1
|
Chen H, Huang M, Hou B, Liu Z, Tan R, Cui L, Wang T, Wang Z. The structural protein VP3 of enterovirus D68 interacts with MAVS to inhibit the NF-κB signaling pathway. J Virol 2025; 99:e0016325. [PMID: 40042308 PMCID: PMC11998529 DOI: 10.1128/jvi.00163-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen causing severe respiratory infections, and the immune evasion mediated by EV-D68 structural protein has been under discussion for several years. Our early research has identified that EV-D68 structural protein VP3 targets specifically the interferon regulatory factor 7 to inhibit type I interferon signaling, but not interferon regulatory factor 3, which is indispensable for mitochondrial antiviral signaling protein (MAVS)-activated type I interferon signaling. Interestingly, in this study, we found that VP3 co-localizes and interacts with MAVS. Furthermore, VP3 acts as a negative regulator of MAVS/Sendai virus-activated NF-κB signaling pathway. Overexpression of VP3 can promote EV-D68 replication and reverse MAVS-mediated inhibition of virus replication. The mechanism of the interaction between VP3 and MAVS may be that VP3 not only disrupts the mitochondrial membrane potential but also leads to the release of MAVS from mitochondria. Moreover, VP3 binds to the transmembrane domain of MAVS with mitochondrial membrane localization function, which provides support for the mechanism of action. Finally, in our study, we found that VP3 interaction with MAVS to inhibit NF-κB activation is a mechanism that is prevalent in enteroviruses. Overall, our data demonstrate that the interaction between VP3 and MAVS can be used by enteroviruses to evade host innate immunity as a broad-spectrum strategy.IMPORTANCEEnterovirus D68 (EV-D68), as an emerging pathogen, has resulted in a rising number of pediatric infections worldwide since its initial outbreak in the United States in 2014. This virus can cause severe respiratory illnesses and is linked to acute flaccid myelitis. In this article, we report that the structural protein VP3 of EV-D68 inhibits the activation of the NF-κB signaling pathway by targeting mitochondrial antiviral signaling protein (MAVS). Further studies demonstrate that VP3 can induce mitochondrial damage, resulting in the loss of MAVS localization in mitochondria. These findings suggest that the interaction between VP3 and MAVS may represent a mechanism by which EV-D68 suppresses the activation of the NF-κB signaling pathway, facilitating immune evasion and promoting viral replication. Our study suggests potential therapeutic strategies for enterovirus-related viral diseases and the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Honghua Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Bei Hou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruyang Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Luna Cui
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| |
Collapse
|
2
|
Naeem A, Bello MB, Bosaeed M. Insights Into Enterovirus D68 Immunology: Unraveling the Mysteries of Host-Pathogen Interactions. Immun Inflamm Dis 2025; 13:e70117. [PMID: 39912556 PMCID: PMC11800235 DOI: 10.1002/iid3.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Enterovirus D68 (EV-D68) has emerged as a significant respiratory and neurological pathogen, particularly affecting children with severe respiratory illnesses and acute flaccid myelitis. Understanding the interaction between EV-D68 and the host immune system is crucial for developing effective prevention and treatment strategies. OBJECTIVES This review aims to examine the immune response to EV-D68, its mechanisms of immune evasion, and the current progress in vaccine and antiviral development while identifying gaps in knowledge and future research directions. METHODS A comprehensive review of the literature was conducted, focusing on the innate and adaptive immune responses to EV-D68, its strategies for immune evasion, and advancements in therapeutic interventions. RESULTS Pattern recognition receptors detect EV-D68 and trigger antiviral defenses, including interferon production and activation of natural killer cells. B cells generate antibodies, while T cells coordinate a targeted response to the virus. EV-D68 employs mechanisms such as antigenic variation and disruption of host antiviral pathways to evade immune detection. Progress in vaccine and antiviral research shows promise but remains in the early stages. CONCLUSIONS EV-D68 represents a complex and evolving public health challenge. Although the immune system mounts a robust response, the virus's ability to evade these defenses complicates efforts to control it. Continued research is essential to develop effective vaccines and antivirals and to address gaps in understanding its pathogenesis and immune interactions. IMPLICATIONS A multidisciplinary approach is critical to improving diagnostic, preventive, and therapeutic strategies for EV-D68, ensuring better preparedness for future outbreaks.
Collapse
Affiliation(s)
- Asif Naeem
- Infectious Diseases Research DepartmentKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Muhammad Bashir Bello
- Infectious Diseases Research DepartmentKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Mohammad Bosaeed
- Infectious Diseases Research DepartmentKing Abdullah International Medical Research CenterRiyadhSaudi Arabia
| |
Collapse
|
3
|
Wangui J, Gachara G, Mobegi V, Agoti C, Otieno J, Opanda S, Opot B, Ngeranwa J, Njeru R, Bulimo W. Molecular Analysis of Human Respiratory Syncytial Virus Group B Strains Isolated in Kenya Before and During the Emergence of Pandemic Influenza A/H1N1. Influenza Other Respir Viruses 2025; 19:e70082. [PMID: 39978327 PMCID: PMC11842092 DOI: 10.1111/irv.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND We conducted a retrospective study to explore molecular insights into human respiratory syncytial virus (HRSV) group B strains among patients attending outpatient clinics at government medical facilities both prior and during the onset of Influenza A/H1N1/2009 pandemic outbreak. METHODS We screened 2300 nasopharyngeal swabs using multiplex real time reverse transcriptase polymerase chain reaction. We amplified a segment of the first and second hypervariable regions, as well as the conserved portion of the third domain of the G-gene using HRSV-B specific primers, sequenced by Sanger di-deoxy chain termination method and thereafter analyzed the sequences. RESULTS We characterized the circulating strains into three known genotypes: SAB4 (1.4%), BA7 (1.4%), and multiple variants of BA9 (97.2%). The majority of BA9 viruses were uniquely Kenyan with only 4% aligning with BA9 lineages found elsewhere. The mean evolutionary rate of the HRSV-B was estimated to be 3.08 × 10-3 substitutions per site per year. CONCLUSION Our findings indicate that the circulating HRSV-B viruses in Kenya underwent a slower evolution during the period of 2007-2010. Additionally, our findings reveal the existence of a unique lineage as well as new variants that have not been reported elsewhere to date.
