1
|
Ma H, Du J, Xu T, Yin D, Fang X, Guo X. Distribution and risk assessment of antibiotic resistance genes in swine farm wastewater and its surrounding environments: from soil to water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:741-751. [PMID: 39989022 DOI: 10.1039/d4em00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Livestock farms are important reservoirs of antibiotic resistance genes (ARGs). However, how wastewater irrigation from swine farms affects the surrounding environments, especially water bodies, is not fully understood. In this study, the occurrence pattern and potential risk of ARGs and mobile gene elements (MGEs) in a biogas slurry from a large-scale swine farm and its surrounding environments were investigated. Genes conferring resistance to tetracycline, sulfonamide, and multidrugs were found to be predominant in the biogas slurry, while sulfonamide and multidrug resistance genes exhibited the highest abundance in the surrounding environments. Overall, the total relative abundance of ARGs in the biogas slurry was 1.4-7 fold higher than that in the surrounding environments. PCA revealed the cluster pattern of samples based on sample types and a better correlation between swine farm wastewater and groundwater. A higher abundance of ARGs was found in groundwater farther away from the swine farm than that in nearby groundwater and surface water. Correlation analysis indicated that ARGs had a significant positive correlation with MGEs at each sampling site. The most abundant MGE IS6100 may mediate the horizontal transfer of lnuA from the swine farm to nearby groundwater. Considering the abundance, mobility, host pathogenicity, and the co-occurrence patterns with MGEs of ARGs, nine high-risk ARGs, namely, aadA2, aadA17, aac (6')-Ib, tetX, tetG, tetM, oprJ, sul1, and ermF, were screened in the environment. Our results indicated that the swine farm wastewater had long-term effects on the surrounding surface water and groundwater and that MGEs can serve as a medium that contributes to the widespread distribution of various ARGs. This study provides a theoretical basis for the risk assessment of ARGs in farms and the reuse of farm wastewater.
Collapse
Affiliation(s)
- Haiyue Ma
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinping Du
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoling Fang
- Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai 200331, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Solomonova ES, Shoman NY, Akimov AI. Applicability of Cyclotella caspia and Thalassiosira weissflogii diatomous water growth for the removal of the antibiotic tetracycline. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01255-7. [PMID: 40087264 DOI: 10.1007/s12223-025-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
The effect of the antibiotic tetracycline on the growth and photosynthetic activity of the diatoms Cyclotella caspia Grunow, 1878, and Thalassiosira weissflogii (Grunow) G.A. Fryxell & Hasle, 1977, has been studied. The rate of tetracycline concentration decreases in the medium with and without has been estimated. The expediency and prospects of using diatoms as promising objects for water purification from tetracycline are shown. It was found that the rate and efficiency of tetracycline removal from the medium in the presence of algae depends on the initial content of the pollutant in the medium. The maximum efficiency of antibiotic removal is observed at concentrations of the pollutant provoking the hormesis growth of algae at 5 mg/L in C. caspia and 10 mg/L in T. weissflogii. In samples with C. caspia and tetracycline, the residual antibiotic content in the medium was 10-14% lower than in samples without algae. In the experiment with T. weissflogii, this indicator reached 15-16%. At concentrations of the pollutant, 2 and 10 mg/L in C. caspia and 2 and 5 mg/L in T. weissflogii, the effectiveness of removing the antibiotic by algae was lower. The residual content of tetracycline in the medium was on average 8-11% lower than in samples without algae. At antibiotic concentrations of 15 and 20 mg/L, the rate of its removal in samples with and without algae did not significantly differ. This result is obviously due to the toxic effect of tetracycline on cells, leading to pronounced inhibition of algae growth and/or death.
Collapse
Affiliation(s)
- Ekaterina S Solomonova
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation.
| | - Natalia Yu Shoman
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation
| | - Arkady I Akimov
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation
| |
Collapse
|
3
|
Larson VJ, Rico JL, Wolfe LM, Sharvelle S, Prenni J, De Long SK. Composting post-anaerobic digestion for emerging contaminant biodegradation: Impacts of operating conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1152-1165. [PMID: 37729590 DOI: 10.1002/jeq2.20515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Sustainable manure management technologies are needed, and combining anaerobic digestion (AD) for energy generation and aerobic composting (AC) to stabilize digestate and remove emerging contaminants (ECs), including veterinary pharmaceuticals and steroid hormones, is promising. This study identified post-AD, AC operating conditions that maximized degradation of study ECs, expected to be present in cattle manure digested using treated municipal wastewater as the water source. Study ECs included sulfamethoxazole (SMX), chlortetracycline (CTC), oxytetracycline (OTC), estrone (E1), and naproxen (NPX). Composting conditions were simulated in bench-scale reactors, with microorganisms from digestate produced in an AD system (25L scale), by varying temperatures, pH, and carbon source compositions (representing food waste/manure co-digestion with different residence times). Results indicate maximum SMX biodegradation occurred at 35°C, pH 7, and with high levels of easily degradable carbon (≥99%, 99%, and 98%), and maximum E1 biodegradation occurred at 35°C, and with low levels of easily degradable carbon (≥97% and 99%). Abiotic degradation was responsible for the nearly complete removal of tetracyclines under all conditions and for partial degradation of NPX (between 20% and 48%). Microorganisms originating from the AD system putatively capable of SMX and E1 biodegradation, or of contributing to biodegradation during the AC phase, were identified, including phylotypes previously shown to biodegrade SMX (Brevundimonas and Alcaligenes).
