1
|
Zhu X, Mao Z, Zheng P, Wang L, Zhang F, Zi G, Liu H, Zhang H, Liu W, Zhou L. The role and research progress of epigenetic modifications in obstructive sleep apnoea-hypopnea syndrome and related complications. Respir Med 2025; 242:108099. [PMID: 40228610 DOI: 10.1016/j.rmed.2025.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Epigenetic modifications are heritable changes in gene expression that do not alter the DNA sequence. Histone modifications, non-coding RNA expression, and DNA methylation are examples of common epigenetic changes. Obstructive sleep apnoea-hypopnea syndrome (OSAHS) is the most common sleep-related breathing disorder, and its incidence is increasing annually, making it a hotspot of clinical research and significantly impacting health and well-being. The main cause of OSAHS is related to complications caused by repeated chronic intermittent hypoxia (CIH). Currently, polysomnography (PSG) and continuous positive airway pressure (CPAP) remain the gold standards for the diagnosis and treatment of OSAHS. However, their limitations-such as time consumption, high cost, and poor patient comfort-contribute to the paradox of high disease prevalence yet low rates of diagnosis and treatment, resulting in a substantial disease burden. In recent years, rapid advances in epigenetics have revealed that biomarkers such as microRNAs (miRNAs), circular RNAs (circRNAs), and other epigenetic modifications hold promise as non-invasive tools for the diagnosis and treatment of OSAHS and its related complications. Although numerous studies have explored epigenetic modifications in other diseases, this study focuses on how epigenetic modifications participate in the process of OSAHS and its related complications, with an aim of elucidating the pathogenesis of OSAHS from an epigenetic perspective and provide new directions for identifying molecular targets for the diagnosis and treatment of OSAHS and related complications.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China.
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Kang F, Zhang Z, Fu H, Sun J, Zhang J, Wang Q. β-Cell Dedifferentiation in HOMA-βlow and HOMA-βhigh Subjects. J Clin Endocrinol Metab 2025; 110:e1430-e1438. [PMID: 39133811 PMCID: PMC12012814 DOI: 10.1210/clinem/dgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
CONTEXT β-Cell dedifferentiation ratio is increased in type 2 diabetes; but its direct link to in vivo β-cell function in human remains unclear. OBJECTIVE The present study was designed to investigate whether β-cell dedifferentiation in situ was closely associated with β-cell function in vivo and to identify targets crucial for β-cell dedifferentiation/function in human. METHODS We acquired homeostasis model assessment of β-cell function (HOMA-β) values, calculated the number of hormone-negative endocrine cells, and evaluated important markers and novel candidates for β-cell dedifferentiation/function on paraneoplastic pancreatic tissues from 13 patients with benign pancreatic cystic neoplasm or intrapancreatic accessory spleen. RESULTS Both the β-cell dedifferentiation ratio and the dedifferentiation marker (Aldh1a3) were inversely related to in vivo β-cell function (HOMA-β) and in situ β-cell functional markers Glut2 and Ucn3 in humans. Moreover, the islets from HOMA-βlow subjects were manifested as (1) increased β-cell dedifferentiation ratio, (2) enriched dedifferentiation maker Aldh1a3, and (3) lower expression of Glut2 and Ucn3 compared with those from HOMA-βhigh subjects. We found that basic leucine zipper transcription factor 2 (Bach2) expression was significantly induced in islets from HOMA-βlow patients and was positively correlated with the ratio of β-cell dedifferentiation in humans. CONCLUSION Our findings emphasize the contribution of β-cell dedifferentiation to β-cell dysfunction in humans. Bach2 induction in β-cells with higher frequency of dedifferentiation observed in HOMA-βlow subjects reinforces its distinctive role as a pharmaceutical target of β-cell dedifferentiation for the treatment of people with diabetes.
Collapse
Affiliation(s)
- Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuo Zhang
- Department of Surgery, Shanghai United Family Hospital, Shanghai 200021, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Li W, Yin X, Zhang L. FOXA2 regulates endoplasmic reticulum stress, oxidative stress, and apoptosis in spermatogonial cells by the Nrf2 pathway under hypoxic conditions. Exp Cell Res 2025; 444:114388. [PMID: 39701358 DOI: 10.1016/j.yexcr.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Hypoxia-caused spermatogenesis impairment may contribute to male infertility. FOXA2 has been found to be abundant in spermatogonial stem cells and critical for spermatogenesis. Here we aimed to explore the roles of FOXA2 in regulating spermatogonial cells against hypoxia stimulation. Our results showed that FOXA2 expression was downregulated in hypoxia-stimulated spermatogonial cells. Overexpression of FOXA2 prevented hypoxia-induced endoplasmic reticulum (ER) stress with decreased expression levels of associated markers including GRP78, CHOP, and ATF-4. FOXA2 overexpression caused a decrease in MDA content and an increase in activities of SOD, CAT, and GSH-Px in spermatogonial cells under hypoxic conditions, implying its inhibitory effect on oxidative stress. Besides, cell apoptosis under hypoxic conditions was also prevented by FOXA2 overexpression, as shown by reduced apoptotic rate and caspase-3 activity. Moreover, we found that hypoxia stimulation inactivated the Nrf2 pathway, which could be prevented by FOXA2 overexpression. Nrf2 knockdown attenuated the effects of FOXA2 overexpression on hypoxia-induced ER stress, oxidative stress, and apoptosis in spermatogonial cells. In conclusion, FOXA2 exerted protective effects on spermatogonial cells against hypoxia-induced ER stress, oxidative stress, and apoptosis via regulating Nrf2/HO-1 signaling. These findings suggested that FOXA2 might be a therapeutic target for treating hypoxia-induced spermatogenesis impairment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China.