Collapse
Affiliation(s)
- Julia Wangui
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
- Department of BiochemistryKenyatta UniversityNairobiKenya
| | - George Gachara
- Department of Medical Laboratory SciencesKenyatta UniversityNairobiKenya
| | - Victor Mobegi
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - Charles Agoti
- Department of Epidemiology and DemographyKenya Medical Research Institute (KEMRI) ‐ Wellcome Trust ProgramNairobiKenya
| | | | - Silvanos Opanda
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| | - Benjamin Opot
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| | | | - Regina Njeru
- International Livestock Research InstituteNairobiKenya
| | - Wallace Bulimo
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| |
Collapse
|
4
|
Grizer CS, Messacar K, Mattapallil JJ. Enterovirus-D68 - A Reemerging Non-Polio Enterovirus that Causes Severe Respiratory and Neurological Disease in Children. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2024; 4:1328457. [PMID: 39246649 PMCID: PMC11378966 DOI: 10.3389/fviro.2024.1328457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The past decade has seen the global reemergence and rapid spread of enterovirus D68 (EV-D68), a respiratory pathogen that causes severe respiratory illness and paralysis in children. EV-D68 was first isolated in 1962 from children with pneumonia. Sporadic cases and small outbreaks have been reported since then with a major respiratory disease outbreak in 2014 associated with an increased number of children diagnosed with polio-like paralysis. From 2014-2018, major outbreaks have been reported every other year in a biennial pattern with > 90% of the cases occurring in children under the age of 16. With the outbreak of SARS-CoV-2 and the subsequent COVID-19 pandemic, there was a significant decrease in the prevalence EV-D68 cases along with other respiratory diseases. However, since the relaxation of pandemic social distancing protocols and masking mandates the number of EV-D68 cases have begun to rise again - culminating in another outbreak in 2022. Here we review the virology, pathogenesis, and the immune response to EV-D68, and discuss the epidemiology of EV-D68 infections and the divergence of contemporary strains from historical strains. Finally, we highlight some of the key challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Cassandra S Grizer
- Department of Microbiology & Immunology, The Henry M. Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kevin Messacar
- The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Tan B, Liu C, Li K, Jadhav P, Lambrinidis G, Zhu L, Olson L, Tan H, Wen Y, Kolocouris A, Liu W, Wang J. Structure-Based Lead Optimization of Enterovirus D68 2A Protease Inhibitors. J Med Chem 2023; 66:14544-14563. [PMID: 37857371 PMCID: PMC11457037 DOI: 10.1021/acs.jmedchem.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Enterovirus D68 (EV-D68) virus is a nonpolio enterovirus that typically causes respiratory illness and, in severe cases, can lead to paralysis and death in children. There is currently no vaccine or antiviral for EV-D68. We previously discovered the viral 2A protease (2Apro) as a viable antiviral drug target and identified telaprevir as a 2Apro inhibitor. 2Apro is a viral cysteine protease that cleaves the viral VP1-2A polyprotein junction. In this study, we report the X-ray crystal structures of EV-D68 2Apro, wild-type, and the C107A mutant and the structure-based lead optimization of telaprevir. Guided by the X-ray crystal structure, we predicted the binding pose of telaprevir in 2Apro using molecular dynamics simulations. We then utilized this model to inform structure-based optimization of the telaprevir's reactive warhead and P1-P4 substitutions. These efforts led to the discovery of 2Apro inhibitors with improved antiviral activity than telaprevir. These compounds represent promising lead compounds for further development as EV-D68 antivirals.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Chang Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Linda Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Yu Wen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| |
Collapse
|
6
|
Zhang Y, Xu L, Zhang Z, Su X, Wang Z, Wang T. Enterovirus D68 infection upregulates SOCS3 expression to inhibit JAK-STAT3 signaling and antagonize the innate interferon response of the host. Virol Sin 2023; 38:755-766. [PMID: 37657555 PMCID: PMC10590701 DOI: 10.1016/j.virs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Enterovirus D68 (EV-D68) can cause respiratory diseases and acute flaccid paralysis, posing a great threat to public health. Interferons are cytokines secreted by host cells that have broad-spectrum antiviral effects, inducing the expression of hundreds of interferon-stimulated genes (ISGs). EV-D68 activates ISG expression early in infection, but at a later stage, the virus suppresses ISG expression, a strategy evolved by EV-D68 to antagonize interferons. Here, we explore a host protein, suppressor of cytokine signaling 3 (SOCS3), is upregulated during EV-D68 infection and antagonizes the antiviral effects of type I interferon. We subsequently demonstrate that the structural protein of EV-D68 upregulated the expression of RFX7, a transcriptional regulator of SOCS3, leading to the upregulation of SOCS3 expression. Further exploration revealed that SOCS3 plays its role by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). The expression of SOCS3 inhibited the expression of ISG, thereby inhibiting the antiviral effect of type I interferon and promoting EV-D68 transcription, protein production, and viral titer. Notably, a truncated SOCS3, generated by deleting the kinase inhibitory region (KIR) domain, failed to promote replication and translation of EV-D68. Based on the above studies, we designed a short peptide named SOCS3 inhibitor, which can specifically bind and inhibit the KIR structural domain of SOCS3, significantly reducing the RNA and protein levels of EV-D68. In summary, our results demonstrated a novel mechanism by which EV-D68 inhibits ISG transcription and antagonizes the antiviral responses of host type I interferon.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Leling Xu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhe Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xin Su
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China.
| |
Collapse
|
7
|
Kang J, Huang M, Li J, Zhang K, Zhu C, Liu S, Zhou Z, Wang T, Wang Z. Enterovirus D68 VP3 Targets the Interferon Regulatory Factor 7 To Inhibit Type I Interferon Response. Microbiol Spectr 2023; 11:e0413822. [PMID: 37125923 PMCID: PMC10269600 DOI: 10.1128/spectrum.04138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Jinyu Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Keke Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Cheng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhenwei Zhou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Cassidy H, Lizarazo-Forero E, Schuele L, Van Leer-Buter C, Niesters HGM. Off-season circulation and characterization of enterovirus D68 with respiratory and neurological presentation using whole-genome sequencing. Front Microbiol 2023; 13:1088770. [PMID: 36845975 PMCID: PMC9947850 DOI: 10.3389/fmicb.2022.1088770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 02/11/2023] Open
Abstract
To explore an off-season enterovirus D68 (EV-D68) upsurge in the winter season of 2019/2020, we adapted a whole-genome sequencing approach for Nanopore Sequencing for 20 hospitalized patients with accompanying respiratory or neurological presentation. Applying phylodynamic and evolutionary analysis on Nextstrain and Datamonkey respectively, we report a highly diverse virus with an evolutionary rate of 3.05 × 10-3 substitutions per year (entire EV-D68 genome) and a positive episodic/diversifying selection with persistent yet undetected circulation likely driving evolution. While the predominant B3 subclade was identified in 19 patients, one A2 subclade was identified in an infant presenting with meningitis. Exploring single nucleotide variations using CLC Genomics Server showed high levels of non-synonymous mutations, particularly in the surface proteins, possibly highlighting growing problems with routine Sanger sequencing for typing enteroviruses. Surveillance and molecular approaches to enhance current knowledge of infectious pathogens capable of pandemic potential are paramount to early warning in health care facilities.