Collapse
Affiliation(s)
- Victoria J Larson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jorge L Rico
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M Wolfe
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Du D, Zhou J, Zhang K, Zhi S. Seasonal Pollution Characteristics of Antibiotics on Pig Farms of Different Scales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8264. [PMID: 35886115 PMCID: PMC9320919 DOI: 10.3390/ijerph19148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Scientific interest in pollution from veterinary antibiotics (VAs) on intensive animal farms has been increasing in recent years. However, limited information is available on the seasonal pollution characteristics and the associated ecological risks of VAs, especially about the different scale farms. Therefore, this study investigated the seasonal pollution status and ecological risks of 42 typical VAs (5 classes) on three different scale pig farms (breeding scales of about 30,000, 1200, and 300 heads, respectively) in Tianjin, China. The results showed that large-scale pig farms usually had the highest antibiotic pollution levels, followed by small-scale pig farms and medium-scale pig farms. Among different seasons, antibiotic contamination was more severe in winter and spring than that in the other seasons. Tetracyclines (TCs) usually had higher proportions (over 51.46%) and the residual concentration detected in manure, and wastewater samples ranged from not detected (ND)-1132.64 mg/kg and ND-1692.50 μg/L, respectively, which all occurred for oxytetracycline (OTC) during winter. For the antibiotic ecological risks in the effluent, we found high-risk level of 12 selected VAs accounted for 58% in spring, and 7 kinds of VAs were selected in the amended soil, but nearly all the antibiotics had no obvious ecological risks except OTC (spring and summer). All these data provided an insight into the seasonal variability and the associated ecological risks of antibiotics on intensive pig farms, which can provide scientific guidance on decreasing antibiotic contamination to enhance environmental security in similar areas.
Collapse
Affiliation(s)
- Delin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Jing Zhou
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China;
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Tianjin 300191, China
| |
Collapse
|
5
|
Jindal P, Bedi J, Singh R, Aulakh R, Gill JP. Epidemiological assessment of antibiotic residues in dairy farm milk and farm waste and water in northern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29455-29466. [PMID: 33559823 DOI: 10.1007/s11356-020-12057-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are frequently used in the dairy sector for prophylactic uses along with therapeutic purposes. Throughout the globe, antibiotic resistance has turned out as one of the greatest public health issue with greater concern in developing countries, such as India. On the matrix wise comparison of the study, slurry samples in all three farming systems show the highest proportion of positive samples. Out of 153 slurry samples, 15.6% samples showed the presence of antibiotic residues. Eighteen milk samples (11.7%) showed the presence of residues following this trend. Only one sample (0.65%) was positive of animal drinking water in the study. None of the targeted residues were found in any sample of human drinking water. The four pond water samples showed the prevalence of residues of oxytetracycline (2 samples) and enrofloxacin (2 samples). Medium size farms (10-30 animals) comprised comparative higher levels than small (< 10) and large farms (> 30). The excretion mass modelling of antibiotics released in the environment indicated 8325.41 kg of oxytetracycline and 12,498.89 kg of enrofloxacin per year. The study helps in providing understanding in the relation between antibiotics usage and dissemination of their residues to the environment which may result in likely ecotoxicological consequences.
Collapse
Affiliation(s)
- Prateek Jindal
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.
| | - Jasbir Bedi
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Randhir Singh
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Rabinder Aulakh
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
6
|
Chan R, Chiemchaisri C, Chiemchaisri W. Effect of sludge recirculation on removal of antibiotics in two-stage membrane bioreactor (MBR) treating livestock wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1541-1553. [PMID: 33312660 PMCID: PMC7721752 DOI: 10.1007/s40201-020-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Two-stage MBR consisting of anaerobic and aerobic reactors was operated at total hydraulic retention time (HRT) of 48 h for the treatment of livestock wastewater containing antibiotics, i.e. amoxicillin (AMX), tiamulin (TIA), and chlortetracycline (CTC), under the (1st) absence and (2nd) presence of sludge recirculation between the reactors. During the operation with sludge recirculation, the removals of organic and nitrogen were enhanced. Meanwhile, the removals of TIA and CTC were found to decrease by 9% and 20% in the aerobic reactor but increased by 5% to 7% in the anaerobic reactor due to the relocation of biomass from the aerobic to the anaerobic reactor. A high degree of AMX biodegradation under both anaerobic and aerobic conditions and partial biodegradation of TIA and CTC under aerobic conditions were confirmed in batch experiments. Moreover, the effect of sludge recirculation on biomass and pollutant removal efficiencies in the 2-stage MBR was revealed using microbial community analyses. Membrane filtration also helped to retain the adsorbed antibiotics associated with small colloidal particles in the system.
Collapse
Affiliation(s)
- Rathborey Chan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
7
|
Ogura Y, Ueda T, Nukazawa K, Hiroki H, Xie H, Arimizu Y, Hayashi T, Suzuki Y. The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Sci Rep 2020; 10:17880. [PMID: 33087784 PMCID: PMC7578040 DOI: 10.1038/s41598-020-75065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.