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Lei Zhang
- Biology Teaching and Research Office, Tianjin Vocational Institute, Tianjin, China
| |
Collapse
|
4
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
5
|
Wang Y, Liu S, Ying L, Zhang K, Li H, Liang N, Xiao L, Luo G. Nicotinamide Mononucleotide (NMN) Ameliorates Free Fatty Acid-Induced Pancreatic β-Cell Dysfunction via the NAD +/AMPK/SIRT1/HIF-1α Pathway. Int J Mol Sci 2024; 25:10534. [PMID: 39408861 PMCID: PMC11476918 DOI: 10.3390/ijms251910534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
As the sole producers of insulin under physiological conditions, the normal functioning of pancreatic β cells is crucial for maintaining glucose homeostasis in the body. Due to the high oxygen and energy demands required for insulin secretion, hypoxia has been shown to play a critical role in pancreatic β-cell dysfunction. Lipid metabolism abnormalities, a common metabolic feature in type 2 diabetic patients, are often accompanied by tissue hypoxia caused by metabolic overload and lead to increased free fatty acid (FFA) levels. However, the specific mechanisms underlying FFA-induced β-cell dysfunction remain unclear. Nicotinamide mononucleotide (NMN), a naturally occurring bioactive nucleotide, has garnered significant attention in recent years for its effectiveness in replenishing NAD+ and alleviating various diseases. Nevertheless, studies exploring the mechanisms through which NMN influences β-cell dysfunction remain scarce. In this study, we established an in vitro β-cell dysfunction model by treating INS-1 cells with palmitate (PA), including control, PA-treated, and PA combined with NMN or activator/inhibitor groups. Compared to the control group, cells treated with PA alone showed significantly reduced insulin secretion capacity and decreased expression of proteins related to the NAD+/AMPK/SIRT1/HIF-1α pathway. In contrast, NMN supplementation significantly restored the expression of pathway-related proteins by activating NAD+ and effectively improved insulin secretion. Results obtained using HIF-1α and AMPK inhibitors/activators further supported these findings. In conclusion, our study demonstrates that NMN reversed the PA-induced downregulation of the NAD+/AMPK/SIRT1/HIF-1α pathway, thereby alleviating β-cell dysfunction. Our study investigated the mechanisms underlying PA-induced β-cell dysfunction, examined how NMN mitigates this dysfunction and offered new insights into the therapeutic potential of NMN for treating β-cell dysfunction and T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (Y.W.); (S.L.); (L.Y.); (K.Z.); (H.L.); (N.L.); (L.X.)
| |
Collapse
|
6
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Yamagata K, Tsuyama T, Sato Y. Roles of β-Cell Hypoxia in the Progression of Type 2 Diabetes. Int J Mol Sci 2024; 25:4186. [PMID: 38673770 PMCID: PMC11050445 DOI: 10.3390/ijms25084186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic β-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the β-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and β-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of β-cell hypoxia to the development of β-cell dysfunction in type 2 diabetes. A better understanding of β-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
8
|
Tsuyama T, Sato Y, Yoshizawa T, Matsuoka T, Yamagata K. Hypoxia causes pancreatic β-cell dysfunction and impairs insulin secretion by activating the transcriptional repressor BHLHE40. EMBO Rep 2023; 24:e56227. [PMID: 37341148 PMCID: PMC10398664 DOI: 10.15252/embr.202256227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Hypoxia can occur in pancreatic β-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on β-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human β-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or β-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic β-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in β-cells that inhibit insulin secretion by suppressing MAFA expression.
Collapse
Affiliation(s)
- Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Takaaki Matsuoka
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazuya Yamagata
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
9
|
Song J, Ni Q, Sun J, Xie J, Liu J, Ning G, Wang W, Wang Q. Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans. J Clin Endocrinol Metab 2022; 107:3231-3241. [PMID: 36125175 PMCID: PMC9693768 DOI: 10.1210/clinem/dgac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS We calculated the percentage of hormone-negative/chromogranin A-positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H2O2-induced senescent Min6 cells rescued beta cell identity. CONCLUSION Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.
Collapse
Affiliation(s)
| | | | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qidi Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
11
|
Yang M, Chen J, Chen L. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front Endocrinol (Lausanne) 2022; 13:1027686. [PMID: 36339446 PMCID: PMC9633677 DOI: 10.3389/fendo.2022.1027686] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a type of metabolic disease characterized by hyperglycemia, primarily caused by defects in insulin secretion, insulin action, or both. Long-term chronic hyperglycemia can lead to diabetes-related complications, causing damage, dysfunction, and failure of different organs. However, traditional insulin and oral drug therapy can only treat the symptoms but not delay the progressive failure of pancreatic beta cells or prevent the emergence of diabetic complications. Mesenchymal stem cells have received extensive attention due to their strong immunoregulatory functions and regeneration effects. Mesenchymal stem cell-derived exosomes (MSC-Exos) have been proposed as a novel treatment for diabetic patients as they have demonstrated superior efficiency to mesenchymal stem cells. This review summarizes the therapeutic effects, mechanisms, challenges, and future prospects of MSC-Exos in treating diabetes mellitus and its related complications. This review supports the potential use of MSC-Exos in future regenerative medicine to overcome the current difficulties in clinical treatment, particularly in treating diabetes.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| |
Collapse
|
12
|
Kjeld T, Isbrand AB, Linnet K, Zerahn B, Højberg J, Hansen EG, Gormsen LC, Bejder J, Krag T, Vissing J, Bøtker HE, Arendrup HC. Extreme Hypoxia Causing Brady-Arrythmias During Apnea in Elite Breath-Hold Divers. Front Physiol 2021; 12:712573. [PMID: 34925050 PMCID: PMC8678416 DOI: 10.3389/fphys.2021.712573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The cardiac electrical conduction system is very sensitive to hypoglycemia and hypoxia, and the consequence may be brady-arrythmias. Weddell seals endure brady-arrythmias during their dives when desaturating to 3.2 kPa and elite breath-hold-divers (BHD), who share metabolic and cardiovascular adaptions including bradycardia with diving mammals, endure similar desaturation during maximum apnea. We hypothesized that hypoxia causes brady-arrythmias during maximum apnea in elite BHD. Hence, this study aimed to define the arterial blood glucose (Glu), peripheral saturation (SAT), heart rhythm (HR), and mean arterial blood pressure (MAP) of elite BHD during maximum apneas. Methods: HR was monitored with Direct-Current-Pads/ECG-lead-II and MAP and Glu from a radial arterial-catheter in nine BHD performing an immersed and head-down maximal static pool apnea after three warm-up apneas. SAT was monitored with a sensor on the neck of the subjects. On a separate day, a 12-lead-ECG-monitored maximum static apnea was repeated dry (n = 6). Results: During pool apnea of maximum duration (385 ± 70 s), SAT decreased from 99.6 ± 0.5 to 58.5 ± 5.5% (∼PaO2 4.8 ± 1.5 kPa, P < 0.001), while Glu increased from 5.8 ± 0.2 to 6.2 ± 0.2 mmol/l (P = 0.009). MAP increased from 103 ± 4 to 155 ± 6 mm Hg (P < 0.005). HR decreased to 46 ± 10 from 86 ± 14 beats/minute (P < 0.001). HR and MAP were unchanged after 3–4 min of apnea. During dry apnea (378 ± 31 s), HR decreased from 55 ± 4 to 40 ± 3 beats/minute (P = 0.031). Atrioventricular dissociation and junctional rhythm were observed both during pool and dry apneas. Conclusion: Our findings contrast with previous studies concluding that Glu decreases during apnea diving. We conclude during maximum apnea in elite BHD that (1) the diving reflex is maximized after 3–4 min, (2) increasing Glu may indicate lactate metabolism in accordance with our previous results, and (3) extreme hypoxia rather than hypoglycemia causes brady-arrythmias in elite BHD similar to diving mammals.
