylation (Pearson's correlation coefficient = −0.675). Survival analysis revealed that MAEL expression may serve as a prognostic marker for GC patients (overall survival: hazard ratio [HR] = 1.54, p = 1.2E-4; first progression: HR = 1.51, p = 8.7E-4). In vitro and in vivo experiments demonstrated that silencing MAEL expression in the GC cell lines HGC-27 and AGS inhibits proliferation, colony formation, migration, invasion and growth of xenograft tumors, whereas MAEL overexpression exerts the opposite effects in the normal gastric cell line GES-1. Mechanistically, MAEL promotes the lysosome-dependent degradation of the protein phosphatase ILKAP, leading to increased phosphorylation of its substrates (p38, CHK1 and RSK2). Moreover, adenovirus-mediated ILKAP overexpression reversed the oncogenic effects of MAEL in vitro and in vivo. Taken together, these results indicate that MAEL exerts its oncogenic function by promoting ILKAP degradation in the GC.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yichong Ning
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yuzhong Xiao
- College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Huaxin Duan
- The First Affiliated Hospital, Hunan Normal University, Changsha 410005, Hunan, China
| | - Guifang Qu
- The First Affiliated Hospital, Hunan Normal University, Changsha 410005, Hunan, China
| | - Xin Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yan Du
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, Hunan, China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
33
|
Henaoui IS, Jacovetti C, Guerra Mollet I, Guay C, Sobel J, Eliasson L, Regazzi R. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia 2017; 60:1977-1986. [PMID: 28711973 DOI: 10.1007/s00125-017-4368-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS P-element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs) are small non-coding RNAs that interact with PIWI proteins and guide them to silence transposable elements. They are abundantly expressed in germline cells and play key roles in spermatogenesis. There is mounting evidence that piRNAs are also present in somatic cells, where they may accomplish additional regulatory tasks. The aim of this study was to identify the piRNAs expressed in pancreatic islets and to determine whether they are involved in the control of beta cell activities. METHODS piRNA profiling of rat pancreatic islets was performed by microarray analysis. The functions of piRNAs were investigated by silencing the two main Piwi genes or by modulating the level of selected piRNAs in islet cells. RESULTS We detected about 18,000 piRNAs in rat pancreatic islets, many of which were differentially expressed throughout islet postnatal development. Moreover, we identified changes in the level of several piRNAs in the islets of Goto-Kakizaki rats, a well-established animal model of type 2 diabetes. Silencing of Piwil2 or Piwil4 genes in adult rat islets caused a reduction in the level of several piRNAs and resulted in defective insulin secretion and increased resistance of the cells to cytokine-induced cell death. Furthermore, overexpression in the islets of control animals of two piRNAs that are upregulated in diabetic rats led to a selective defect in glucose-induced insulin release. CONCLUSIONS/INTERPRETATION Our results provide evidence for a role of PIWI proteins and their associated piRNAs in the control of beta cell functions, and suggest a possible involvement in the development of type 2 diabetes. DATA AVAILABILITY Data have been deposited in Gene Expression Omnibus repository under the accession number GSE93792. Data can be accessed via the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ojklueugdzehpkv&acc=GSE93792.