Collapse
Affiliation(s)
- Hayley Cassidy
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands
| | - Erley Lizarazo-Forero
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands
| | - Leonard Schuele
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands
| | - Coretta Van Leer-Buter
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands
| | | |
Collapse
|
9
|
Li X, Li Y, Fan S, Cao R, Li X, He X, Li W, Xu L, Cheng T, Li H, Zhong W. Discovery and Optimization of Quinoline Analogues as Novel Potent Antivirals against Enterovirus D68. J Med Chem 2022; 65:14792-14808. [PMID: 36254462 PMCID: PMC9661475 DOI: 10.1021/acs.jmedchem.2c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Enterovirus D68 (EV-D68)
is a nonpolio enterovirus that is mainly
transmitted through respiratory routes and poses a potential threat
for large-scale spread. EV-D68 infections mostly cause moderate to
severe respiratory diseases in children and potentially induce neurological
diseases. However, there are no specific antiviral drugs or vaccines
against EV-D68. Herein, through virtual screening and rational design,
a series of novel quinoline analogues as anti-EV-D68 agents targeting
VP1 were identified. Particularly, 19 exhibited potent
antiviral activity with an EC50 value ranging from 0.05
to 0.10 μM against various EV-D68 strains and showed inhibition
of viral replication verified by Western blot, immunofluorescence,
and plaque formation assay. Mechanistic studies indicated that the
anti-EV-D68 agents work mainly by interacting with VP1. The acceptable
bioavailability of 23.9% in rats and significant metabolic stability
in human liver microsome (Clint = 10.8 mL/min/kg, t1/2 = 148 min) indicated that compound 19 with a novel scaffold was worth further investigation.
Collapse
Affiliation(s)
- Xiaoyuan Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaojia Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaomeng He
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, P.R. China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| |
Collapse
|
10
|
Wangui J, Nokes DJ, Mobegi VA, Otieno JR, Agoti CN, Ngeranwa JJN, Bulimo WD. Spatial-temporal distribution and sequence diversity of group a human respiratory syncytial viruses in Kenya preceding the emergence of ON1 genotype. Influenza Other Respir Viruses 2021; 16:501-510. [PMID: 34962085 PMCID: PMC8983921 DOI: 10.1111/irv.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Human respiratory syncytial virus (HRSV) is a major cause of severe viral acute respiratory illness and contributes significantly to severe pneumonia cases in Africa. Little is known about its spatial–temporal distribution as defined by its genetic diversity. Methods A retrospective study conducted utilizing archived nasopharyngeal specimens from patients attending outpatient clinics in hospitals located in five demographically and climatically distinct regions of Kenya; Coast, Western, Highlands, Eastern and Nairobi. The viral total RNA was extracted and tested using multiplex real time RT‐PCR (reverse transcriptase polymerase chain reaction). A segment of the G‐gene was amplified using one‐step RT‐PCR and sequenced by Sanger di‐deoxy method. Bayesian analysis of phylogeny was utilized and subsequently median joining methods for haplotype network reconstruction. Results Three genotypes of HRSVA were detected; GA5 (14.0%), GA2 (33.1%), and NA1 (52.9%). HRSVA prevalence varied by location from 33% to 13.2% in the Highlands and the Eastern regions respectively. The mean nucleotide diversity (Pi[π]) varied by genotype: highest of 0.018 for GA5 and lowest of 0.005 for NA1. A total of 58 haplotypes were identified (GA5 10; GA2 20; NA1 28). These haplotypes were introduced into the population locally by single haplotypes and additional subsidiary seeds amongst the GA2 and the NA1 haplotypes. Conclusions HRSVA was found across all the regions throughout the study period and comprised three genotypes; GA5, GA2, and NA1 genotypes. The genotypes were disproportionately distributed across the regions with GA5 gradually increasing toward the Western zones and decreasing toward the Eastern zones of the country.
Collapse
Affiliation(s)
- Julia Wangui
- Department of Biochemistry, Kenyatta University, Nairobi, Kenya.,Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - D James Nokes
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, UK
| | - Victor A Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - James R Otieno
- Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charles N Agoti
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.,Department of Epidemiology and Demography, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Wallace D Bulimo
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
11
|
Mozhgani SH, Keshavarz M, Mousavi N, Namdari H, Salimi V, Mokhtari-Azad T, Zarei-Ghobadi M, Nadji SA, Ghavami N, Rezaei F. Frequent detection of enterovirus D68 and rhinovirus type C in children with acute respiratory infections. Eur J Clin Microbiol Infect Dis 2020; 40:637-642. [PMID: 33011904 DOI: 10.1007/s10096-020-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the prevalence of human rhinoviruses (HRVs) and the emergence of enterovirus D68 (EV-D68) in children. A total of 322 nasopharyngeal swab samples were provided from children with an initial diagnosis of upper and lower respiratory tract infections. A total of 34 and 70 cases were positive for EV-D68 and HRV, respectively. The phylogenetic analysis revealed that the clades A and B are the prevalent genotypes for EV-D68 and the HRV-positive samples belong to three types including HRV-A, HRV-B, and HRV-C. The results showed that EV-D68 and HRV-C are circulating in Iran especially in the winter.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Mousavi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | | | - Seyed Alireza Nadji
- Virology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran.