Collapse
Affiliation(s)
- Thomas Kjeld
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe Isbrand
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Linnet
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Clinical Physiology and Nuclear Medicine, Skejby Hospital, Aarhus University, Aarhus, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
13
|
A therapeutic convection-enhanced macroencapsulation device for enhancing β cell viability and insulin secretion. Proc Natl Acad Sci U S A 2021; 118:2101258118. [PMID: 34504013 PMCID: PMC8449352 DOI: 10.1073/pnas.2101258118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting β cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.
Collapse
|
14
|
Okan A, Doğanyiğit Z, Eroğlu E, Akyüz E, Demir N. Immunoreactive definition of TNF- α, HIF-1 α, Kir6.2, Kir3.1 and M2 muscarinic receptor for cardiac and pancreatic tissues in a mouse model for type 1 diabetes. Life Sci 2021; 284:119886. [PMID: 34389402 DOI: 10.1016/j.lfs.2021.119886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Ece Eroğlu
- School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, School of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey.
| |
Collapse
|
15
|
May C-peptide index be a new marker to predict proteinuria in anemic patients with type 2 diabetes mellitus? Endocr Regul 2021; 54:1-5. [PMID: 32597149 DOI: 10.2478/enr-2020-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE C-peptide is a reliable marker of beta cell reserve and is associated with diabetic complications. Furthermore, HbA1c level is associated with micro- and macro-vascular complications in diabetic patients. HbA1c measurement of diabetic patients with anemia may be misleading because HbA1c is calculated in percent by taking reference to hemoglobin measurements. We hypothesized that there may be a relationship between C-peptide index (CPI) and proteinuria in anemic patients with type 2 diabetes mellitus (T2DM). Therefore, the aim of the present study was to investigate the association between C-peptide levels and CPI in anemic patients with T2DM and proteinuria. METHODS The patients over 18 years of age with T2DM whose C-peptide levels were analyzed in Endocrinology and Internal medicine clinics between 2014 and 2018 with normal kidney functions (GFR>60 ml/min) and who do not use any insulin secretagogue oral antidiabetic agent (i.e. sulfonylurea) were enrolled into the study. RESULTS Hemoglobin levels were present in 342 patients with T2DM. Among these 342 cases, 258 (75.4%) were non-anemic whereas 84 (24.6%) were anemic. The median DM duration of the anemic group was statistically significantly higher in T2DM (p=0.003). There was no statistically significant difference found in proteinuria prevalence between non-anemic and anemic patient groups (p=0.690 and p=0.748, respectively). Anemic T2DM cases were corrected according to the age, gender, and duration of DM. C-peptide and CPI levels were not statistically significant to predict proteinuria (p=0.449 and p=0.465, respectively). CONCLUSION The present study sheds light to the association between C-peptide, CPI, and anemic diabetic nephropathy in T2DM patients and indicates that further prospective studies are needed to clarify this issue.
Collapse
|
16
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
17
|
Wang X, Ju Z, Jiang Q, Zhong J, Liu C, Wang J, Hoff JL, Schnabel RD, Zhao H, Gao Y, Liu W, Wang L, Gao Y, Yang C, Hou M, Huang N, Regitano LCA, Porto-Neto LR, Decker JE, Taylor JF, Huang J. Introgression, admixture, and selection facilitate genetic adaptation to high-altitude environments in cattle. Genomics 2021; 113:1491-1503. [PMID: 33771637 DOI: 10.1016/j.ygeno.2021.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations.
Collapse
Affiliation(s)
- Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Chengkun Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Wenhao Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Lingling Wang
- Shandong OX Livestock Breeding Co., Ltd., Jinan, Shandong 250131, China
| | - Yundong Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; Shandong OX Livestock Breeding Co., Ltd., Jinan, Shandong 250131, China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Minghai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Ning Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | | | | | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
18
|
Sato Y, Rahman MM, Haneda M, Tsuyama T, Mizumoto T, Yoshizawa T, Kitamura T, Gonzalez FJ, Yamamura KI, Yamagata K. HNF1α controls glucagon secretion in pancreatic α-cells through modulation of SGLT1. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165898. [DOI: 10.1016/j.bbadis.2020.165898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
|
19
|
Giri KR, de Beaurepaire L, Jegou D, Lavy M, Mosser M, Dupont A, Fleurisson R, Dubreil L, Collot M, Van Endert P, Bach JM, Mignot G, Bosch S. Molecular and Functional Diversity of Distinct Subpopulations of the Stressed Insulin-Secreting Cell's Vesiculome. Front Immunol 2020; 11:1814. [PMID: 33101266 PMCID: PMC7556286 DOI: 10.3389/fimmu.2020.01814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Beta cell failure and apoptosis following islet inflammation have been associated with autoimmune type 1 diabetes pathogenesis. As conveyors of biological active material, extracellular vesicles (EV) act as mediators in communication with immune effectors fostering the idea that EV from inflamed beta cells may contribute to autoimmunity. Evidence accumulates that beta exosomes promote diabetogenic responses, but relative contributions of larger vesicles as well as variations in the composition of the beta cell's vesiculome due to environmental changes have not been explored yet. Here, we made side-by-side comparisons of the phenotype and function of apoptotic bodies (AB), microvesicles (MV) and small EV (sEV) isolated from an equal amount of MIN6 beta cells exposed to inflammatory, hypoxic or genotoxic stressors. Under normal conditions, large vesicles represent 93% of the volume, but only 2% of the number of the vesicles. Our data reveal a consistently higher release of AB and sEV and to a lesser extent of MV, exclusively under inflammatory conditions commensurate with a 4-fold increase in the total volume of the vesiculome and enhanced export of immune-stimulatory material including the autoantigen insulin, microRNA, and cytokines. Whilst inflammation does not change the concentration of insulin inside the EV, specific Toll-like receptor-binding microRNA sequences preferentially partition into sEV. Exposure to inflammatory stress engenders drastic increases in the expression of monocyte chemoattractant protein 1 in all EV and of interleukin-27 solely in AB suggesting selective sorting toward EV subspecies. Functional in vitro assays in mouse dendritic cells and macrophages reveal further differences in the aptitude of EV to modulate expression of cytokines and maturation markers. These findings highlight the different quantitative and qualitative imprints of environmental changes in subpopulations of beta EV that may contribute to the spread of inflammation and sustained immune cell recruitment at the inception of the (auto-) immune response.