Collapse
Affiliation(s)
- Imène Sarah Henaoui
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Inês Guerra Mollet
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Lena Eliasson
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
34
|
Hempfling AL, Lim SL, Adelson DL, Evans J, O'Connor AE, Qu ZP, Kliesch S, Weidner W, O'Bryan MK, Bergmann M. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression. Reproduction 2017; 154:363-374. [PMID: 28676534 DOI: 10.1530/rep-16-0586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to define the expression patterns of HENMT1 and PIWI proteins in human testis and investigate their association with transposon expression, infertility sub-type or development of testicular germ cell tumours (TGCTs). Testis biopsies showing normal spermatogenesis were used to identify normal localisation patterns of HENMT1 and PIWIL1 by immunolocalisation and RT-PCR after laser microdissection. 222 testis biopsies representing normal spermatogenesis, hypospermatogenesis, spermatogenic arrests, Sertoli cell-only (SCO) tumours and TGCTs were analysed by RT-qPCR for expression of HENMT1/PIWIL1/PIWIL2/PIWIL3/PIWIL4 and LINE-1 Additionally, HENMT1-overexpressing TCam2 seminoma cell lines were analysed for the same parameters by RT-qPCR. We found that HENMT1 and PIWIL1 are coexpressed in pachytene spermatocytes and spermatids. Expression of HENMT1, PIWIL1 and PIWIL2 was mainly dependent on germ cell content but low levels of expression were also detected in some SCO samples. Levels of HENMT1, PIWIL1 and PIWIL2 expression were low in TGCT. Samples with HENMT1, PIWIL2 and PIWIL4 expression showed significantly (P < 0.05) lower transposon expression compared to samples without expression in the same histological group. HENMT1-overexpressing TCam2 cells showed lower LINE-1 expression than empty vector-transfected control lines. Our findings support that the transposon-regulating function of the piRNA pathway found in the mouse is conserved in adult human testis. HENMT1 and PIWI proteins are expressed in a germ-cell-specific manner and required for transposon control.
Collapse
Affiliation(s)
- A L Hempfling
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia .,Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| | - S L Lim
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - D L Adelson
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - J Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| | - A E O'Connor
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - Z P Qu
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - S Kliesch
- Centre of Reproductive Medicine and AndrologyMuenster, Germany
| | - W Weidner
- Clinic for UrologyPediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M K O'Bryan
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia.,The School of Biological SciencesMonash University, Clayton, Australia
| | - M Bergmann
- Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
35
|
Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells. Cell Biochem Biophys 2017; 73:117-24. [PMID: 25701408 DOI: 10.1007/s12013-015-0651-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.
Collapse
|
36
|
Li XD, Zhang JX, Jiang LJ, Wang FW, Liu LL, Liao YJ, Jin XH, Chen WH, Chen X, Guo SJ, Zhou FJ, Zeng YX, Guan XY, Liu ZW, Xie D. Overexpression of maelstrom promotes bladder urothelial carcinoma cell aggressiveness by epigenetically downregulating MTSS1 through DNMT3B. Oncogene 2016; 35:6281-6292. [PMID: 27181205 DOI: 10.1038/onc.2016.165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/29/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
We have recently identified and characterized a novel oncogene, maelstrom (MAEL) from 1q24, in the pathogenesis of hepatocellular carcinoma. In this study, MAEL was investigated for its oncogenic role in urothelial carcinoma of the bladder (UCB) tumorigenesis/aggressiveness and underlying molecular mechanisms. Here, we report that overexpression of MAEL in UCB is important in the acquisition of an aggressive and/or poor prognostic phenotype. In UCB cell lines, knockdown of MAEL by short hairpin RNA is sufficient to inhibit cell growth, invasiveness/metastasis and suppressed epithelial-mesenchymal transition (EMT), whereas ectopic overexpression of MAEL promoted cell growth, invasive and/or metastatic capacity and enhanced EMT both in vitro and in vivo. We further demonstrate that MAEL could induce UCB cell EMT by downregulating a critical downstream target, the metastasis suppressor 1 (MTSS1) gene, ultimately leading to an increased invasiveness of cancer cells. Notably, overexpression of MAEL in UCB cells substantially enhanced the enrichment of DNA methyltrans-ferase (DNMT)3B and histone deacetylase (HDAC)1/2 on the promoter of the MTSS1, and thereby epigenetically suppressing the MTSS1 transcription. Downregulation of MTSS1 by MAEL in UCB cells is partially dependent on DNMT3B. Furthermore, we identify that beside the gene amplification of MAEL, miR-186 is a key negative regulator of MAEL and downregulation of miR-186 is another important mechanism for MAEL overexpression in UCBs. These data suggest that overexpression of MAEL, caused by gene amplification and/or decreased miR-186, has a critical oncogenic role in UCB pathogenesis by downregulation of MTSS1, and MAEL could be used as a novel prognostic marker and/or effective therapeutic target for human UCB.
