1
|
Cui M, Qiu X. Cancer-Derived Immunoglobulin G and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:129-135. [PMID: 38967755 DOI: 10.1007/978-981-97-0511-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulin (Ig) is traditionally believed to be produced solely by B cells. Nonetheless, mounting evidence has demonstrated that various types of Igs are extensively expressed in many cell types. Among them, IgG is found to be highly expressed in cancer cells and is thus labeled as cancer-derived IgG. Cancer-derived IgG shares identical fundamental structures with B cell-derived IgG, but displays several unique characteristics, including restricted variable region sequences and unique glycosylation modifications for those expressed by epithelial cancers. Cancer-derived IgG plays multiple crucial roles in carcinogenesis, including facilitating cancer invasion and metastasis, enhancing cancer stemness, contributing to chemoresistance, and remodeling the tumour microenvironment. Recent studies have discovered that cancer-derived sialylated IgG (SIA-IgG) is extensively expressed in pancreatic cancer cells and is predominantly located in the cytoplasm and on the cell membrane. Cancer-derived IgG expressed by pancreatic cancer presents a restrictive variable region sequence and contains a unique sialylation site of the Fab region. Functionally, cancer-derived IgG participates in pancreatic cancer progression via different mechanisms, such as promoting proliferation, facilitating migration and invasion, resisting apoptosis, inducing inflammation, and modulating the tumour microenvironment. SIA-IgG has shown potential as a clinical biomarker. The expression of SIA-IgG is associated with poor tumour differentiation, metastasis, and chemoresistance in pancreatic cancer. High expression of SIA-IgG can serve as an independent prognostic factor for pancreatic cancer. Additionally, SIA-IgG expression elevated with malignant progression for the precursor lesions of pancreatic cancer. These findings present a prospect of applying cancer-derived IgG as a novel diagnostic and therapeutic target in the management of pancreatic cancer, and aiding in overcoming the challenge in the treatment of this stubborn malignancy.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Arwood ML, Sun IH, Patel CH, Sun IM, Oh MH, Bettencourt IA, Claiborne MD, Chan-Li Y, Zhao L, Waickman AT, Mavrothalassitis O, Wen J, Aja S, Powell JD. Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism. Immunohorizons 2023; 7:493-507. [PMID: 37358498 PMCID: PMC10580127 DOI: 10.4049/immunohorizons.2300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
Collapse
Affiliation(s)
- Matthew L. Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirag H. Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian A. Bettencourt
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael D. Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam T. Waickman
- State University of New York Upstate Medical University, Syracuse, NY
| | - Orestes Mavrothalassitis
- Department of Anesthesia, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D. Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Qin Y, Ye X, Luo Y, Peng L, Zhou G, Zhu Y, Pan C. hKLK alleviates myocardial fibrosis in mice with viral myocarditis. J Appl Biomed 2023; 21:15-22. [PMID: 37016776 DOI: 10.32725/jab.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Myocardial fibrosis is the most serious complication of viral myocarditis (VMC). This study aimed to investigate the therapeutic benefits and underlying mechanisms of lentivirus-mediated human tissue kallikrein gene transfer in myocardial fibrosis in VMC mice. We established VMC mouse model via intraperitoneal injection with Coxsackie B3 virus. The effect was then assessed after treatment with vehicle, the empty lentiviral vectors (EZ.null), and the vectors expressing hKLK1 (EZ.hKLK1) via tail vein injection for 30 days, respectively. The results showed that administering EZ.hKLK1 successfully induced hKLK1 overexpression in mouse heart. Compared with EZ.null treatment, EZ.hKLK1 administration significantly reduced the heart/weight ratio, improved cardiac function, and ameliorated myocardial inflammation in VMC mice, suggesting that hKLK1 overexpression alleviates VMC in mice. EZ.hKLK1 administration also significantly abrogated the increased myocardial collagen content, type I/III collagen ratio, TGF-β1 mRNA and protein expression in VMC mice, suggesting that hKLK1 overexpression reduces collagen accumulation and blunts TGF-β1 signaling in the hearts of VMC mice. In conclusion, our results suggest that hKLK1 alleviates myocardial fibrosis in VMC mice, possibly by downregulating TGF-β1 expression.