Collapse
Affiliation(s)
| | | | | | - Margot Lavy
- IECM, ONIRIS, INRAE, USC1383, Nantes, France
| | | | - Aurelien Dupont
- MRic, Biosit, UMS3480 CNRS, University of Rennes 1, Rennes, France
| | | | - Laurence Dubreil
- PAnTher, INRAE, Oniris, Université Bretagne Loire, Nantes, France
| | - Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Université de Strasbourg, Illkirch, France
| | - Peter Van Endert
- Université Paris Descartes, Paris, France.,INSERM, U1151, Institut Necker-Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
20
|
Gabryelska A, Karuga FF, Szmyd B, Białasiewicz P. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links With Obstructive Sleep Apnea. Front Physiol 2020; 11:1035. [PMID: 33013447 PMCID: PMC7509176 DOI: 10.3389/fphys.2020.01035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSA) is described as an independent risk factor for the onset and progression of type 2 diabetes (T2DM), as well as for insulin resistance (IR). The mechanisms underlying these processes remain unclear. One of the proposed molecular mechanism is based on the oxygen-sensitive α-subunit of hypoxia-inducible factor 1 (HIF-1α)-a key regulator of oxygen metabolism. The concept that stabilization of HIF-1α may influence T2DM and IR is supported by cell and animal models. Cell culture studies revealed that both glucose uptake and glycolysis are regulated by HIF-1α. Furthermore, animal models indicated that increased fasting glucose may be caused by a single night with intermittent hypoxia. Moreover, in these models, hypoxia time was correlated with IR. Mice models revealed that inhibition of HIF-1α protein may downregulate fasting blood glucose and plasma insulin level. Administration of superoxide dismutase mimetic resulted in inhibition of HIF-1α protein, catecholamines, and chronic intermittent hypoxia-induced hypertension in a mice model. The hypothesis that hypoxia is an independent risk factor for IR is strengthened by experimentally confirmed improvement of insulin sensitivity among OSA patients treated with the continuous positive airway pressure. Furthermore, recent studies suggest that HIF-1α protein concentration is increased in individuals with OSA. In this literature review, we summarize the current knowledge about HIF-1α in OSA in relation to the possible pathways in which they contribute to metabolic disorders.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Bartosz Szmyd
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
21
|
Wang Y, Ni Q, Sun J, Xu M, Xie J, Zhang J, Fang Y, Ning G, Wang Q. Paraneoplastic β Cell Dedifferentiation in Nondiabetic Patients with Pancreatic Cancer. J Clin Endocrinol Metab 2020; 105:5645541. [PMID: 31781763 DOI: 10.1210/clinem/dgz224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Beta-cell dedifferentiation was recently proposed as a mechanism of β-cell dysfunction, but whether it can be a trigger of β-cell failure preceding hyperglycemia in humans is uncertain. Pancreatic cancer can cause new-onset diabetes, yet the underlying mechanism is unknown. OBJECTIVE To investigate whether β-cell dedifferentiation is present in nondiabetic pancreatic ductal adenocarcinoma (PDAC) patients, we examined pancreatic islets from 15 nondiabetic patients with benign tumors (control) and 15 nondiabetic PDAC patients. DESIGN We calculated the number of hormone-negative endocrine cells and evaluated important markers of β-cell dedifferentiation and function in the paraneoplastic islets. We assessed tumor-related inflammatory changes under the pancreatic cancer microenvironment and their influence on β-cell identity. RESULTS We found nearly 10% of nonhormone expressing endocrine cells in nondiabetic PDAC subjects. The PDAC islets were dysfunctional, evidenced by low expression of Glucose transporter 2 (GLUT2) and Urocortin3 (UCN3), and concomitant upregulation of Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3) expression and proinsulin accumulation. Pancreatic cancer caused paraneoplastic inflammation with enhanced tissue fibrosis, monocytes/macrophages infiltration, and elevated inflammatory cytokines. Moreover, we detected β-cell dedifferentiation and defects in GSIS in islets exposed to PANC-1 (a cell line established from a pancreatic carcinoma of ductal origin from a 56-year-old Caucasian male)-conditioned medium. In a larger cohort, we showed high prevalence of new-onset diabetes in PDAC subjects, and fasting blood glucose (FBG) was found to be an additional useful parameter for early diagnosis of PDAC. CONCLUSIONS Our data provide a rationale for β-cell dedifferentiation in the pathogenesis of pancreatic cancer-associated diabetes. We propose that β-cell dedifferentiation can be a trigger for β-cell failure in humans, before hyperglycemia occurs.
Collapse
Affiliation(s)
- Yichen Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Research Institute of Pancreatic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hamzeh O, Alkhateeb A, Zheng J, Kandalam S, Rueda L. Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data. BMC Bioinformatics 2020; 21:78. [PMID: 32164523 PMCID: PMC7068980 DOI: 10.1186/s12859-020-3345-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Finding the tumor location in the prostate is an essential pathological step for prostate cancer diagnosis and treatment. The location of the tumor - the laterality - can be unilateral (the tumor is affecting one side of the prostate), or bilateral on both sides. Nevertheless, the tumor can be overestimated or underestimated by standard screening methods. In this work, a combination of efficient machine learning methods for feature selection and classification are proposed to analyze gene activity and select them as relevant biomarkers for different laterality samples. RESULTS A data set that consists of 450 samples was used in this study. The samples were divided into three laterality classes (left, right, bilateral). The aim of this work is to understand the genomic activity in each class and find relevant genes as indicators for each class with nearly 99% accuracy. The system identified groups of differentially expressed genes (RTN1, HLA-DMB, MRI1) that are able to differentiate samples among the three classes. CONCLUSION The proposed method was able to detect sets of genes that can identify different laterality classes. The resulting genes are found to be strongly correlated with disease progression. HLA-DMB and EIF4G2, which are detected in the set of genes can detect the left laterality, were reported earlier to be in the same pathway called Allograft rejection SuperPath.
Collapse
Affiliation(s)
- Osama Hamzeh
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, N9B 3P4 ON Canada
| | - Abedalrhman Alkhateeb
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, N9B 3P4 ON Canada
| | - Julia Zheng
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, N9B 3P4 ON Canada
| | - Srinath Kandalam
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave, Windsor, N9B 3P4 ON Canada
| | - Luis Rueda
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, N9B 3P4 ON Canada
| |
Collapse
|
23
|
Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11:97. [PMID: 32127037 PMCID: PMC7055095 DOI: 10.1186/s13287-020-01610-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. Methods Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (βTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. Results Exosomes derived from MSC-conditioned culture medium were 40–100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. Conclusions Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.