Collapse
Affiliation(s)
- Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takuya Ueda
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hayate Hiroki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hui Xie
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
8
|
Amato HK, Wong NM, Pelc C, Taylor K, Price LB, Altabet M, Jordan TE, Graham JP. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139401. [PMID: 32464410 PMCID: PMC7324218 DOI: 10.1016/j.scitotenv.2020.139401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Manure from poultry operations is typically applied to nearby cropland and may affect nutrient loading and the spread of antibiotic resistance (ABR). We analyzed the concentrations of nitrogen and phosphorus and the occurrence of ABR in Escherichia coli (E. coli) and extra-intestinal pathogenic E. coli isolates from streams draining 15 small (<19 km2) watersheds of the Chesapeake Bay with contrasting levels of concentrated poultry operations. Total nitrogen and nitrate plus nitrite concentrations increased with poultry barn density with concentrations two and three times higher, respectively, in watersheds with the highest poultry barn densities compared to those without poultry barns. Analysis of N and O isotopes in nitrate by mass spectrometry showed an increase in the proportion of 15N associated with an increase in barn density, suggesting that the nitrate associated with poultry barns originated from manure. Phosphorus concentrations were not correlated with barn density. Antibiotic susceptibility testing of putative E. coli isolates was conducted using the disk diffusion method for twelve clinically important antibiotics. Of the isolates tested, most were completely susceptible (67%); 33% were resistant to at least one antibiotic, 24% were resistant to ampicillin, 13% were resistant to cefazolin, and 8% were multi-drug resistant. Resistance to three cephalosporin drugs was positively associated with an index of manure exposure estimated from poultry barn density and proportion of cropland in a watershed. The proportion of E. coli isolates resistant to cefoxitin, cefazolin, and ceftriaxone, broad-spectrum antibiotics important in human medicine, increased by 18.9%, 16.9%, and 6.2%, respectively, at the highest estimated level of manure exposure compared to watersheds without manure exposure. Our results suggest that comparisons of small watersheds could be used to identify geographic areas where remedial actions may be needed to reduce nutrient pollution and the public health risks of ABR bacteria.
Collapse
Affiliation(s)
- Heather K Amato
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America
| | - Nora M Wong
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Carey Pelc
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Kishana Taylor
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States of America
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Mark Altabet
- Department of Estuarine and Ocean Sciences, School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 S Rodney French Blvd, New Bedford, MA 02744, United States of America
| | - Thomas E Jordan
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Jay P Graham
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America.
| |
Collapse
|
9
|
Escherichia coli Antimicrobial Resistance Variability in Water Runoff and Soil from a Remnant Native Prairie, an Improved Pasture, and a Cultivated Agricultural Watershed. WATER 2020. [DOI: 10.3390/w12051251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although many previous studies have examined patterns of antimicrobial resistance (AMR) and multidrug resistance (MDR) from domestic animals and farm environments, comparatively little is known about the environmental sources and natural reservoirs of AMR and MDR. In this study, we collected stormwater runoff and soil samples from three watersheds in Texas. Escherichia coli (E. coli) were enumerated, isolated, and analyzed for resistance patterns. E. coli from all sites, irrespective of land use, displayed the presence of AMR/MDR. Higher levels of AMR/MDR were observed in water compared to soil. More isolates were resistant to cephalothin than other antibiotics. For water isolates, 94% was resistant to cephalothin, 27% to tetracycline, and 15% to ampicillin. Across all sites, a large percentage of water isolates demonstrated MDR with 34% resistant to ≥2 antibiotics and 11% to ≥3 antibiotics. All AMR soil isolates were resistant to cephalothin (87% of the total soil isolates), but only 8.9% were MDR. High cephalothin resistance observed in both soil and water suggests the presence of native, cephalothin-resistant E. coli. Higher MDR observed within water compared to the soil populations suggests that resistance sources other than soil, such as more recent fecal depositions as opposed to residual AMR in soil, could have contributed to higher antibiotic-resistant E. coli in runoff.
Collapse
|
10
|
Gao FZ, Zou HY, Wu DL, Chen S, He LY, Zhang M, Bai H, Ying GG. Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. ENVIRONMENT INTERNATIONAL 2020; 136:105484. [PMID: 31999967 DOI: 10.1016/j.envint.2020.105484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 05/05/2023]
Abstract
Swine farming generates a large amount of wastes containing various contaminants, resulting in environmental contamination and human health problems. Here we investigated the contamination profiles of antibiotics and antibiotic resistance genes (ARGs) as well as microbial community in groundwater of the two villages with or without swine farms, and then assessed the human exposure risks of antibiotics, ARGs and indicator bacteria through drinking groundwater. The results showed that swine farming could lead to enhanced concentration levels of various veterinary antibiotics and ARGs in the groundwater in comparison to the reference village without swine farming. The microbial diversity of groundwater was significantly decreased with predominance of conditional pathogens Acinetobacter (up to 90%) in some wells of the swine farming village. Meanwhile, the abundance of Acinetobacter was significantly correlated to bacterial abundance, ARGs and integrons. The local residents could ingest various antibiotic residues and ARGs as well as pathogens, with daily intake of Acinetobacter up to approximately 10 billion CFU/resident through drinking groundwater contaminated by swine farming. The findings from this study suggest potential health risks of changing gut microbial community and resistome by drinking contaminated groundwater.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shuai Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
11
|
Jacobs K, Wind L, Krometis LA, Hession WC, Pruden A. Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1038-1046. [PMID: 31589689 DOI: 10.2134/jeq2018.12.0441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.