Collapse
Affiliation(s)
- X-D Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J-X Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - L-J Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - F-W Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - L-L Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y-J Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X-H Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - W-H Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-J Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - F-J Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y-X Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X-Y Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Z-W Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - D Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Taherian-Esfahani Z, Abedin-Do A, Nikpayam E, Tasharofi B, Ghahghaei Nezamabadi A, Ghafouri-Fard S. Cancer-Testis Antigens: A Novel Group of Tumor Biomarkers in Ovarian Cancers. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Zhang W, Liu H, Yin J, Wu W, Zhu D, Amos CI, Fang S, Lee JE, Li Y, Han J, Wei Q. Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival. Int J Cancer 2016; 139:2730-2737. [PMID: 27578485 DOI: 10.1002/ijc.30409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
The Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control and thus may be involved in cancer development. In this study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-piRNA pathway genes in melanoma disease-specific survival. A published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses' Health Study and Health Professionals Follow-up Study. After multiple testing correction, we found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3' UTR microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence interval (CI) = 1.21-2.27, p =1.50 × 10-3 ] and validation dataset (HR = 1.55, 95% CI = 1.03-2.34, p = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI, 1.26-2.08, p =1.55 × 10-4 ). Using RNA-seq data from the 1000 Genomes Project, we found that DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. Additional large, prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongliang Liu
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Jieyun Yin
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Dakai Zhu
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Qingyi Wei
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
39
|
Li Q, Wei P, Huang B, Xu Y, Li X, Li Y, Cai S, Li D. MAEL expression links epithelial-mesenchymal transition and stem cell properties in colorectal cancer. Int J Cancer 2016; 139:2502-11. [PMID: 27537253 DOI: 10.1002/ijc.30388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022]
Abstract
MAEL plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilisation, however, its role on cancers is unclear. In this study, MAEL expression was analysed in a tissue microarray containing 185 samples of primary colon cancer tumor samples and human colon cancer cell lines. The effect of MAEL on cell proliferation, tumorigenesis, metastasis and drug resistance was examined in vitro and in vivo. Immunoprecipitation assay, confocal immunofluorescent analysis and luciferase assay were used for mechanism study. As results, MAEL was significantly upregulated in colon cancer patient tissue samples, and elevated MAEL protein levels positively correlated with overall survival and disease free survival of colon cancer patients. Using in vitro and in vivo models, we demonstrated that MAEL expression was correlated with cell proliferation, invasion and drug resistance of colon cancer cells by inducing epithelial-mesenchymal transition and stemness characteristics. Mechanistically, our study demonstrated that MAEL interacts with Snail and inhibit E-cadherin promoter activity. Collectively, MAEL is an oncogene that plays an important role in the development and progression of colon cancer, which may be a novel potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ben Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Firmino N, Martinez VD, Rowbotham DA, Enfield KSS, Bennewith KL, Lam WL. HPV status is associated with altered PIWI-interacting RNA expression pattern in head and neck cancer. Oral Oncol 2016; 55:43-48. [PMID: 26852287 DOI: 10.1016/j.oraloncology.2016.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/11/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES As HPV-induced cases of oral malignancy increase, it is important to understand the molecular differences between HPV positive and negative head and neck squamous cell carcinoma (HNSCC). PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs aberrantly expressed in cancer. We analyzed global piRNA expression patterns to define the HNSCC piRNA transcriptome and assess whether HPV infection status associates with changes in piRNA levels. MATERIALS AND METHODS A total of 498 HNSCC small RNA sequencing libraries were acquired from the Cancer Genomics Hub (cgHUB) Data Repository and a custom sequence analysis pipeline was developed to deduce piRNA expression from raw sequencing data. Expression matrices were aligned to clinicopathological features in order to analyze piRNA expression patterns across different HNSCC groups. The association of a piRNA signature with HPV-positive patient survival was evaluated using a Cox proportional hazard model. RESULTS Analysis of piRNA levels between HNSCC and non-malignant tissues revealed distinct expression patterns, with 87 piRNAs exclusively expressed in tumor samples. HPV infection status affected the expression of 41 of these piRNAs. Eleven (26.8%) piRNAs were significantly downregulated in HPV16/18 tumors compared to other HPV types. Remarkably, expression of a combination of five-piRNAs in HPV-positive HNSCC tumors was associated with worse overall survival. CONCLUSION The expression of specific piRNAs is deregulated in HNSCC, and changes with both HPV status and type. Importantly, a five-piRNA signature is able to delineate a subset of HPV-positive HNSCC patients with poor outcome, highlighting the potential utility of piRNAs in patient management.