| |
Collapse
|
12
|
Typical Stress Granule Proteins Interact with the 3' Untranslated Region of Enterovirus D68 To Inhibit Viral Replication. J Virol 2020; 94:JVI.02041-19. [PMID: 31941779 DOI: 10.1128/jvi.02041-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Stress granules (SGs) are formed in the cytoplasm under environmental stress, including viral infection. Human enterovirus D68 (EV-D68) is a highly pathogenic virus which can cause serious respiratory and neurological diseases. At present, there is no effective drug or vaccine against EV-D68 infection, and the relationship between EV-D68 infection and SGs is poorly understood. This study revealed the biological function of SGs in EV-D68 infection. Our results suggest that EV-D68 infection induced the accumulation of SG marker proteins Ras GTPase-activated protein-binding protein 1 (G3BP1), T cell intracellular antigen 1 (TIA1), and human antigen R (HUR) in the cytoplasm of infected host cells during early infection but inhibited their accumulation during the late stage. Simultaneously, we revealed that EV-D68 infection induces HUR, TIA1, and G3BP1 colocalization, which marks the formation of typical SGs dependent on protein kinase R (PKR) and eIF2α phosphorylation. In addition, we found that TIA1, HUR, and G3BP1 were capable of targeting the 3' untranslated regions (UTRs) of EV-D68 RNA to inhibit viral replication. However, the formation of SGs in response to arsenite (Ars) gradually decreased as the infection progressed, and G3BP1 was cleaved in the late stage as a strategy to antagonize SGs. Our findings have important implications in understanding the mechanism of interaction between EV-D68 and the host while providing a potential target for the development of antiviral drugs.IMPORTANCE EV-D68 is a serious threat to human health, and there are currently no effective treatments or vaccines. SGs play an important role in cellular innate immunity as a target with antiviral effects. This manuscript describes the formation of SGs induced by EV-D68 early infection but inhibited during the late stage of infection. Moreover, TIA1, HUR, and G3BP1 can chelate a specific site of the 3' UTR of EV-D68 to inhibit viral replication, and this interaction is sequence and complex dependent. However, this inhibition can be antagonized by overexpression of the minireplicon. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets that can inhibit viral replication and limit the pathogenesis of EV-D68.
Collapse
|
13
|
Elusah J, Bulimo WD, Opanda SM, Symekher SL, Wamunyokoli F. Genetic diversity and evolutionary analysis of human respirovirus type 3 strains isolated in Kenya using complete hemagglutinin-neuraminidase (HN) gene. PLoS One 2020; 15:e0229355. [PMID: 32155160 PMCID: PMC7064169 DOI: 10.1371/journal.pone.0229355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Human respirovirus type 3 (HRV3) is a leading etiology of lower respiratory tract infections in young children and ranks only second to the human respiratory syncytial virus (HRSV). Despite the public health importance of HRV3, there is limited information about the genetic characteristics and diversity of these viruses in Kenya. To begin to address this gap, we analyzed 35 complete hemagglutinin-neuraminidase (HN) sequences of HRV3 strains isolated in Kenya between 2010 and 2013. Viral RNA was extracted from the isolates, and the entire HN gene amplified by RT-PCR followed by nucleotide sequencing. Phylogenetic analyses of the sequences revealed that all the Kenyan isolates grouped into genetic Cluster C; sub-clusters C1a, C2, and C3a. The majority (54%) of isolates belonged to sub-cluster C3a, followed by C2 (43%) and C1a (2.9%). Sequence analysis revealed high identities between the Kenyan isolates and the HRV3 prototype strain both at the amino acid (96.5-97.9%) and nucleotide (94.3-95.6%) levels. No amino acid variations affecting the catalytic/active sites of the HN glycoprotein were observed among the Kenyan isolates. Selection pressure analyses showed that the HN glycoprotein was evolving under positive selection. Evolutionary analyses revealed that the mean TMRCA for the HN sequence dataset was 1942 (95% HPD: 1928-1957), while the mean evolutionary rate was 4.65x10-4 nucleotide substitutions/site/year (95% HPD: 2.99x10-4 to 6.35x10-4). Overall, our results demonstrate the co-circulation of strains of cluster C HRV3 variants in Kenya during the study period. This is the first study to describe the genetic and molecular evolutionary aspects of HRV3 in Kenya using the complete HN gene.
Collapse
Affiliation(s)
- Juliet Elusah
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Wallace Dimbuson Bulimo
- Department of Emerging infections, US Army Medical Directorate–Africa, Nairobi, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | | | | | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
14
|
Hu YL, Chang LY. Current status of enterovirus D68 worldwide and in Taiwan. Pediatr Neonatol 2020; 61:9-15. [PMID: 31706947 DOI: 10.1016/j.pedneo.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022] Open
Abstract
Enterovirus D68 was first identified in 1962 and caused a worldwide outbreak starting from the North America in 2014. Enterovirus D68 has been in continuous circulation among many countries recently, including Taiwan. Reports also reveal high seroprevalence, which indicates that the disease burden of enterovirus D68 may be underestimated via viral culture or polymerase chain reaction results. Although most infected cases have mild respiratory illness, severe complications including acute flaccid myelitis and acute respiratory distress syndrome have also been reported. In the position of an emerging pathogen, enterovirus D68 poses a threat to public health and may cause devastating diseases. Diverse severity of neurological sequelae remains inevitable among acute flaccid myelitis patients, but no curable treatment is available currently. According to the management suggestions of the American Centers of Disease Control, uses of corticosteroids and plasmapheresis are either preferred or avoided and intravenous immunoglobulin also has no clear indication in the treatment for acute flaccid myelitis. In this review article, we provide information about the epidemiology, clinical recognition and treatment strategy of enterovirus D68. Better understanding of this disease is the foothold for advanced investigation and monitoring in the future.
Collapse
Affiliation(s)
- Ya-Li Hu
- Department of Pediatrics, New Taipei City Hospital, New Taipei City, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Enterovirus D68 Subclade B3 Circulation in Senegal, 2016: Detection from Influenza-like Illness and Acute Flaccid Paralysis Surveillance. Sci Rep 2019; 9:13881. [PMID: 31554908 PMCID: PMC6761155 DOI: 10.1038/s41598-019-50470-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Following the 2014 outbreak, active surveillance of the EV-D68 has been implemented in many countries worldwide. Despite subsequent EV-D68 outbreaks (2014 and 2016) reported in many areas, EV-D68 circulation remains largely unexplored in Africa except in Senegal, where low levels of EV-D68 circulation were first noted during the 2014 outbreak. Here we investigate subsequent epidemiology of EV-D68 in Senegal from June to September 2016 by screening respiratory specimens from ILI and stool from AFP surveillance. EV-D68 was detected in 7.4% (44/596) of patients; 40 with ILI and 4 with AFP. EV-D68 detection was significantly more common in children under 5 years (56.8%, p = 0.016). All EV-D68 strains detected belonged to the newly defined subclade B3. This study provides the first evidence of EV-D68 B3 subclade circulation in Africa from patients with ILI and AFP during a 2016 outbreak in Senegal. Enhanced surveillance of EV-D68 is needed to better understand the epidemiology of EV-D68 in Africa.