Collapse
|
12
|
Lam Y, Fry JP, Nachman KE. Applying an environmental public health lens to the industrialization of food animal production in ten low- and middle-income countries. Global Health 2019; 15:40. [PMID: 31196114 PMCID: PMC6567672 DOI: 10.1186/s12992-019-0479-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Background Industrial food animal production (IFAP) is characterized by dense animal housing, high throughput, specialization, vertical integration, and corporate consolidation. Research in high-income countries has documented impacts on public health, the environment, and animal welfare. IFAP is proliferating in some low- and middle-income countries (LMICs), where increased consumption of animal-source foods has occurred alongside rising incomes and efforts to address undernutrition. However, in these countries IFAP’s negative externalities could be amplified by inadequate infrastructure and resources to document issues and implement controls. Methods Using UN FAOSTAT data, we selected ten LMICs where food animal production is expanding and assessed patterns of IFAP growth. We conducted a mixed methods review to explore factors affecting growth, evidence of impacts, and information gaps; we searched several databases for sources in English, Spanish, and Portuguese. Data were extracted from 450+ sources, comprising peer-reviewed literature, government documents, NGO reports, and news articles. Results In the selected LMICs, not only has livestock production increased, but the nature of expansion appears to have involved industrialized methods, to varying extents based on species and location. Expansion was promoted in some countries by explicit government policies. Animal densities, corporate structure, and pharmaceutical reliance in some areas mirrored conditions found in high-income countries. There were many reported weaknesses in regulation and capacity for enforcement surrounding production and animal welfare. Global trade increasingly influences movement of and access to inputs such as feed. There was a nascent, compelling body of scientific literature documenting IFAP’s negative environmental and public health externalities in some countries. Conclusions LMICs may be attracted to IFAP for economic development and food security, as well as the potential for increasing access to animal-source foods and the role these foods can play in alleviating undernutrition. IFAP, however, is resource intensive. Industrialized production methods likely result in serious negative public health, environmental, and animal welfare impacts in LMICs. To our knowledge, this is the first systematic effort to assess IFAP trends through an environmental public health lens for a relatively large group of LMICs. It contributes to the literature by outlining urgent research priorities aimed at informing national and international decisions about the future of food animal production and efforts to tackle global undernutrition.
Collapse
Affiliation(s)
- Yukyan Lam
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA
| | - Jillian P Fry
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA.,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, 111 Market Place, Suite 840, Baltimore, MD, 21202, USA. .,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA. .,Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., W7007, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult Sci 2019; 98:1791-1804. [PMID: 30544256 PMCID: PMC6414035 DOI: 10.3382/ps/pey539] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
The increase in antibiotic resistance is a global concern for human and animal health. Resistant microorganisms can spread between food-producing animals and humans. The objective of this review was to identify the type and amount of antibiotics used in poultry production and the level of antibiotic resistance in Escherichia coli isolated from broilers. Isolate information was obtained from national monitoring programs and research studies conducted in large poultry-producing regions: US, China, Brazil, and countries of EU-Poland, United Kingdom, Germany, France, and Spain. The survey results clearly display the absence of a harmonized approach in the monitoring of antibiotics per animal species and the evaluation of resistances using the same methodology. There is no public long-term quantitative data available targeting the amount of antibiotics used in poultry, with the exception of France. Data on antibiotic-resistant E. coli are available for most regions but detection of resistance and number of isolates in each study differs among regions; therefore, statistical evaluation was not possible. Data from France indicate that the decreased use of tetracyclines leads to a reduction in the detected resistance rates. The fluoroquinolones, third-generation cephalosporins, macrolides, and polymyxins ("highest priority critically important" antibiotics for human medicine according to WHO) are approved for use in large poultry-producing regions, with the exception of fluoroquinolones in the US and cephalosporins in the EU. The approval of cephalosporins in China could not be evaluated. Tetracyclines, aminoglycosides, sulfonamides, and penicillins are registered for use in poultry in all evaluated countries. The average resistance rates in E. coli to representatives of these antibiotic classes are higher than 40% in all countries, with the exception of ampicillin in the US. The resistance rates to fluoroquinolones and quinolones in the US, where fluoroquinolones are not registered for use, are below 5%, while the average of resistant E. coli is above 40% in Brazil, China, and EU, where use of fluoroquinolones is legalized. However, banning of fluoroquinolones and quinolones has not totally eliminated the occurrence of resistant populations.