Collapse
|
41
|
Liu A, Liu S. Noncoding RNAs in Growth and Death of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:137-72. [DOI: 10.1007/978-981-10-1498-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: Functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416:88-96. [PMID: 26360585 DOI: 10.1016/j.mce.2015.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023]
Abstract
A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Endocrine Gland Neoplasms/genetics
- Endocrine Gland Neoplasms/metabolism
- Endocrine Gland Neoplasms/therapy
- Female
- Gene Expression Regulation
- Humans
- Male
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), Nitte University, Deralakatte, Mangalore 575 018, Karnataka, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore 574 199, Karnataka, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
43
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
44
|
Qu X, Liu J, Zhong X, Li X, Zhang Q. PIWIL2 promotes progression of non-small cell lung cancer by inducing CDK2 and Cyclin A expression. J Transl Med 2015; 13:301. [PMID: 26373553 PMCID: PMC4571108 DOI: 10.1186/s12967-015-0666-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 01/19/2023] Open
Abstract
Background PIWI proteins have important roles in tumorigenesis due to their interaction with piRNAs. Recent studies suggest that PIWI proteins affect prognosis of various cancers. Methods In the present study, PIWI genes expression was assayed in non-small cell lung cancer (NSCLC). To determine the effects of PIWIL2 on NSCLC cells, overexpression and interference assays were performed using the A549 and H460 cell lines. The tumor formation model was performed to demonstrate the effects of PIWIL2 on tumor formation in vivo. Results PIWIL2 was increased both at the RNA and protein level in malignant cancer tissues compared with adjacent normal tissue. Moreover, increased PIWIL2 gene expression was negatively correlated with prognosis in NSCLC patients. Overexpression and interference of PIWIL2 promoted and depressed cell proliferation, respectively. Meanwhile, PIWIL2 interference arrested cells at the G2/M stage. In addition, we found that CDK2 and Cyclin A expression were correlated with PIWIL2 expression. Moreover, transfection of PIWIL2 promoted tumor growth in nude mice. Conclusion Our findings shed light on the function of PIWIL2 in NSCLC and suggest potential prognostic and therapeutic value.
Collapse
Affiliation(s)
- Xiaohan Qu
- The First Affiliated Hospital, China Medical University, NO. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Jinlu Liu
- The Forth Affiliated Hospital, China Medical University, Shenyang, China.