Collapse
|
4
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Morioka F, Tani N, Ikeda T, Hirokawa T, Ikeda K, Shida A, Aoki Y, Ishikawa T. Morphological and biochemical changes in the pancreas associated with acute systemic hypoxia. Hum Cell 2021; 34:400-418. [PMID: 33532907 PMCID: PMC7900369 DOI: 10.1007/s13577-020-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022]
Abstract
This study aimed to investigate the changes associated with acute systemic hypoxia in the endocrine system, particularly in pancreatic tissues. The investigation was based on macroscopic, pathohistological, biochemical, and molecular biological findings in cell lines and human cadavers. The results showed that cases of death due to asphyxia more frequently showed severe subcapsular/interstitial hemorrhage versus the other causes of death. Histological examination showed that asphyxia cases were associated with severe morphological changes. Although measured insulin levels in the asphyxia were higher compared to other causes of death, no differences were noted for the glucagon and amylase levels with regard to the cause of death. Increased blood insulin levels were not associated with macro- and micromorphological changes, and did not show any association with glucose or cortisol levels. The experiment conducted under hypoxic conditions in cultured cells demonstrated that insulin mRNA expression and insulin protein levels peaked at 10 min after hypoxia exposure. However, there were no changes in either the amylase mRNA or protein levels. Corticosterone level peaked at 120 min after exposure to hypoxic conditions. Overall, acute systemic hypoxic conditions can directly affect the mechanisms involved in pancreatic insulin secretion.
Collapse
Affiliation(s)
- Fumiya Morioka
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.
| | - Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Tatsuya Hirokawa
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Kei Ikeda
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
7
|
Filippou PS, Ren AH, Soosaipillai A, Safar R, Prassas I, Diamandis EP, Conner JR. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response. Clin Biochem 2020; 77:41-47. [PMID: 31904348 DOI: 10.1016/j.clinbiochem.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Kallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues. DESIGN & METHODS Protein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members. RESULTS ELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation. CONCLUSION Overall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Roaa Safar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - James R Conner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
8
|
Alexander-Curtis M, Pauls R, Chao J, Volpi JJ, Bath PM, Verdoorn TA. Human tissue kallikrein in the treatment of acute ischemic stroke. Ther Adv Neurol Disord 2019; 12:1756286418821918. [PMID: 30719079 PMCID: PMC6348491 DOI: 10.1177/1756286418821918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of death and disability throughout the world. The most severe form of stroke results from large vessel occlusion of the major branches of the Circle of Willis. The treatment strategies currently available in western countries for large vessel occlusion involve rapid restoration of blood flow through removal of the offending blood clot using mechanical or pharmacological means (e.g. tissue plasma activator; tPA). This review assesses prospects for a novel pharmacological approach to enhance the availability of the natural enzyme tissue kallikrein (KLK1), an important regulator of local blood flow. KLK1 is responsible for the generation of kinins (bradykinin and kallidin), which promote local vasodilation and long-term vascularization. Moreover, KLK1 has been used clinically as a direct treatment for multiple diseases associated with impaired local blood flow including AIS. A form of human KLK1 isolated from human urine is approved in the People's Republic of China for subacute treatment of AIS. Here we review the rationale for using KLK1 as an additional pharmacological treatment for AIS by providing the biochemical mechanism as well as the human clinical data that support this approach.