Collapse
Affiliation(s)
- Nataliya Roth
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- BIOMIN Holding GmbH, 3131 Getzersdorf, Austria
| | - Annemarie Käsbohrer
- Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Sigrid Mayrhofer
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Ulrike Zitz
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Charles Hofacre
- Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
14
|
Heß S, Berendonk TU, Kneis D. Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. FEMS Microbiol Ecol 2018; 94:5047301. [DOI: 10.1093/femsec/fiy128] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- S Heß
- TU Dresden, Institute of Hydrobiology, 01062 Dresden, Zellescher Weg 40, Germany
| | - T U Berendonk
- TU Dresden, Institute of Hydrobiology, 01062 Dresden, Zellescher Weg 40, Germany
| | - D Kneis
- TU Dresden, Institute of Hydrobiology, 01062 Dresden, Zellescher Weg 40, Germany
| |
Collapse
|
15
|
Cho S, Hiott LM, Barrett JB, McMillan EA, House SL, Humayoun SB, Adams ES, Jackson CR, Frye JG. Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia. PLoS One 2018; 13:e0197005. [PMID: 29738574 PMCID: PMC5940194 DOI: 10.1371/journal.pone.0197005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023] Open
Abstract
Surface waters are important sources of water for drinking, industrial, agricultural, and recreational uses; hence, contamination of water by fecal, pathogenic, or antimicrobial resistant (AR) bacteria is a major environmental and public health concern. However, very little data is available on prevalence of these bacteria in surface water throughout a watershed. This study aimed to characterize Escherichia coli present in the Upper Oconee Watershed, a mixed-use watershed in Athens, GA, USA for potential pathogenicity and AR. E. coli were enumerated by colony counts, cultured by enrichment and direct plating, and characterized by phylo-groups, diarrheagenic pathotypes, and antimicrobial susceptibility. From the analysis, 99.3% (455/458) of the total samples were positive for E. coli resulting in 496 isolates. E. coli counts were as high as 1.2×104 CFU/100 ml, which is above the United States Environmental Protection Agency (U.S. EPA) threshold for recreational water (235 CFU/100 ml based on a one-time measurement). Phylo-groups B2 (31.7%; 157/496) and B1 (30.8%; 153/496) were the most prevalent among the isolates. Enteropathogenic E. coli (EPEC) (19/496) and Shiga toxin-producing E. coli (STEC) (1/496) were the only diarrheagenic pathotypes detected. AR was observed in 6.9% (34/496) of the isolates, 15 of which were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). Tetracycline resistance was most often detected (76.5%; 26/34), followed by ampicillin (32.4%; 11/34), streptomycin (23.5%; 8/34), sulfisoxazole (23.5%; 8/34), and nalidixic acid (14.7%; 5/34). Results from this study showed that E. coli is prevalent in high levels in the Upper Oconee Watershed, suggesting possible widespread fecal contamination. The presence of pathogenic, AR E. coli in the watershed indicates that environmental water can serve as a reservoir of resistant bacteria that may be transferred to humans through drinking and recreational activities.
Collapse
Affiliation(s)
- Sohyun Cho
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Elizabeth A. McMillan
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Sandra L. House
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Shaheen B. Humayoun
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Eric S. Adams
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fri J, Ndip RN, Njom HA, Clarke AM. Antibiotic Susceptibility of Non-Cholera Vibrios Isolated from Farmed and Wild Marine Fish (Argyrosomus japonicus), Implications for Public Health. Microb Drug Resist 2018; 24:1296-1304. [PMID: 29565731 DOI: 10.1089/mdr.2017.0276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to evaluate the antibiogram and antibiotic resistance genes (ARGs) of Vibrio isolates recovered from a marine fish (Argyrosomus japonicus) and water samples from two commercial dusky kob aquaculture farms and the Kariega estuary, South Africa, and to evaluate these findings for their public health implications. A total of 277 molecularly confirmed Vibrio isolates consisting of 126 Vibrio fluvialis, 45 Vibrio vulnificus, 30 Vibrio Parahaemolyticus, and 76 vibrios belonging to species of the genus other than Vibrio cholerae were subjected to susceptibility testing to 15 antibiotics by the disc diffusion method. Multiple antibiotic resistance index (MARI) was used to determine the antibiotic resistance-associated health risk, while polymerase chain reaction was used to evaluate the presence of 14 ARGs for nonsusceptible strains. Highest resistances were recorded to amoxicillin (76.2%), ampicillin (67.5%), erythromycin (38.3%), and doxycycline (35.0%), while susceptibilities were highest to gentamicin (100%), followed by norfloxacin (97.8%), florfenicol (90.3%), tetracycline (87.7%), and chloramphenicol (87.4%). We recorded a 58.5% multidrug resistance (resistance to ≥2 antimicrobial classes). MARI did not vary significantly between sites (p > 0.05); however, values of >0.2 were recorded in 40% (108/277) of all strains tested. ARG markers, ampC, blaOXA, tetA, tetM, dfr1, sul1, sul2, ermB, nptII, strA, and SXT integrase, were detected in one or more strains with ermB (82.5%), sul2 (53.8%), strA (44%), dfr1 (42.3%), and tetM (38.3%) being the most abundant. Healthy marine finfish (dusky kob) and their environment can serve as reservoirs for antibiotic resistant vibrios and ARGs, which could be disseminated to humans and other susceptible bacteria and this therefore becomes a public health concern.
Collapse
Affiliation(s)
- Justine Fri
- 1 Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare , Alice, South Africa
| | - Roland Ndip Ndip
- 2 Department of Microbiology and Parasitology, University of Buea , Buea, Cameroon
| | - Henry Akum Njom
- 1 Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare , Alice, South Africa
| | - Anna Maria Clarke
- 1 Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, University of Fort Hare , Alice, South Africa
| |
Collapse
|
17
|
Multiresistant Bacteria Isolated from Activated Sludge in Austria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018. [PMID: 29522474 PMCID: PMC5877024 DOI: 10.3390/ijerph15030479] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.