Collapse
|
16
|
Hixon AM, Frost J, Rudy MJ, Messacar K, Clarke P, Tyler KL. Understanding Enterovirus D68-Induced Neurologic Disease: A Basic Science Review. Viruses 2019; 11:E821. [PMID: 31487952 PMCID: PMC6783995 DOI: 10.3390/v11090821] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
In 2014, the United States (US) experienced an unprecedented epidemic of enterovirus D68 (EV-D68)-induced respiratory disease that was temporally associated with the emergence of acute flaccid myelitis (AFM), a paralytic disease occurring predominantly in children, that has a striking resemblance to poliomyelitis. Although a definitive causal link between EV-D68 infection and AFM has not been unequivocally established, rapidly accumulating clinical, immunological, and epidemiological evidence points to EV-D68 as the major causative agent of recent seasonal childhood AFM outbreaks in the US. This review summarizes evidence, gained from in vivo and in vitro models of EV-D68-induced disease, which demonstrates that contemporary EV-D68 strains isolated during and since the 2014 outbreak differ from historical EV-D68 in several factors influencing neurovirulence, including their genomic sequence, their receptor utilization, their ability to infect neurons, and their neuropathogenicity in mice. These findings provide biological plausibility that EV-D68 is a causal agent of AFM and provide important experimental models for studies of pathogenesis and treatment that are likely to be difficult or impossible in humans.
Collapse
Affiliation(s)
- Alison M Hixon
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Messacar
- Hospital Medicine and Pediatric Infectious Disease Sections, Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA.
- Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Kenneth L Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Sun J, Hu XY, Yu XF. Current Understanding of Human Enterovirus D68. Viruses 2019; 11:v11060490. [PMID: 31146373 PMCID: PMC6631698 DOI: 10.3390/v11060490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Human enterovirus D68 (EV-D68), a member of the species Enterovirus D of the Picornaviridae family, was first isolated in 1962 in the United States. EV-D68 infection was only infrequently reported until an outbreak occurred in 2014 in the US; since then, it has continued to increase worldwide. EV-D68 infection leads to severe respiratory illness and has recently been reported to be linked to the development of the neurogenic disease known as acute flaccid myelitis (AFM), mostly in children, seriously endangering public health. Hitherto, treatment options for EV-D68 infections were limited to supportive care, and as yet there are no approved, specific antiviral drugs or vaccines. Research on EV-D68 has mainly focused on its epidemiology, and its virologic characteristics and pathogenesis still need to be further explored. Here, we provide an overview of current research on EV-D68, including the genotypes and genetic characteristics of recent epidemics, the mechanism of infection and virus-host interactions, and its relationship to acute flaccid myelitis (AFM), in order to broaden our understanding of the biological features of EV-D68 and provide a basis for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Jing Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| | - Xiao-Yi Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
18
|
Kaida A, Iritani N, Yamamoto SP, Kanbayashi D, Hirai Y, Togawa M, Amo K, Kohdera U, Nishigaki T, Shiomi M, Asai S, Kageyama T, Kubo H. Distinct genetic clades of enterovirus D68 detected in 2010, 2013, and 2015 in Osaka City, Japan. PLoS One 2017; 12:e0184335. [PMID: 28902862 PMCID: PMC5597212 DOI: 10.1371/journal.pone.0184335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
The first upsurge of enterovirus D68 (EV-D68), a causative agent of acute respiratory infections (ARIs), in Japan was reported in Osaka City in 2010. In this study, which began in 2010, we surveyed EV-D68 in children with ARIs and analyzed sequences of EV-D68 strains detected. Real-time PCR of 19 respiratory viruses or subtypes of viruses, including enterovirus, was performed on 2,215 specimens from ARI patients (<10 years of age) collected between November 2010 and December 2015 in Osaka City, Japan. EV-D68 was identified in 18 enterovirus-positive specimens (n = 4 in 2013, n = 1 in 2014, and n = 13 in 2015) by analysis of viral protein 1 (VP1) or VP4 sequences, followed by a BLAST search for similar sequences. All EV-D68 strains were detected between June and October (summer to autumn), except for one strain detected in 2014. A phylogenetic analysis of available VP1 sequences revealed that the Osaka strains detected in 2010, 2013, and 2015 belonged to distinct clusters (Clades C, A, and B [Subclade B3], respectively). Comparison of the 5' untranslated regions of these viruses showed that Osaka strains in Clades A, B (Subclade B3), and C commonly had deletions at nucleotide positions 681-703 corresponding to the prototype Fermon strain. Clades B and C had deletions from nucleotide positions 713-724. Since the EV-D68 epidemic in 2010, EV-D68 re-emerged in Osaka City, Japan, in 2013 and 2015. Results of this study indicate that distinct clades of EV-D68 contributed to re-emergences of this virus in 2010, 2013, and 2015 in this limited region.
Collapse
Affiliation(s)
- Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
- * E-mail:
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P. Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Daiki Kanbayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuki Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | | | - Kiyoko Amo
- Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
19
|
Huang YP, Lin TL, Lin TH, Wu HS. Molecular and epidemiological study of enterovirus D68 in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:411-417. [DOI: 10.1016/j.jmii.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
20
|
First Report of a Fatal Case Associated with EV-D68 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis. Int J Mol Sci 2017; 18:ijms18051065. [PMID: 28509856 PMCID: PMC5454976 DOI: 10.3390/ijms18051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
A fatal case associated with enterovirus D68 (EV-D68) infection affecting a 10-year-old boy was reported in Hong Kong in 2014. To examine if a new strain has emerged in Hong Kong, we sequenced the partial genome of the EV-D68 strain identified from the fatal case and the complete VP1, and partial 5′UTR and 2C sequences of nine additional EV-D68 strains isolated from patients in Hong Kong. Sequence analysis indicated that a cluster of strains including the previously recognized A2 strains should belong to a separate clade, clade D, which is further divided into subclades D1 and D2. Among the 10 EV-D68 strains, 7 (including the fatal case) belonged to the previously described, newly emerged subclade B3, 2 belonged to subclade B1, and 1 belonged to subclade D1. Three EV-D68 strains, each from subclades B1, B3, and D1, were selected for complete genome sequencing and recombination analysis. While no evidence of recombination was noted among local strains, interclade recombination was identified in subclade D2 strains detected in mainland China in 2008 with VP2 acquired from clade A. This study supports the reclassification of subclade A2 into clade D1, and demonstrates interclade recombination between clades A and D2 in EV-D68 strains from China.