Collapse
Affiliation(s)
| | - Rick Pauls
- DiaMedica Therapeutics, Minneapolis, MN, USA
| | - Julie Chao
- Medical University of South Carolina, Department of Biochemistry and Molecular Biology, Charleston, SC, USA
| | - John J Volpi
- Houston Methodist, Stanley H. Appel Department of Neurology, Houston, TX, USA
| | - Philip M Bath
- Stroke Trials Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | | |
Collapse
|
9
|
Radichev IA, Maneva-Radicheva LV, Amatya C, Salehi M, Parker C, Ellefson J, Burn P, Savinov AY. Loss of Peripheral Protection in Pancreatic Islets by Proteolysis-Driven Impairment of VTCN1 (B7-H4) Presentation Is Associated with the Development of Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2016; 196:1495-506. [PMID: 26773144 DOI: 10.4049/jimmunol.1403251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022]
Abstract
Ag-specific activation of T cells is an essential process in the control of effector immune responses. Defects in T cell activation, particularly in the costimulation step, have been associated with many autoimmune conditions, including type 1 diabetes (T1D). Recently, we demonstrated that the phenotype of impaired negative costimulation, due to reduced levels of V-set domain-containing T cell activation inhibitor 1 (VTCN1) protein on APCs, is shared between diabetes-susceptible NOD mice and human T1D patients. In this study, we show that a similar process takes place in the target organ, as both α and β cells within pancreatic islets gradually lose their VTCN1 protein during autoimmune diabetes development despite upregulation of the VTCN1 gene. Diminishment of functional islet cells' VTCN1 is caused by the active proteolysis by metalloproteinase N-arginine dibasic convertase 1 (NRD1) and leads to the significant induction of proliferation and cytokine production by diabetogenic T cells. Inhibition of NRD1 activity, alternatively, stabilizes VTCN1 and dulls the anti-islet T cell responses. Therefore, we suggest a general endogenous mechanism of defective VTCN1 negative costimulation, which affects both lymphoid and peripheral target tissues during T1D progression and results in aggressive anti-islet T cell responses. This mechanism is tied to upregulation of NRD1 expression and likely acts in two synergistic proteolytic modes: cell-intrinsic intracellular and cell-extrinsic systemic. Our results highlight an importance of VTCN1 stabilization on cell surfaces for the restoration of altered balance of immune control during T1D.
Collapse
Affiliation(s)
- Ilian A Radichev
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Lilia V Maneva-Radicheva
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Christina Amatya
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Maryam Salehi
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Camille Parker
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Jacob Ellefson
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Paul Burn
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and
| | - Alexei Y Savinov
- The Sanford Project, Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104; and Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD 57105
| |
Collapse
|
10
|
Wan X, Lei Y, Li Z, Wang J, Chen Z, McNutt M, Lin D, Zhao C, Jiang C, Li J, Pu Q, Su M, Wang Y, Gu J. Pancreatic Expression of Immunoglobulin G in Human Pancreatic Cancer and Associated Diabetes. Pancreas 2015; 44:1304-1313. [PMID: 26390427 DOI: 10.1097/mpa.0000000000000544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The prognosis of pancreatic cancer (PC) is poor and the pathogenesis of PC-associated diabetes is unknown. We investigated the possible expression of immunoglobulin G (IgG) in human pancreatic carcinomas and adjacent pancreatic islets to gain a better understanding of these diseases. METHODS We employed immunohistochemistry, Western Blot, real-time polymerase chain reaction, and in situ hybridization to examine IgG expression in PC tissues and adjacent islets with and without cancer-associated diabetes. The IgG mRNA and IgG synthesizing-related enzymes were examined in PC cell lines. The IgG expression and secretion were downregulated with specific small interfering RNA and antibody to IgG followed by flow cytometry to assess its effect on apoptosis of cultured PC cells. RESULTS The expression of IgG was detected in pancreatic carcinoma and adjacent islets. Small interfering RNA and antibody treatments induced apoptosis in PC cell lines. In the carcinoma tissue, the levels of IgG expression varied depending on the stages of the cancers with more malignant cancers expressing more IgG (P < 0.05). The IgG levels in cancer cells were also increased when the patients had diabetes or hyperglycemia (P < 0.05). In addition, the extent of IgG expression in the seemingly normal islet cells adjacent to the tumor varied in relation to the grade of cancer differentiation and distance to the cancer nests. CONCLUSIONS (1) Immunoglobulin G was locally produced by PC cells and adjacent islet cells. (2) Immunoglobulin G may promote tumor growth by inhibiting cancer cell apoptosis. (3) Locally produced IgG might play a role in PC-associated diabetes.
Collapse
Affiliation(s)
- Xia Wan
- From the *Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong; †Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|