| | - Xinwen Zhong
- The First Affiliated Hospital, China Medical University, NO. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Xi Li
- The First Affiliated Hospital, China Medical University, NO. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Qigang Zhang
- The First Affiliated Hospital, China Medical University, NO. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
45
|
Zhang L, Wei P, Shen X, Zhang Y, Xu B, Zhou J, Fan S, Hao Z, Shi H, Zhang X, Kong R, Xu L, Gao J, Zou D, Liang C. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing. PLoS One 2015; 10:e0131336. [PMID: 26158897 PMCID: PMC4497725 DOI: 10.1371/journal.pone.0131336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights into future investigations aimed to explore the in-depth mechanisms of miRNAs and other small RNAs including piRNAs in penile carcinogenesis regulation and effective target-specific theragnosis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Pengfei Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Shen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanwei Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Xu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Haoqiang Shi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Rui Kong
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Lingfan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Gao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Duohong Zou
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic College, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (CZL); (DHZ)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (CZL); (DHZ)
| |
Collapse
|
46
|
Severino P, Oliveira LS, Andreghetto FM, Torres N, Curioni O, Cury PM, Toporcov TN, Paschoal AR, Durham AM. Small RNAs in metastatic and non-metastatic oral squamous cell carcinoma. BMC Med Genomics 2015; 8:31. [PMID: 26104160 PMCID: PMC4479233 DOI: 10.1186/s12920-015-0102-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/29/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Small non-coding regulatory RNAs control cellular functions at the transcriptional and post-transcriptional levels. Oral squamous cell carcinoma is among the leading cancers in the world and the presence of cervical lymph node metastases is currently its strongest prognostic factor. In this work we aimed at finding small RNAs expressed in oral squamous cell carcinoma that could be associated with the presence of lymph node metastasis. METHODS Small RNA libraries from metastatic and non-metastatic oral squamous cell carcinomas were sequenced for the identification and quantification of known small RNAs. Selected markers were validated in plasma samples. Additionally, we used in silico analysis to investigate possible new molecules, not previously described, involved in the metastatic process. RESULTS Global expression patterns were not associated with cervical metastases. MiR-21, miR-203 and miR-205 were highly expressed throughout samples, in agreement with their role in epithelial cell biology, but disagreeing with studies correlating these molecules with cancer invasion. Eighteen microRNAs, but no other small RNA class, varied consistently between metastatic and non-metastatic samples. Nine of these microRNAs had been previously detected in human plasma, eight of which presented consistent results between tissue and plasma samples. MiR-31 and miR-130b, known to inhibit several steps in the metastatic process, were over-expressed in non-metastatic samples and the expression of miR-130b was confirmed in plasma of patients showing no metastasis. MiR-181 and miR-296 were detected in metastatic tumors and the expression of miR-296 was confirmed in plasma of patients presenting metastasis. A novel microRNA-like molecule was also associated with non-metastatic samples, potentially targeting cell-signaling mechanisms. CONCLUSIONS We corroborate literature data on the role of small RNAs in cancer metastasis and suggest the detection of microRNAs as a tool that may assist in the evaluation of oral squamous cell carcinoma metastatic potential.
Collapse
Affiliation(s)
- Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| | - Liliane Santana Oliveira
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| | - Flávia Maziero Andreghetto
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| | - Natalia Torres
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| | - Otávio Curioni
- Hospital Heliopolis, Departamento de Cirurgia e Otorrinolaringologia, Sao Paulo, SP, Brazil.
| | | | - Tatiana Natasha Toporcov
- Departamento de Epidemiologia, Faculdade de Saúde Pública, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | | | - Alan Mitchell Durham
- Instituto de Matemática e Estatística, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
47
|
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KSS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 2015; 5:10423. [PMID: 26013764 PMCID: PMC4444957 DOI: 10.1038/srep10423] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Carolyn J Brown
- 1] Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada [2] Department of Medical Genetics, University of British Columbia, Vancouver, B. C. V6T 1Z3 Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| |
Collapse
|
48
|
Tan Y, Liu L, Liao M, Zhang C, Hu S, Zou M, Gu M, Li X. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin (Shanghai) 2015; 47:315-324. [PMID: 25854579 DOI: 10.1093/abbs/gmv018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