Collapse
Affiliation(s)
- Jin Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Junqiu Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Yuanhang Cheng
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yunfeng Fu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hongzhou Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Minying Tang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Na Lin
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Xiaohua Shi
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yan Lei
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Shuiliang Wang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Weizhen Wu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China
| |
Collapse
|
24
|
Jeffery N, Harries LW. miRNAs responsive to the diabetic microenvironment in the human beta cell line EndoC-βH1 may target genes in the FOXO, HIPPO and Lysine degradation pathways. Exp Cell Res 2019; 384:111559. [PMID: 31425691 DOI: 10.1016/j.yexcr.2019.111559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/13/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Altered expression of miRNAs is evident in the islets of diabetic human donors, but the effects of specific aspects of the diabetic microenvironment and identity of gene ontology pathways demonstrating target gene enrichment in response to each is understudied. We assessed changes in the miRNA milieu in response to high/low glucose, hypoxia, dyslipidaemia and inflammatory factors in a humanised EndoC-βH1 beta cell culture system and performed miRPath analysis for each treatment individually. The 10 miRNAs demonstrating the greatest dysregulation across treatments were then independently validated and Gene Set Enrichment Analysis to confirm targeted pathways undertaken. 171 of 392 miRNAs displayed altered expression in response to one or more cellular stressors. miRNA changes were treatment specific, but their target genes were enriched in conserved pathways. 5 miRNAs (miR-136-5p, miR299-5p, miR-454-5p, miR-152 and miR-185) were dysregulated in response to multiple stressors and survived validation in independent samples (p = 0.008, 0.002, 0.012, 0.005 and 0.024 respectively). Target genes of dysregulated miRNAs were clustered into FOXO1, HIPPO and Lysine degradation pathways (p = 0.02, p = 5.84 × 10-5 and p = 3.00 × 10-3 respectively). We provide evidence that the diabetic microenvironment may induce changes to the expression of miRNAs targeting genes enriched in pathways involved in cell stress response and cell survival.
Collapse
Affiliation(s)
- Nicola Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
25
|
Hypoxia Modulates Effects of Fatty Acids on NES2Y Human Pancreatic β-cells. Int J Mol Sci 2019; 20:ijms20143441. [PMID: 31336948 PMCID: PMC6678120 DOI: 10.3390/ijms20143441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022] Open
Abstract
Saturated fatty acids (FAs) induce apoptosis in the human pancreatic NES2Y β-cell line while unsaturated FAs have nearly no detrimental effect. Moreover, unsaturated FAs are capable of inhibiting the pro-apoptotic effect of saturated FAs. Hypoxia is also known to have deleterious effects on β-cells function and viability. In the present study, we have tested the modulatory effect of hypoxia on the effect of FAs on the growth and viability of the human pancreatic NES2Y β-cells. This study represents the first study testing hypoxia effect on effects of FAs in pancreatic β-cells as well as in other cell types. We showed that hypoxia increased the pro-apoptotic effect of saturated stearic acid (SA). Endoplasmic reticulum stress signaling seemed to be involved while redistribution of FA transporters fatty acid translocase/cluster of differentiation 36 (FAT/CD36) and fatty acid-binding protein (FABP) do not seem to be involved in this effect. Hypoxia also strongly decreased the protective effect of unsaturated oleic acid (OA) against the pro-apoptotic effect of SA. Thus, in the presence of hypoxia, OA was unable to save SA-treated β-cells from apoptosis induction. Hypoxia itself had only a weak detrimental effect on NES2Y cells. Our data suggest that hypoxia could represent an important factor in pancreatic β-cell death induced and regulated by FAs and thus in the development of type 2 diabetes mellitus.
Collapse
|
26
|
Obata A, Kimura T, Obata Y, Shimoda M, Kinoshita T, Kohara K, Okauchi S, Hirukawa H, Kamei S, Nakanishi S, Mune T, Kaku K, Kaneto H. Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice. Diabetologia 2019; 62:1225-1236. [PMID: 31055616 PMCID: PMC6560212 DOI: 10.1007/s00125-019-4878-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to elucidate the impact of 3'-phosphoinositide-dependent protein kinase-1 (PDPK1) in vascular endothelial cells on the maintenance of pancreatic beta cell mass and function. METHODS Male vascular endothelial cell-specific Pdpk1-knockout mice (Tie2+/-/Pdpk1flox/flox mice) and their wild-type littermates (Tie2-/-/Pdpk1flox/flox mice; control) were used for this study. At 12 weeks of age, an IPGTT and OGTT were conducted. Pancreatic blood flow was measured under anaesthesia. Thereafter, islet blood flow was measured by the microsphere method. Mice were killed for islet isolation and further functional study and mRNA was extracted from islets. Pancreases were sampled for immunohistochemical analyses. RESULTS During the IPGTT, the blood glucose level was comparable between knockout mice and control flox mice, although serum insulin level was significantly lower in knockout mice. During the OGTT, glucose tolerance deteriorated slightly in knockout mice, accompanied by a decreased serum insulin level. During an IPGTT after pre-treatment with exendin-4 (Ex-4), glucose tolerance was significantly impaired in knockout mice. In fact, glucose-stimulated insulin secretion of isolated islets from knockout mice was significantly reduced compared with control flox mice, and addition of Ex-4 revealed impaired sensitivity to incretin hormones in islets of knockout mice. In immunohistochemical analyses, both alpha and beta cell masses were significantly reduced in knockout mice. In addition, the CD31-positive area was significantly decreased in islets of knockout mice. The proportion of pimonidazole-positive islets was significantly increased in knockout mice. mRNA expression levels related to insulin biosynthesis (Ins1, Ins2, Mafa, Pdx1 and Neurod [also known as Neurod1]) and beta cell function (such as Gck and Slc2a2) were significantly decreased in islets of knockout mice. Microsphere experiments revealed remarkably reduced islet blood flow. In addition, mRNA expression levels of Hif1α (also known as Hif1a) and its downstream factors such as Adm, Eno1, Tpi1 (also known as Ets1), Hmox1 and Vegfa, were significantly increased in islets of knockout mice, indicating that islets of knockout mice were in a more hypoxic state than those of control flox mice. As a result, mRNA expression levels related to adaptive unfolded protein response and endoplasmic reticulum stress-related apoptotic genes were significantly elevated in islets of knockout mice. In addition, inflammatory cytokine levels were increased in islets of knockout mice. Electron microscopy revealed reduced endothelial fenestration and thickening of basal membrane of vascular endothelium in islets of knockout mice. CONCLUSIONS/INTERPRETATION Vascular endothelial PDPK1 plays an important role in the maintenance of pancreatic beta cell mass and function by maintaining vascularity of pancreas and islets and protecting them from hypoxia, hypoxia-related endoplasmic reticulum stress, inflammation and distortion of capillary structure.