Collapse
|
18
|
Gay N, Leclaire A, Laval M, Miltgen G, Jégo M, Stéphane R, Jaubert J, Belmonte O, Cardinale E. Risk Factors of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Occurrence in Farms in Reunion, Madagascar and Mayotte Islands, 2016-2017. Vet Sci 2018; 5:vetsci5010022. [PMID: 29473906 PMCID: PMC5876575 DOI: 10.3390/vetsci5010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
In South Western Indian ocean (IO), Extended-Spectrum β-Lactamase producing Enterobacteriaceae (ESBL-E) are a main public health issue. In livestock, ESBL-E burden was unknown. The aim of this study was estimating the prevalence of ESBL-E on commercial farms in Reunion, Mayotte and Madagascar and genes involved. Secondly, risk factors of ESBL-E occurrence in broiler, beef cattle and pig farms were explored. In 2016-2017, commercial farms were sampled using boot swabs and samples stored at 4 °C before microbiological analysis for phenotypical ESBL-E and gene characterization. A dichotomous questionnaire was performed. Prevalences observed in all production types and territories were high, except for beef cattle in Reunion, which differed significantly. The most common ESBL gene was blaCTX-M-1. Generalized linear models explaining ESBL-E occurrence varied between livestock production sectors and allowed identifying main protective (e.g., water quality control and detergent use for cleaning) and risk factors (e.g., recent antibiotic use, other farmers visiting the exploitation, pet presence). This study is the first to explore tools for antibiotic resistance management in IO farms. It provides interesting hypothesis to explore about antibiotic use in IO territories and ESBL-E transmission between pig, beef cattle and humans in Madagascar.
Collapse
Affiliation(s)
- Noellie Gay
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Alexandre Leclaire
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Morgane Laval
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Guillaume Miltgen
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
- UMR PIMIT, CNRS 9192, INSERM U1187, IRD 249, F-97418 Sainte-Clotilde, La Réunion, France.
| | - Maël Jégo
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Ramin Stéphane
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Julien Jaubert
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Olivier Belmonte
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Eric Cardinale
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| |
Collapse
|
19
|
Sripa B, Echaubard P. Prospects and Challenges towards Sustainable Liver Fluke Control. Trends Parasitol 2017; 33:799-812. [PMID: 28754415 DOI: 10.1016/j.pt.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The liver fluke Opisthorchis viverrini (Ov) is endemic in Southeast Asia where more than 10 million people are estimated to be infected. The infection is associated with several hepatobiliary diseases, including cholangiocarcinoma (CCA). Northeast Thailand is a hotspot for Ov transmission, and, despite extensive public health prevention campaigns led by the government, the prevalence of Ov infection is still high. High infection rates result from cultural and ecological complexities where wet-rice agrarian habitats, centuries-old raw-food culture, and the parasite's complex biology combine to create an ideal transmission arena. Here we review the state of our knowledge regarding the social-ecological determinants underlying Ov transmission. We also describe an integrative research rationale for liver fluke control better aligned with sustainable health development.
Collapse
Affiliation(s)
- Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pierre Echaubard
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Global Health Asia Institute, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Department of Biology, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
20
|
Chen Z, Yu D, He S, Ye H, Zhang L, Wen Y, Zhang W, Shu L, Chen S. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City. Front Microbiol 2017; 8:1133. [PMID: 28670309 PMCID: PMC5472731 DOI: 10.3389/fmicb.2017.01133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli) and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream) in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE), followed by ampicillin (AM), piperacillin (PIP), trimethoprim/sulfamethoxazole (SXT), and chloramphenicol (C). The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP), as well as quinolones (ciprofloxacin and levofloxacin) and cephalosporins or gentamicin (GM). Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87%) contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.
Collapse
Affiliation(s)
- Zhaojun Chen
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Daojun Yu
- Department of Clinical Laboratory, Hangzhou First People's HospitalHangzhou, China
| | - Songzhe He
- Department of Clinical Laboratory, Guilin Medical University Affiliated HospitalGuilin, China
| | - Hui Ye
- Department of Automatic Monitoring, Hangzhou Environmental Monitoring CenterHangzhou, China
| | - Lei Zhang
- Dean's Office, Hangzhou Prevention and Treatment Center for Occupational DiseasesHangzhou, China
| | - Yanping Wen
- Department of Microbiology Laboratory, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Liping Shu
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Shuchang Chen
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| |
Collapse
|
21
|
Peltzer PM, Lajmanovich RC, Attademo AM, Junges CM, Teglia CM, Martinuzzi C, Curi L, Culzoni MJ, Goicoechea HC. Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:114-123. [PMID: 28233700 DOI: 10.1016/j.etap.2017.01.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
The ecological risks posed by two β-diketone antibiotics (DKAs, enrofloxacin, ENR and ciprofloxacin, CPX), characterized by their long persistence in aqueous environments and known deleterious effect on model organisms such as zebrafish were analysed using Rhinella arenarum larvae. Sublethal tests were conducted using environmentally relevant concentrations of both ENR and CPX (1-1000μgL-1) under standard laboratory conditions for 96h. Biological endpoints and biomarkers evaluated were body size, shape, development and growth rates, and antioxidant enzymes (glutathione-S-transferase, GST; Catalase, CAT). Risk assessment was analysed based on ration quotients (RQ). The size and shape measurements of the larvae exposed to concentrations greater than 10μgL-1 of CPX were lower compared to controls (Dunnett post hoc p<0.05) and presented signs of emaciation. Concentrations of 1000μgL-1of CPX induced GST activity, in contrast with inhibited GST and CAT of larvae exposed to ENR. Risk assessments indicated that concentrations greater than or equal to10μgL-1 of CPX and ENR are ecotoxic for development, growth, detoxifying, and oxidative stress enzymes. It is suggested that additional risk assessments may provide evidence of bioaccumulation of CPX and ENR in tissues or organs of amphibian larvae by mesocosm sediment test conditions. Finally, intestinal microbiome studies should be considered to establish the mechanisms of action of both antibiotics.