It is generally accepted that PIWI proteins are predominately expressed in the germline but absent in somatic tissues. Their best-characterized role is to suppress transposon expression, which ensures genomic stability in the germline. However, increasing evidence has suggested that PIWI proteins are linked to the hallmarks of cancer defined by Weinberg and Hanahan, such as cell proliferation, anti-apoptosis, genomic instability, invasion and metastasis. This provides new possibilities for anticancer therapies through the targeting of PIWI proteins, which may have fewer side effects due to their potential classification as a CTA (cancer/testis antigen). Furthermore, PIWI has been proposed to act as a diagnostic and prognostic marker for many types of cancer, and even to differentiate early- and late-stage cancers. We herein summarize the latest progress in this exciting field, hoping to encourage new investigations of PIWIs in cancer biology that will help to develop new therapeutics for clinical application.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Lianyong Liu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Mingan Liao
- College of Horticulture, Sichuan Agricultural University, Ya'an 625014, China
| | - Chaobao Zhang
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mei Zou
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
49
|
Assumpção CB, Calcagno DQ, Araújo TMT, Santos SEBD, Santos ÂKCRD, Riggins GJ, Burbano RR, Assumpção PP. The role of piRNA and its potential clinical implications in cancer. Epigenomics 2015; 7:975-84. [PMID: 25929784 PMCID: PMC4750480 DOI: 10.2217/epi.15.37] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms work in an orchestrated fashion to control gene expression in both homeostasis and diseases. Among small noncoding RNAs, piRNAs seem to meet the necessary requirements to be included in this epigenetic network due to their role in both transcriptional and post-transcriptional regulation. piRNAs and PIWI proteins might play important roles in cancer occurrence, prognosis and treatment as reported previously. Nevertheless, the potential clinical relevance of these molecules has yet been elucidated. A brief overview of piRNA biogenesis and their potential roles as part of an epigenetic network that is possibly involved in cancer is provided. Moreover, potential strategies based on the use of piRNAs and PIWI proteins as diagnostic and prognostic biomarkers as well as for cancer therapeutics are discussed.
Collapse
Affiliation(s)
- Carolina Baraúna Assumpção
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Taíssa Maíra Thomaz Araújo
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Sidney Emmanuel Batista dos Santos
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | | | - Gregory Joseph Riggins
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD 21231, USA
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| |
Collapse
|
50
|
Lu L, Katsaros D, Risch HA, Canuto EM, Biglia N, Yu H. MicroRNA let-7a modifies the effect of self-renewal gene HIWI on patient survival of epithelial ovarian cancer. Mol Carcinog 2015; 55:357-65. [PMID: 25630839 DOI: 10.1002/mc.22285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 02/06/2023]
Abstract
Aberrant expressions of self-renewal gene HIWI and microRNA (miRNA) let-7a are observed in epithelial ovarian cancer (EOC). A U-shape association between HIWI expression and overall survival is seen in several human cancers but unknown in EOC. HIWI directly and/or indirectly interacts with let-7a, but the clinical relevance of this interaction is yet to be addressed. Here, we analyzed HIWI and let-7a expressions in 211 primary EOC tissues using quantitative reverse-transcription PCR to investigate HIWI and its interaction with let-7a in the prognostic significance of EOC. Associations of HIWI and its interaction with miRNA let-7a with patient survival were analyzed using the Kaplan-Meier survival curves and Cox proportional hazard regression models. Kaplan-Meier survival curves showed that patients with medium HIWI had poorer overall survival than those with low or high HIWI. An 89% increased death risk (HR = 1.89, 95% CI: 1.29-2.98) was observed in the medium HIWI group in multivariate Cox proportional hazard regression analyses. Among patients with high let-7a expression, those with medium HIWI had an increased risk of death compared to those with low HIWI (HR = 2.62, 95% CI: 1.30-5.30), whereas among those with low let-7a, no significant association between HIWI expression and overall survival was observed (HR = 1.63, 95% CI: 0.86-3.08). Moreover, HIWI expression also affected chemotherapy response. The results suggested that miRNA let-7a could modify the effect of HIWI expression on patient survival of EOC, expanding our understanding of the clinical relevance of HIWI and let-7a interaction in EOC prognosis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Dionyssios Katsaros
- Department of Surgical Science, A O Città della Salute e della Scienza di Torino, S. Anna Hospital, Turin, Italy
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Emilie Marion Canuto
- Department of Surgical Science, A O Città della Salute e della Scienza di Torino, S. Anna Hospital, Turin, Italy
| | - Nicoletta Biglia
- Department of Surgical Science, Division of Obstetrics and Gynecology, University of Torino School of Medicine, Mauriziano Hospital, Turin, Italy
| | - Herbert Yu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, Connecticut.,Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| |
Collapse
|