Collapse
Affiliation(s)
- Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | - Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiyuki Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoe Kinoshita
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kenji Kohara
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Seizo Okauchi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hidenori Hirukawa
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shinji Kamei
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| |
Collapse
|
27
|
Culture in 10% O 2 enhances the production of active hormones in neuro-endocrine cells by up-regulating the expression of processing enzymes. Biochem J 2019; 476:827-842. [PMID: 30787050 DOI: 10.1042/bcj20180832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
To closely mimic physiological conditions, low oxygen cultures have been employed in stem cell and cancer research. Although in vivo oxygen concentrations in tissues are often much lower than ambient 21% O2 (ranging from 3.6 to 12.8% O2), most cell cultures are maintained at 21% O2 To clarify the effects of the O2 culture concentration on the regulated secretion of peptide hormones in neuro-endocrine cells, we examined the changes in the storage and release of peptide hormones in neuro-endocrine cell lines and endocrine tissues cultured in a relatively lower O2 concentration. In both AtT-20 cells derived from the mouse anterior pituitary and freshly prepared mouse pituitaries cultured in 10% O2 for 24 h, the storage and regulated secretion of the mature peptide hormone adrenocorticotropic hormone were significantly increased compared with those in cells and pituitaries cultured in ambient 21% O2, whereas its precursor proopiomelanocortin was not increased in the cells and tissues after being cultured in 10% O2 Simultaneously, the prohormone-processing enzymes PC1/3 and carboxypeptidase E were up-regulated in cells cultured in 10% O2, thus facilitating the conversion of prohormones to their active form. Similarly, culturing the mouse β-cell line MIN6 and islet tissue in 10% O2 also significantly increased the conversion of proinsulin into mature insulin, which was secreted in a regulated manner. These results suggest that culture under 10% O2 is more optimal for endocrine tissues/cells to efficiently generate and secrete active peptide hormones than ambient 21% O2.
Collapse
|
28
|
Mouré A, Bacou E, Bosch S, Jegou D, Salama A, Riochet D, Gauthier O, Blancho G, Soulillou J, Poncelet D, Olmos E, Bach J, Mosser M. Extracellular hemoglobin combined with an O
2
‐generating material overcomes O
2
limitation in the bioartificial pancreas. Biotechnol Bioeng 2019; 116:1176-1189. [DOI: 10.1002/bit.26913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Anne Mouré
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Elodie Bacou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Steffi Bosch
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Dominique Jegou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Apolline Salama
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
| | - David Riochet
- Service de Pédiatrie des Maladies ChroniquesCHU de NantesNantes France
| | | | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Jean‐Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Denis Poncelet
- Department of Process Engineering for Environment and Food Laboratory (GEPEA)UMR CNRS 6144, OnirisNantes France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés (LRGP)Université de Lorraine, CNRSNancy France
| | - Jean‐Marie Bach
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| |
Collapse
|
29
|
Sun J, Ni Q, Xie J, Xu M, Zhang J, Kuang J, Wang Y, Ning G, Wang Q. β-Cell Dedifferentiation in Patients With T2D With Adequate Glucose Control and Nondiabetic Chronic Pancreatitis. J Clin Endocrinol Metab 2019; 104:83-94. [PMID: 30085195 DOI: 10.1210/jc.2018-00968] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Type 2 diabetes (T2D) and pancreatogenic diabetes are both associated with loss of functional β-cell mass. Previous studies have proposed β-cell dedifferentiation as a mechanism of islet β-cell failure, but its significance in humans is still controversial. OBJECTIVE To determine whether β-cell dedifferentiation occurs in human T2D with adequate glucose control and in nondiabetic chronic pancreatitis (NDCP), we examined pancreatic islets from nine nondiabetic controls, 10 patients with diabetes with well-controlled fasting glycemia, and four individuals with NDCP. DESIGN We calculated the percentage of hormone-negative endocrine cells and multihormone endocrine cells and scored the pathological characteristics; that is, inflammatory cell infiltration, fibrosis, atrophy, and steatosis, in each case. RESULTS We found a nearly threefold increase in dedifferentiated cells in T2D with adequate glucose control compared with nondiabetic controls (10.0% vs 3.6%, T2D vs nondiabetic controls, P < 0.0001). The dedifferentiation rate was positively correlated with the duration of diabetes. Moreover, we detected a considerable proportion of dedifferentiated cells in NDCP (10.4%), which correlated well with the grade of inflammatory cell infiltration, fibrosis, and atrophy. CONCLUSIONS The data support the view that pancreatic β-cells are dedifferentiated in patients with T2D with adequate glucose control. Furthermore, the existence of abundant dedifferentiated cells in NDCP suggests that inflammation-induced β-cell dedifferentiation can be a cause of pancreatogenic diabetes during disease progress.
Collapse
Affiliation(s)
- Jiajun Sun
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Kuang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
31
|
Jiménez-Jiménez C, Lara-Chica M, Palomares B, Collado JA, Lopez-Miranda J, Muñoz E, Calzado MA. Effect of N-acyl-dopamines on beta cell differentiation and wound healing in diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1539-1551. [PMID: 30327197 DOI: 10.1016/j.bbamcr.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
N-acyl-dopamines are endolipids with neuroprotective, antiinflammatory and immunomodulatory properties. Previously, we showed the ability of these compounds to induce HIF-1α stabilization. Hypoxia and HIF-1α play an important role in the most relevant stages of diabetic pathogenesis. This work analyzes the possible role of these molecules on beta cell differentiation, insulin production and diabetic foot ulcer. Hypoxia response pathway has been characterized in beta-cell differentiation in rat pancreatic acinar cell line and human islet-derived precursor cells. Protein and mRNA expression of key proteins in this process have been analyzed, as well as those involved in beta cells reprogramming. The effect of N-acyl-dopamines on hypoxia response pathway, beta cells reprogramming and insulin production have been studied in both cell types, as well as its role in angiogenesis models in vitro and wound closure in type 2 diabetic mice. Our results show how the hypoxia response pathway is altered during beta cells differentiation, accompanied by an induction of the transcription factor HIF-1α. We demonstrate how some N-acyl-dopamines induce beta cell differentiation and insulin production in two different cell models. In parallel, these endolipids promote angiogenesis in vitro and wound closure in type 2 diabetic mice. These results provide a biological mechanism through which some endolipids could induce beta cell differentiation. We demonstrate how N-acyl-dopamines can modulate insulin production and, in parallel, reverse HIF-1α inhibition in a wound healing model in diabetic mice. Therefore, the potential use of the pharmacological modulation of N-acyl-dopamines may have implications for diabetes prevention and treatment strategies.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Juan Antonio Collado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - J Lopez-Miranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Unidad de lípidos y aterosclerosis, Hospital Universitario Reina Sofía, Córdoba, Universidad de Córdoba, Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
32
|
Chung JO, Park SY, Cho DH, Chung DJ, Chung MY. Anemia is inversely associated with serum C-peptide concentrations in individuals with type 2 diabetes. Medicine (Baltimore) 2018; 97:e11783. [PMID: 30095635 PMCID: PMC6133397 DOI: 10.1097/md.0000000000011783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The purpose of the study was to test the hypothesis that anemia is related with serum C-peptide concentrations in individuals with type 2 diabetes mellitus (DM).This cross-sectional study was carried out in 1300 individuals with type 2 DM. We measured fasting C-peptide, 2-hour postprandial C-peptide, and postprandial C-peptide minus fasting C-peptide (ΔC-peptide) concentrations. Anemia was defined as hemoglobin (Hb) concentrations <130 g/L in men and <120 g/L in women. Anemia was graded into 2 groups: grade I anemia of Hb concentrations ≥110 g/L and grade II anemia of Hb concentrations <110 g/L.Fasting C-peptide, postprandial C-peptide, and ΔC-peptide concentrations were lower in individuals with anemia. According to the grade of anemia, the average C-peptide concentrations differed significantly after adjusting for other covariates. In the multivariable model, the statistically significant relation between anemia and serum C-peptide concentrations remained after adjusting for confounders, including age, gender, family history of diabetes, body mass index, duration of diabetes, glycated Hb, free fatty acids, hypertension, and hyperlipidemia (fasting C-peptide concentration: β = -0.057, P = .032; postprandial C-peptide concentration: β = -0.098, P < .001; ΔC-peptide concentration: β = -0.095, P < .001).Anemia was inversely associated with serum C-peptide concentrations in individuals with type 2 DM.