Collapse
|
21
|
Thongpan I, Wanlapakorn N, Vongpunsawad S, Linsuwanon P, Theamboonlers A, Payungporn S, Poovorawan Y. Prevalence and Phylogenetic Characterization of Enterovirus D68 in Pediatric Patients with Acute Respiratory Tract Infection in Thailand. Jpn J Infect Dis 2016; 69:426-430. [PMID: 26567839 DOI: 10.7883/yoken.jjid.2015.352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enterovirus D68 (EV-D68) is associated with severe lower respiratory tract infection and neurological abnormalities including acute myelitis and cranial nerve dysfunction. To determine whether an increased incidence of EV-D68 occurs in Southeast Asia, we retrospectively tested specimens collected from Thai pediatric patients who were less than 5 years of age and presented with acute respiratory tract infections between 2012 and 2014. Reverse transcription-polymerase chain reaction and nucleotide sequencing of the 5'-UTR/VP2 region were used to identify EV-D68. We also examined the epidemiological pattern of EV-D68 since 2009, when it was first identified in Thailand, and compiled records of clinical manifestations in children with confirmed EV-D68 infection. From 837 samples, 5 samples (0.6%) tested positive for EV-D68. All patients presented with viral pneumonia and required hospitalization. Phylogenetic analysis of the VP4/VP2 regions revealed that EV-D68 strains circulating in Thailand between 2012 and 2014 were closely related to strains reported in Japan, United Kingdom, China, and France. Continued surveillance of probable EV-D68-associated severe respiratory tract infection and the development of a rapid diagnostic test for EV-D68 are essential in supporting awareness and facilitating disease prevention and control.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Enterovirus D68 (EV-D68) is a member of the species Enterovirus D in the genus Enterovirus of the Picornaviridae family. EV-D68 was first isolated in the United States in 1962 and is primarily an agent of respiratory disease. Infections with EV-D68 have been rarely reported until recently, when reports of EV-D68 associated with respiratory disease increased notably worldwide. An outbreak in 2014 in the United States, for example, involved more than 1,000 cases of severe respiratory disease that occurred across almost all states. Phylogenetic analysis of all EV-D68 sequences indicates that the circulating strains of EV-D68 can be classified into two lineages, lineage 1 and lineage 2. In contrast to the prototype Fermon strain, all circulating strains have deletions in their genomes. Respiratory illness associated with EV-D68 infection ranges from mild illness that just needs outpatient service to severe illness requiring intensive care and mechanical ventilation. To date, there are no specific medicines and vaccines to treat or prevent EV-D68 infection. This review provides a detailed overview about our current understanding of EV-D68-related virology, epidemiology and clinical syndromes, pathogenesis, and laboratory diagnostics.
Collapse
Affiliation(s)
- Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens, and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P.R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
23
|
Abstract
ABSTRACT
Enterovirus-D68 (EV-D68) is a unique enterovirus, similar to human rhinoviruses, spread via the respiratory route and primarily causing respiratory disease. Increasing clusters of EV-D68 associated respiratory disease have been reported since 2008, with the largest reported outbreak occurring in North America in 2014. Epidemiologic data and biological plausibility support an association of EV-D68 with the neurologic condition, acute flaccid myelitis. Diagnosis requires EV-D68 specific PCR or viral sequencing of respiratory specimens. Treatment consists of supportive care, as there are no currently available effective vaccines or antiviral therapies. Further research is needed to prepare for future EV-D68 outbreaks of respiratory or neurologic disease.
Collapse
|
24
|
Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. THE LANCET. INFECTIOUS DISEASES 2016; 16:e64-e75. [PMID: 26929196 DOI: 10.1016/s1473-3099(15)00543-5] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Since its discovery in California in 1962, reports of enterovirus D68 have been infrequent. Before 2014, infections were confirmed in only 699 people worldwide. In August, 2014, two paediatric hospitals in the USA reported increases in the number of patients with severe respiratory illness, with an over-representation in children with asthma. Shortly after, the authorities recognised a nationwide outbreak, which then spread to Canada, Europe, and Asia. In 2014, more than 2000 cases of enterovirus D68 were reported in 20 countries. Concurrently, clusters of children with acute flaccid paralysis of unknown cause were reported in several US states and in Europe. Enterovirus D68 infection was confirmed in some of the paralysed children, but not all. Complications in patients who were severely neurologically affected resemble those caused by poliomyelitis. In this paper we systematically review reports on enterovirus D68 to estimate its global epidemiology and its ability to cause respiratory infections and neurological damage in children. We extracted data from 70 papers to report on prevalence, symptoms, hospitalisation and mortality, and complications of enterovirus D68, both before and during the large outbreak of 2014. The magnitude and severity of the enterovirus D68 outbreak underscores a need for improved diagnostic work-up of paediatric respiratory illness, not only to prevent unnecessary use of antibiotics, but also to ensure better surveillance of diseases. Existing surveillance systems should be assessed in terms of capacity and ability to detect and report any upsurge of respiratory viruses such as enterovirus D68 in a timely manner, and focus should be paid to development of preventive measures against these emerging enteroviruses that have potential for severe disease.
Collapse
Affiliation(s)
- Charlotte Carina Holm-Hansen
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark; Center for Global Health and Department of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
25
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region. SPRINGERPLUS 2016; 5:158. [PMID: 27026855 PMCID: PMC4766141 DOI: 10.1186/s40064-016-1834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3′-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.
Collapse
Affiliation(s)
- Silvanos M Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya
| | - Wallace D Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
26
|
Pabbaraju K, Wong S, Drews SJ, Tipples G, Tellier R. Full genome analysis of enterovirus D-68 strains circulating in Alberta, Canada. J Med Virol 2015; 88:1194-203. [PMID: 26643129 DOI: 10.1002/jmv.24444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 11/09/2022]
Abstract
A widespread outbreak of enterovirus (EV)-D68 that started in the summer of 2014 has been reported in the USA and Canada. During the course of this outbreak, EV-D68 was identified as a possible cause of acute, unexplained severe respiratory illness and a temporal association was observed between acute flaccid paralysis with anterior myelitis and EV-D68 detection in the upper respiratory tract. In this study, four nasopharyngeal samples collected from patients in Alberta, Canada with a laboratory diagnosis of EV-D68 were used to determine the near full-length genome sequence directly from the specimens. Phylogenetic analysis was performed to study the genotypes and pathogenesis of the circulating strains. Our results support the contention that mutations in the VP1 gene and other regions of the genome causing altered antigenicity, as well as lack of immunity in the younger population, may be responsible for the increased severe respiratory disease outbreaks of EV-D68 worldwide.