Collapse
Affiliation(s)
- Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andres M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celina M Junges
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carla M Teglia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, (FBCB-UNL), Santa Fe, Argentina
| | - Candela Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Lucila Curi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María J Culzoni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, (FBCB-UNL), Santa Fe, Argentina
| | - Hector C Goicoechea
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
22
|
Kittinger C, Lipp M, Folli B, Kirschner A, Baumert R, Galler H, Grisold AJ, Luxner J, Weissenbacher M, Farnleitner AH, Zarfel G. Enterobacteriaceae Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases. PLoS One 2016; 11:e0165820. [PMID: 27812159 PMCID: PMC5094594 DOI: 10.1371/journal.pone.0165820] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023] Open
Abstract
In a clinical setting it seems to be normal these days that a relevant proportion or even the majority of different bacterial species has already one or more acquired antibiotic resistances. Unfortunately, the overuse of antibiotics for livestock breeding and medicine has also altered the wild-type resistance profiles of many bacterial species in different environmental settings. As a matter of fact, getting in contact with resistant bacteria is no longer restricted to hospitals. Beside food and food production, the aquatic environment might also play an important role as reservoir and carrier. The aim of this study was the assessment of the resistance patterns of Escherichia coli and Klebsiella spp. out of surface water without prior enrichment and under non-selective culture conditions (for antibiotic resistance). In addition, the presence of clinically important extended spectrum beta lactamase (ESBL) and carbapenmase harboring Enterobacteriaceae should be investigated. During Joint Danube Survey 3 (2013), water samples were taken over the total course of the River Danube. Resistance testing was performed for 21 different antibiotics. Samples were additionally screened for ESBL or carbapenmase harboring Enterobacteriaceae. 39% of all isolated Escherichia coli and 15% of all Klebsiella spp. from the river Danube had at least one acquired resistance. Resistance was found against all tested antibiotics except tigecycline. Taking a look on the whole stretch of the River Danube the proportion of multiresistances did not differ significantly. In total, 35 ESBL harboring Enterobacteriaceae, 17 Escherichia coli, 13 Klebsiella pneumoniae and five Enterobacter spp. were isolated. One Klebsiella pneumoniae harboring NMD-1 carbapenmases and two Enterobacteriaceae with KPC-2 could be identified. Human generated antibiotic resistance is very common in E. coli and Klebsiella spp. in the River Danube. Even isolates with resistance patterns normally associated with intensive care units are present.
Collapse
Affiliation(s)
- Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Michaela Lipp
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Bettina Folli
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health
| | - Rita Baumert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Herbert Galler
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Andrea J. Grisold
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Josefa Luxner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Melanie Weissenbacher
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Andreas H. Farnleitner
- Interuniversity Cooperation Centre for Water and Health
- Institute of Chemical Engineering, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Vienna, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
23
|
Schneider VE, Marques RV, Bortolin TA, Cemin G, Santos GMD. Monitoring and assessment of surface water quality in Taquari-Antas Watershed, South Brazil-region with intensive pig farming. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:617. [PMID: 27738896 DOI: 10.1007/s10661-016-5635-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Pig farming is one of the human activities carried out to meet the increasing food demand by the increasing population. South Brazil is the region with most intensive pig farming in the country, exerting pressure on the water and soil environments by the relevant pollutant emissions. Therefore, the main objective of this work was to assess pig farming pollution by monitoring superficial water qualities of the Taquari-Antas Watershed in South Brazil. The study area is about 8062 km2 (south latitude 292,614, 282,624 and west longitude 520,802, 504,554). In 2014, there were 861 pig farmers and 739,858 animals were slaughtered. Samples were collected bimonthly from 13 spots during 2 years of monitoring. The main analysis included the determination of the water quality index (WQI)-a nine physicochemical and microbiological parameter index-and the trophic state index (TSI), which gives a trophic degree based on phosphorous and chlorophyll-α concentration to assess the impacts of the pig farming on superficial water of the region. The results suggest that the regions with high concentration of finishing stage farms present a higher risk to water quality. A distance of 4 km between different spots was enough to detect a significant decrease in the WQI. The WQI was found ranging from "regular" to "good" (62.77 and 78.95). The TSI were found to be mesotrophic at every spot during the entire period of the study.