Collapse
Affiliation(s)
| | - Seon-Young Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonnam National University Medical School, Dong-Gu, Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
33
|
HILL NEILE, DEIGHTON KEVIN, MATU JAMIE, MISRA SHIVANI, OLIVER NICKS, NEWMAN CARRIE, MELLOR ADRIAN, O’HARA JOHN, WOODS DAVID. Continuous Glucose Monitoring at High Altitude—Effects on Glucose Homeostasis. Med Sci Sports Exerc 2018; 50:1679-1686. [DOI: 10.1249/mss.0000000000001624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Abstract
Pancreatic islet transplantation is a promising treatment option for individuals with type 1 diabetes; however, maintaining islet function after transplantation remains a large challenge. Multiple factors, including hypoxia associated events, trigger pretransplant and posttransplant loss of islet function. In fact, islets are easily damaged in hypoxic conditions before transplantation including the preparation steps of pancreas procurement, islet isolation, and culture. Furthermore, after transplantation, islets are also exposed to the hypoxic environment of the transplant site until they are vascularized and engrafted. Because islets are exposed to such drastic environmental changes, protective measures are important to maintain islet viability and function. Many studies have demonstrated that the prevention of hypoxia contributes to maintaining islet quality. In this review, we summarize the latest oxygen-related islet physiology, including computational simulation. Furthermore, we review recent advances in oxygen-associated treatment options used as part of the transplant process, including up-to-date oxygen generating biomaterials as well as a classical oxygen inhalation therapy.
Collapse
|
35
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Lee G, Jun Y, Jang H, Yoon J, Lee J, Hong M, Chung S, Kim DH, Lee S. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Acta Biomater 2018; 65:185-196. [PMID: 29101017 DOI: 10.1016/j.actbio.2017.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. STATEMENT OF SIGNIFICANCE In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems.
Collapse
|
37
|
Neural Differentiation Is Inhibited through HIF1 α/ β-Catenin Signaling in Embryoid Bodies. Stem Cells Int 2017; 2017:8715798. [PMID: 29422917 PMCID: PMC5750467 DOI: 10.1155/2017/8715798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
Extensive research in the field of stem cells and developmental biology has revealed evidence of the role of hypoxia as an important factor regulating self-renewal and differentiation. However, comprehensive information about the exact hypoxia-mediated regulatory mechanism of stem cell fate during early embryonic development is still missing. Using a model of embryoid bodies (EBs) derived from murine embryonic stem cells (ESC), we here tried to encrypt the role of hypoxia-inducible factor 1α (HIF1α) in neural fate during spontaneous differentiation. EBs derived from ESC with the ablated gene for HIF1α had abnormally increased neuronal characteristics during differentiation. An increased neural phenotype in Hif1α-/- EBs was accompanied by the disruption of β-catenin signaling together with the increased cytoplasmic degradation of β-catenin. The knock-in of Hif1α, as well as β-catenin ectopic overexpression in Hif1α-/- EBs, induced a reduction in neural markers to the levels observed in wild-type EBs. Interestingly, direct interaction between HIF1α and β-catenin was demonstrated by immunoprecipitation analysis of the nuclear fraction of wild-type EBs. Together, these results emphasize the regulatory role of HIF1α in β-catenin stabilization during spontaneous differentiation, which seems to be a crucial mechanism for the natural inhibition of premature neural differentiation.
Collapse
|
38
|
Sato Y, Tsuyama T, Sato C, Karim MF, Yoshizawa T, Inoue M, Yamagata K. Hypoxia reduces HNF4α/MODY1 protein expression in pancreatic β-cells by activating AMP-activated protein kinase. J Biol Chem 2017; 292:8716-8728. [PMID: 28364040 DOI: 10.1074/jbc.m116.767574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoxia plays a role in the deterioration of β-cell function. Hepatocyte nuclear factor 4α (HNF4α) has an important role in pancreatic β-cells, and mutations of the human HNF4A gene cause a type of maturity-onset diabetes of the young (MODY1). However, it remains unclear whether hypoxia affects the expression of HNF4α in β-cells. Here, we report that hypoxia reduces HNF4α protein expression in β-cells. Hypoxia-inducible factor was not involved in the down-regulation of HNF4α under hypoxic conditions. The down-regulation of HNF4α was dependent on the activation of AMP-activated protein kinase (AMPK), and the reduction of HNF4α protein expression by metformin, an AMPK activator, and hypoxia was inhibited by the overexpression of a kinase-dead (KD) form of AMPKα2. In addition, hypoxia decreased the stability of the HNF4α protein, and the down-regulation of HNF4α was sensitive to proteasome inhibitors. Adenovirus-mediated overexpression of KD-AMPKα2 improved insulin secretion in metformin-treated islets, hypoxic islets, and ob/ob mouse islets. These results suggest that down-regulation of HNF4α could be of importance in β-cell dysfunction by hypoxia.