Collapse
Affiliation(s)
- Kanti Pabbaraju
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - Sallene Wong
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - Steven J Drews
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Graham Tipples
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Tellier
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
27
|
Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. J Virol 2015; 90:1997-2007. [PMID: 26656685 DOI: 10.1128/jvi.02418-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68.
Collapse
|
28
|
Du J, Zheng B, Zheng W, Li P, Kang J, Hou J, Markham R, Zhao K, Yu XF. Analysis of Enterovirus 68 Strains from the 2014 North American Outbreak Reveals a New Clade, Indicating Viral Evolution. PLoS One 2015; 10:e0144208. [PMID: 26630383 PMCID: PMC4667938 DOI: 10.1371/journal.pone.0144208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 68 (EVD68) causes respiratory illness, mostly in children. Despite a reported low-level of transmission, the occurrence of several recent outbreaks worldwide including the 2014 outbreak in North America has raised concerns regarding the pathogenesis and evolution of EVD68. To elucidate the phylogenetic features of EVD68 and possible causes for the 2014 outbreak, 216 EVD68 strain sequences were retrieved from Genbank, including 22 from the 2014 outbreak. Several geographic and genotypic origins were established for these 22 strains, 19 of which were classified as Clade B. Of these 19 strains, 17 exhibited subsequent clustering and variation in protein residues involved in host-receptor interaction and/or viral antigenicity. Approximately 18 inter-clade variations were detected in VP1, which led to the identification of a new Clade D in EVD68 strains. The classification of this new clade was also verified by the re-construction of a Neighbor-Joining tree during the phylogenetic analysis. In addition, our results indicate that members of Clade B containing highly specific alterations in VP1 protein residues were the foremost contributors to the 2014 outbreak in the US. Altered host-receptor interaction and/or host immune recognition may explain the evolution of EVD68 as well as the global emergence and ongoing adaptation of this virus.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Kang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingwei Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (KZ); (XFY)
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (KZ); (XFY)
| |
Collapse
|
29
|
Peci A, Winter AL, Warshawsky B, Booth TF, Eshaghi A, Li A, Perusini S, Olsha R, Marchand-Austin A, Kristjanson E, Gubbay JB. Epidemiology of Enterovirus D68 in Ontario. PLoS One 2015; 10:e0142841. [PMID: 26599365 PMCID: PMC4658075 DOI: 10.1371/journal.pone.0142841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/27/2015] [Indexed: 01/14/2023] Open
Abstract
In August 2014, children's hospitals in Kansas City, Missouri and Chicago, Illinois notified the Centers for Disease Control and Prevention (CDC) about increased numbers of pediatric patients hospitalized with severe respiratory illness (SRI). In response to CDC reports, Public Health Ontario Laboratories (PHOL) launched an investigation of patients being tested for enterovirus D-68 (EV-D68) in Ontario, Canada. The purpose of this investigation was to enhance our understanding of EV-D68 epidemiology and clinical features. Data for this study included specimens submitted for EV-D68 testing at PHOL from September 1, 2014 to October 31, 2014. Comparisons were made between patients who tested positive for the virus (cases) and those testing negative (controls). EV-D68 was identified in 153/907 (16.8%) of patients tested. In the logistic regression model adjusting for age, sex, setting and time to specimen collection, individuals younger than 20 years of age were more likely to be diagnosed with EV-D68 compared to those 20 and over, with peak positivity at ages 5-9 years. Cases were not more likely to be hospitalized than controls. Cases were more likely to be identified in September than October (OR 8.07; 95% CI 5.15 to 12.64). Routine viral culture and multiplex PCR were inadequate methods to identify EV-D68 due to poor sensitivity and inability to differentiate EV-D68 from other enterovirus serotypes or rhinovirus. Testing for EV-D68 in Ontario from July to December, 2014 detected the presence of EV-D68 virus among young children during September-October, 2014, with most cases detected in September. There was no difference in hospitalization status between cases and controls. In order to better understand the epidemiology of this virus, surveillance for EV-D68 should include testing of symptomatic individuals from all treatment settings and patient age groups, with collection and analysis of comprehensive clinical and epidemiological data.
Collapse
Affiliation(s)
- Adriana Peci
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | | | - Bryna Warshawsky
- Public Health Ontario, 480 University Ave, Toronto, Ontario,Canada
| | - Tim F. Booth
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St., Suite H5300, Winnipeg, Manitoba, Canada
| | - AliReza Eshaghi
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | - Aimin Li
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | - Stephen Perusini
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | - Romy Olsha
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | | | - Erik Kristjanson
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| | - Jonathan B. Gubbay
- Public Health Ontario Laboratory, 661 University Ave, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Xiao Q, Ren L, Zheng S, Wang L, Xie X, Deng Y, Zhao Y, Zhao X, Luo Z, Fu Z, Huang A, Liu E. Prevalence and molecular characterizations of enterovirus D68 among children with acute respiratory infection in China between 2012 and 2014. Sci Rep 2015; 5:16639. [PMID: 26568267 PMCID: PMC4644992 DOI: 10.1038/srep16639] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023] Open
Abstract
EV-D68 is associated with respiratory tract infections (RTIs). Since its first isolation, EV-D68 has been detected sporadically. However, the US and Canada have experienced outbreaks of EV-D68 infections between August and December 2014. This study aimed to investigate the molecular epidemiology and clinical characteristics of EV-D68 in Chongqing, Southwestern China. From January 2012 to November 2014, 1876 nasopharyngeal aspirate specimens (NPAs) were collected from hospitalized children with RTIs. Among the 1876 NPAs, EV-D68 was detected in 19 samples (1.0%, 19/1876). Of these, 13 samples were detected in September and October 2014 (9.8%, 13/132). Phylogenetic analysis showed that all 13 strains detected in the 2014 Chongqing had high homology with the main strains of the 2014 US outbreak. Among the children with EV-D68 infection, 13 (68%) had a history of recurrent wheezing. A total of 13 children had a discharge diagnosis of asthma. Of these, 11 children were diagnosed with acute asthma exacerbation. EV-D68 was the predominant pathogen that evoked asthma exacerbation in September and October 2014. In conclusion, our results found that a history of recurrent wheezing may be a risk factor for the detection of EV-D68 and viral-induced asthma exacerbation may be a clinical feature of EV-D68 infection.