Collapse
Affiliation(s)
- Vania Elisabete Schneider
- Environmental Sanitation Institute, University of Caxias do Sul. Cidade Universitária, Rua Francisco Getúlio Vargas, 1130, Bloco V, Sala 206, Caxias do Sul, RS, 95020-972, Brazil.
| | - Roger Vasques Marques
- Environmental Sanitation Institute, University of Caxias do Sul. Cidade Universitária, Rua Francisco Getúlio Vargas, 1130, Bloco V, Sala 206, Caxias do Sul, RS, 95020-972, Brazil
| | - Taison Anderson Bortolin
- Environmental Sanitation Institute, University of Caxias do Sul. Cidade Universitária, Rua Francisco Getúlio Vargas, 1130, Bloco V, Sala 206, Caxias do Sul, RS, 95020-972, Brazil
| | - Gisele Cemin
- Environmental Sanitation Institute, University of Caxias do Sul. Cidade Universitária, Rua Francisco Getúlio Vargas, 1130, Bloco V, Sala 206, Caxias do Sul, RS, 95020-972, Brazil
| | - Geise Macedo Dos Santos
- Environmental Sanitation Institute, University of Caxias do Sul. Cidade Universitária, Rua Francisco Getúlio Vargas, 1130, Bloco V, Sala 206, Caxias do Sul, RS, 95020-972, Brazil
| |
Collapse
|
24
|
Li Y, Liu B, Zhang X, Wang J, Gao S. The distribution of veterinary antibiotics in the river system in a livestock-producing region and interactions between different phases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16542-16551. [PMID: 27172983 DOI: 10.1007/s11356-016-6677-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of six common antibiotics in the surface water, sediment, and suspended particulate matter (SPM) of the Jiyun River, a typical river in the livestock-producing region in Beijing, northern China, was investigated. The results revealed that the antibiotics were widely distributed in the studied area. The aqueous samples were contaminated by the antibiotics, and the target antibiotics presented in highest levels were sulfonamides, with maximum concentrations of 230 and 385 ng/L for sulfadiazine and sulfamethoxazole, respectively. Oxytetracyline, one of the tetracylines, was the most frequently detected compound in the particulate phase with maximum concentration of 121 and 130 ng/g in the sediment and SPM, respectively. The total antibiotic concentration in the water was higher in the tributary than that in the main river, demonstrating that the tributaries were discharging antibiotics into the main river. In addition, the partition coefficients of sediment-water (Kp(S)) and the SPM-water (Kp(SPM)) were calculated. Overall, the Kp(S) decreases with an increase in the contents of SPM. In terms of the interaction between SPM and water, linear relationship between logarithm of Kp(SPM) (log Kp(SPM)) and the logarithm of molecular weight (log MW) was obtained, suggesting that large and heavy molecules are more likely to be attracted to suspended particulates, eventually leading to their enrichments in bed sediments.
Collapse
Affiliation(s)
- Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinwai Str., Beijing, 100875, China.
| | - Bei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinwai Str., Beijing, 100875, China
| | - Xuelian Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinwai Str., Beijing, 100875, China
| | - Jing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinwai Str., Beijing, 100875, China
| | - Shiying Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinwai Str., Beijing, 100875, China
| |
Collapse
|
25
|
McLain JE, Cytryn E, Durso LM, Young S. Culture-based Methods for Detection of Antibiotic Resistance in Agroecosystems: Advantages, Challenges, and Gaps in Knowledge. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:432-40. [PMID: 27065389 DOI: 10.2134/jeq2015.06.0317] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Various culture-based methodologies are used in assessment of antibiotic resistance in samples collected in agroecosystems. Culture-based methods commonly involve isolating target bacteria on general or selective media and assessing growth in response to specific concentrations of antibiotics. The advantages of culture-based methods are multifold. In particular, isolation of bacteria is key to understanding phenotypic characteristics of isolates and their resistance patterns, and most national and international antibiotic resistance monitoring projects are isolate based. This review covers current knowledge of bacterial groups and antibiotics commonly targeted in resistance studies using bacterial culture and discusses the range in methods used, data interpretation, and factors supporting and confounding the use of culture-based methods in assessment of antibiotic resistance. Gaps in knowledge related to study design and resistance databases are discussed. Finally, a case is made for the integration of culture-based and molecular methods to better inform our understanding of antibiotic resistance in agroecosystems.
Collapse
|
26
|
Caniça M, Manageiro V, Jones-Dias D, Clemente L, Gomes-Neves E, Poeta P, Dias E, Ferreira E. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol 2015; 166:594-600. [PMID: 26247891 DOI: 10.1016/j.resmic.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/18/2023]
Abstract
Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibiotic resistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute to the current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elements and events is revisited, exploring examples of the processes by which successful mobile resistance genes spread across different niches. The importance of classic and next generation molecular approaches, as well as action plans and policies which might aid in the fight against antibiotic resistance, are also reviewed.
Collapse
Affiliation(s)
- Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal.
| | - Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal.
| | - Lurdes Clemente
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Lisbon, Portugal.
| | - Eduarda Gomes-Neves
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Oporto, Portugal.
| | - Patrícia Poeta
- Department of Animal and Veterinary Sciences (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Elsa Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal; Department of Environmental Health, National Institute of Health, Lisbon, Portugal.
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
27
|
Sura S, Degenhardt D, Cessna AJ, Larney FJ, Olson AF, McAllister TA. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:191-199. [PMID: 25839178 DOI: 10.1016/j.scitotenv.2015.03.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots.
Collapse
Affiliation(s)
- Srinivas Sura
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.
| | - Dani Degenhardt
- Alberta Innovates Technology Futures, Edmonton, Alberta T6N 1E4, Canada.
| | - Allan J Cessna
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan S7N 0X2, Canada.
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.
| | - Andrew F Olson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.
| |
Collapse
|
28
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|