Collapse
Affiliation(s)
- Yoshifumi Sato
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| | - Tomonori Tsuyama
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| | - Chinami Sato
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| | - Md Fazlul Karim
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| | - Tatsuya Yoshizawa
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| | - Masahiro Inoue
- the Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Kazuya Yamagata
- From the Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 and
| |
Collapse
|
39
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
40
|
Chandravanshi B, Bhonde R. Small molecules exert anti-apoptotic effect and reduce oxidative stress augmenting insulin secretion in stem cells engineered islets against hypoxia. Eur J Pharmacol 2016; 791:424-432. [PMID: 27614129 DOI: 10.1016/j.ejphar.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023]
Abstract
Transplantation of pancreatic islets is the most reliable treatment for Type 1 diabetes. However cell death mediated by hypoxia is considered as one of the main difficulties hindering success in islet transplantation. The aim of our experiment was to investigate the role of small molecules in survival of Islet like cell aggregates (ICAs) engineered from umbilical cord matrix under oxygen deprived condition (<5% O2). ICAs were analyzed for cell death via fluoroscein diacetate/propidium iodide (FDA/PI) staining, estimation of Caspase 3 and free radical release in presence and absence of small molecules. The samples were also analyzed for the presence of hypoxia inducible factor 1α (HIF1α) at both transcriptional and translational level. The addition of small molecules showed profound defensive effect on ICAs under hypoxic environment as evidenced by their viability and insulin secretion compared to untreated ICAs. The combinations of Eicosapentaenoic acid (EPA), Docosahexaenoic acid(DHA) and metformin and EPA, DHAandγ amino butyric acid (GABA) acted as anti-apoptotic agents for human ICAs when exposed to 1% O2 for 48h. The combinations of the small molecules reduced the total reactive oxygen species and malonaldehyde (MDA) levels and enhanced the production of glutathione peroxidise (GPx) enzyme under hypoxic conditions. Finally the increase in HIF1α at both protein and gene level confirmed the defensive effect of the additives in hypoxia. These results suggest that the combination of small molecules maintained the viability and functionality of the ICAs in hypoxia by up-regulating HIF1α expression and down regulating the Caspase 3 activity.
Collapse
Affiliation(s)
- Bhawna Chandravanshi
- School of Regenerative Medicine, Manipal University, GKVK Post, Bellary Road, Allalasandra, Yelahanka, 560065 Bangalore, India
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, GKVK Post, Bellary Road, Allalasandra, Yelahanka, 560065 Bangalore, India.
| |
Collapse
|
41
|
Madsen NL, Marino BS, Woo JG, Thomsen RW, Videbœk J, Laursen HB, Olsen M. Congenital Heart Disease With and Without Cyanotic Potential and the Long-term Risk of Diabetes Mellitus: A Population-Based Follow-up Study. J Am Heart Assoc 2016; 5:JAHA.115.003076. [PMID: 27402234 PMCID: PMC5015361 DOI: 10.1161/jaha.115.003076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Long‐term survival for persons born with congenital heart disease (CHD) is improved, but limited knowledge exists of this growing population's acquired cardiovascular risk profile. This study's purpose was to assess CHD survivors’ risk for type 2 diabetes mellitus (T2DM) with attention to the impact of cyanotic CHD. Methods and Results This population‐based cohort study included Danish subjects with CHD who were born between 1963 and 1980 and were alive at age 30 years. For each CHD case, we identified 10 individuals from the general population matched by sex and birth year, by using the Danish Civil Registration System. Complete follow‐up was obtained through Danish public registries for death, emigration, and T2DM (diagnosis and prescriptions record). We computed cumulative incidences and hazard ratios of developing T2DM after age 30 for 5149 CHD subjects compared with the general population. After adjusting for CHD severity, as well as age, sex, preterm birth, and extracardiac defects, we analyzed the impact of cyanotic compared with acyanotic CHD. By age 45 years, the cumulative incidence of T2DM after age 30 was 4% among subjects with CHD. Subjects with CHD were more likely to develop T2DM than the general population (hazard raio 1.4, 95% CI 1.1–1.6). Subjects CHD who had cyanotic defects were more likely to develop T2DM than were subjects with acyanotic CHD (hazard ratio 1.9, 95% CI 1.1–3.3). Conclusions CHD survivors had an increased risk of developing T2DM after age 30. Patients with cyanotic CHD are at particular risk. Given the cardiovascular health burden of T2DM, attention to its development in CHD survivors seems warranted.
Collapse
Affiliation(s)
- Nicolas L Madsen
- Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bradley S Marino
- Heart Center at the Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL Department of Pediatrics and Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jessica G Woo
- Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| | - Jørgen Videbœk
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| | | | - Morten Olsen
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
42
|
Bensellam M, Maxwell EL, Chan JY, Luzuriaga J, West PK, Jonas JC, Gunton JE, Laybutt DR. Hypoxia reduces ER-to-Golgi protein trafficking and increases cell death by inhibiting the adaptive unfolded protein response in mouse beta cells. Diabetologia 2016; 59:1492-1502. [PMID: 27039902 DOI: 10.1007/s00125-016-3947-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Hypoxia may contribute to beta cell failure in type 2 diabetes and islet transplantation. The adaptive unfolded protein response (UPR) is required for endoplasmic reticulum (ER) homeostasis. Here we investigated whether or not hypoxia regulates the UPR in beta cells and the role the adaptive UPR plays during hypoxic stress. METHODS Mouse islets and MIN6 cells were exposed to various oxygen (O2) tensions. DNA-damage inducible transcript 3 (DDIT3), hypoxia-inducible transcription factor (HIF)1α and HSPA5 were knocked down using small interfering (si)RNA; Hspa5 was also overexpressed. db/db mice were used. RESULTS Hypoxia-response genes were upregulated in vivo in the islets of diabetic, but not prediabetic, db/db mice. In isolated mouse islets and MIN6 cells, O2 deprivation (1-5% vs 20%; 4-24 h) markedly reduced the expression of adaptive UPR genes, including Hspa5, Hsp90b1, Fkbp11 and spliced Xbp1. Coatomer protein complex genes (Copa, Cope, Copg [also known as Copg1], Copz1 and Copz2) and ER-to-Golgi protein trafficking were also reduced, whereas apoptotic genes (Ddit3, Atf3 and Trb3 [also known as Trib3]), c-Jun N-terminal kinase (JNK) phosphorylation and cell death were increased. Inhibition of JNK, but not HIF1α, restored adaptive UPR gene expression and ER-to-Golgi protein trafficking while protecting against apoptotic genes and cell death following hypoxia. DDIT3 knockdown delayed the loss of the adaptive UPR and partially protected against hypoxia-induced cell death. The latter response was prevented by HSPA5 knockdown. Finally, Hspa5 overexpression significantly protected against hypoxia-induced cell death. CONCLUSIONS/INTERPRETATION Hypoxia inhibits the adaptive UPR in beta cells via JNK and DDIT3 activation, but independently of HIF1α. Downregulation of the adaptive UPR contributes to reduced ER-to-Golgi protein trafficking and increased beta cell death during hypoxic stress.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Emma L Maxwell
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jude Luzuriaga
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Phillip K West
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | - Jenny E Gunton
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Westmead Hospital, Sydney, NSW, Australia
- The Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|