Collapse
Affiliation(s)
- Qiuyan Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Shouyan Zheng
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Lili Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yao Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
31
|
Messacar K, Abzug MJ, Dominguez SR. 2014 outbreak of enterovirus D68 in North America. J Med Virol 2015; 88:739-45. [PMID: 26489019 DOI: 10.1002/jmv.24410] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/07/2022]
Abstract
Enterovirus D68 (EV-D68) is an emerging picornavirus which causes severe respiratory disease, predominantly in children. In 2014, the largest and most widespread outbreak of EV-D68 described to date was reported in North America. Hospitals throughout the United States and Canada reported surges in patient volumes and resource utilization from August to October, 2014. In the US a total of 1,153 infections were confirmed in 49 states, although this is an underestimate of the likely millions of cases that occurred but were not tested. EV-D68 was detected in 14 patients who died; the role of the virus in these deaths is unknown. A possible association between EV-D68 and cases of acute flaccid paralysis with spinal cord gray matter lesions, known as acute flaccid myelitis, was observed during the outbreak and is under investigation. The 2014 outbreak of EV-D68 in North America demonstrates the public health importance of this emerging pathogen.
Collapse
Affiliation(s)
- Kevin Messacar
- Pediatric Hospital Medicine and Infectious Diseases, University of Colorado/Children's Hospital Colorado, Aurora, Colorado
| | - Mark J Abzug
- Pediatric Infectious Diseases, University of Colorado/Children's Hospital Colorado, Aurora, Colorado
| | - Samuel R Dominguez
- Pediatric Infectious Diseases, University of Colorado/Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
32
|
Poelman R, Schuffenecker I, Van Leer-Buter C, Josset L, Niesters HGM, Lina B. European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014. J Clin Virol 2015; 71:1-9. [PMID: 26364237 DOI: 10.1016/j.jcv.2015.07.296] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In August and September 2014, unexpected clusters of enterovirus-D68 (EV-D68) infections associated with severe respiratory disease emerged from North-America. In September, the European Centre for Disease Prevention and Control (ECDC) asked European countries to strengthen respiratory sample screening for enterovirus detection and typing in cases with severe respiratory presentations. OBJECTIVES To provide a detailed picture of EV-D68 epidemiology in Europe by conducting a retrospective and prospective laboratory analysis of clinical specimens. STUDY DESIGN An initiative supported by the European Society for Clinical Virology (ESCV) and ECDC was launched to screen for EV-D68 in respiratory specimens between July 1st and December 1st 2014 in Europe and to sequence the VP1 region of detected viruses for phylogenetic analytic purposes. RESULTS Forty-two institutes, representing 51 laboratories from 17 European countries, analyzed 17,248 specimens yielding 389 EV-D68 positive samples (2.26%) in 14 countries. The proportion of positive samples ranged between 0 and 25% per country. These infections resulted primarily in mild respiratory disease, mainly detected in young children presenting with wheezing and in immuno-compromised adults. The viruses detected in Europe are genetically very similar to those of the North-American epidemic and the majority (83%) could be assigned to clade B. Except for 3 acute flaccid paralysis (AFP) cases, one death and limited ICU admissions, no severe cases were reported. CONCLUSIONS The European study showed that EV-D68 circulated in Europe during summer and fall of 2014 with a moderate disease burden and different pathogenic profile compared to the North-American epidemic.
Collapse
Affiliation(s)
- Randy Poelman
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands.
| | - Isabelle Schuffenecker
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France
| | - Coretta Van Leer-Buter
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Laurence Josset
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France; Virpath Lab, EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Université de Lyon, Lyon, France
| | - Hubert G M Niesters
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Bruno Lina
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France; Virpath Lab, EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Université de Lyon, Lyon, France
| |
Collapse
|
33
|
Linsuwanon P, Poovorawan Y, Li L, Deng X, Vongpunsawad S, Delwart E. The Fecal Virome of Children with Hand, Foot, and Mouth Disease that Tested PCR Negative for Pathogenic Enteroviruses. PLoS One 2015; 10:e0135573. [PMID: 26288145 PMCID: PMC4545796 DOI: 10.1371/journal.pone.0135573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/24/2015] [Indexed: 01/21/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) affects infant and young children. A viral metagenomic approach was used to identify the eukaryotic viruses in fecal samples from 29 Thai children with clinical diagnosis of HFMD collected during the 2012 outbreak. These children had previously tested negative by PCR for enterovirus 71 and coxsackievirus A16 and A6. Deep sequencing revealed nine virus families: Picornaviridae, Astroviridae, Parvoviridae, Caliciviridae, Paramyxoviridae, Adenoviridae, Reoviridae, Picobirnaviridae, and Polyomaviridae. The highest number of viral sequences belonged to human rhinovirus C, astrovirus-MLB2, and coxsackievirus A21. Our study provides an overview of virus community and highlights a broad diversity of viruses found in feces from children with HFMD.
Collapse
Affiliation(s)
- Piyada Linsuwanon
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
34
|
Enterovirus D68. A Focused Review and Clinical Highlights from the 2014 U.S. Outbreak. Ann Am Thorac Soc 2015; 12:775-81. [DOI: 10.1513/annalsats.201412-592fr] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
35
|
Detection of enterovirus D68 in Canadian laboratories. J Clin Microbiol 2015; 53:1748-51. [PMID: 25740765 DOI: 10.1128/jcm.03686-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of a severe respiratory disease caused by enterovirus D68 prompted investigation into whether Canadian hospital and provincial laboratories can detect this virus using commercial and laboratory-developed assays. This study demonstrated analytical sensitivity differences between commercial and laboratory-developed assays for the detection of enterovirus D68.
Collapse
|
36
|
Molecular epidemiology of enterovirus D68 from 2013 to 2014 in Philippines. J Clin Microbiol 2015; 53:1015-8. [PMID: 25568441 DOI: 10.1128/jcm.03362-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus D68 (EV-D68) has been recognized as an important cause of acute respiratory infections. Here we report the molecular epidemiology of EV-D68 in Philippines from 2013 to 2014; we found cases in areas affected by Typhoon Haiyan and found new strains in the country.
Collapse
|