1
|
Xu J, Cai Z, Pang Z, Chen J, Zhu K, Wang D, Tu J. Smilax glabra Flavonoids Inhibit AMPK Activation and Induce Ferroptosis in Obesity-Associated Colorectal Cancer. Int J Mol Sci 2025; 26:2476. [PMID: 40141120 PMCID: PMC11942472 DOI: 10.3390/ijms26062476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Smilax glabra flavonoids (SGF), the active components of Smilax glabra Roxb., have been demonstrated to exhibit antioxidant activity and metabolic benefits in obesity, leading us to further explore their antitumor effects in obesity-related colorectal cancer (CRC). This study investigated the antiproliferative effects of SGF on obesity-related CRC by using a murine colon adenocarcinoma MC38 cell line. The underlying mechanisms were further explored via RNA-Seq and bioinformatics analysis in combination with experimental validation. SGF was proven to possess cytotoxic effects against MC38 cells, indicated by the inhibition of proliferation and migration, especially in an adipocyte-rich environment. In line with this, SGF exhibited much stronger antiproliferative effects on MC38-transplanted tumors in obese mice. Transcriptomics analysis showed that the cytotoxic effects of SGF might be related to the AMPK pathway and ferroptosis. On this basis, SGF was confirmed to induce ferroptosis and dictate ferroptosis sensitivity in a high-fat context mimicked by a two-step conditioned medium (CM) transfer experiment or a Transwell coculture system. The results of Western blotting validated that SGF suppressed the phosphorylation of AMPK, accompanied by alterations in the biomarkers of ferroptosis. These results demonstrate that SGF exerts in vitro and in vivo antiproliferative effects in obesity-associated CRC through inhibiting AMPK activation, thereby driving ferroptosis.
Collapse
Affiliation(s)
- Jianqin Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyao Pang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyan Zhu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Dejun Wang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| |
Collapse
|
2
|
Abaidullah M, La S, Liu M, Liu B, Cui Y, Wang Z, Sun H, Ma S, Shi Y. Polysaccharide from Smilax glabra Roxb Mitigates Intestinal Mucosal Damage by Therapeutically Restoring the Interactions between Gut Microbiota and Innate Immune Functions. Nutrients 2023; 15:4102. [PMID: 37836386 PMCID: PMC10574425 DOI: 10.3390/nu15194102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Shaokai La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
3
|
Feng M, Liu L, Wang J, Zhang J, Qu Z, Wang Y, He B. The Molecular Mechanisms Study of Engeletin Suppresses RANKL-Induced Osteoclastogenesis and Inhibits Ovariectomized Murine Model Bone Loss. J Inflamm Res 2023; 16:2255-2270. [PMID: 37250105 PMCID: PMC10225148 DOI: 10.2147/jir.s401519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Osteoclastogenesis, the process of osteoclast differentiation, plays a critical role in bone homeostasis. Overexpression of osteoclastogenesis can lead to pathological conditions, such as osteoporosis and osteolysis. This study aims to investigate the role of Engelitin in the process of RAW264.7 cell differentiation into osteoclasts induced by RANKL, as well as in a mouse model of bone loss following ovariectomy. Methods We used RANKL-stimulated RAW264.7 cells as an in vitro osteoclast differentiation model. The effects of Eng on morphological changes during osteoclast differentiation were evaluated using TRAP and F-actin staining. The effects of Eng on the molecular level of osteoclast differentiation were evaluated using Western blot and q-PCR. The level of reactive oxygen species was evaluated using the DCFH-DA staining method. We then used ovariectomized mice as a bone loss animal model. The effects of Eng on changes in bone loss in vivo were evaluated using micro-CT and histological analysis staining. Results In the in vitro experiments, Eng exhibited dose-dependent inhibition of osteoclast formation and F-actin formation. At the molecular level, Eng dose-dependently suppressed the expression of specific RNAs (NFATc1, c-Fos, TRAP, Cathepsin K, MMP-9) involved in osteoclast differentiation, and inhibited the phosphorylation of proteins such as IκBα, P65, ERK, JNK, and P38. Additionally, Eng dose-dependently suppressed ROS levels and promoted the expression of antioxidant enzymes such as Nrf2, HO-1, and NQO1. In the in vivo experiments, Eng improved bone loss in ovariectomized mice. Conclusion Our study found that Eng inhibited RANKL-induced osteoclast differentiation through multiple signaling pathways, including MAPKs, NF-κB, and ROS aggregation. Furthermore, Eng improved bone loss in ovariectomized mice.
Collapse
Affiliation(s)
- Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Lin Liu
- Department of Critical Care Medicine, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jiang Wang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jialang Zhang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Sun B, Wang WX, Jia AQ. Studies on the phytochemical constituents of Smilax elegantissima Gagnep. Nat Prod Res 2023; 37:1365-1371. [PMID: 34842007 DOI: 10.1080/14786419.2021.2010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nine compounds were isolated and elucidated from this species, among which, two new compounds (1, 2) and seven known compounds (3-9). Their structures were determined by means of extensively spectroscopic analysis including HR-ESI-MS, 1H NMR, 13C NMR, HSQC and HMBC. The bioactivities evaluation was referred to the cytotoxic assay on four human tumor cell lines of the ethanol extract, different fractions and 6 compounds. The results demonstrated that the dichloromethane fraction showed the strongest cytotoxicity, followed by the ethyl acetate fraction. Compounds 4 and 6 had significant effects on SMMC-7721 and Hela cells.
Collapse
Affiliation(s)
- Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wei-Xin Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
5
|
Wu H, Wang Y, Zhang B, Li YL, Ren ZX, Huang JJ, Zhang ZQ, Lin ZJ, Zhang XM. Smilax glabra Roxb.: A Review of Its Traditional Usages, Phytochemical Constituents, Pharmacological Properties, and Clinical Applications. Drug Des Devel Ther 2022; 16:3621-3643. [PMID: 36277602 PMCID: PMC9579009 DOI: 10.2147/dddt.s374439] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Smilax glabra Roxb. (SGB) is a medicinal plant widely distributed in 17 countries worldwide. It is the primary raw material of the world-famous and best-selling functional food and beneficial tea. SGB was first recorded in Ben Cao Jing Ji Zhu of the Southern and Northern Dynasties (420–589 AD) and was reported for nutritional and medicinal properties for thousands of years. This review searched PubMed, Web of Science, and other databases for relevant literature on SGB species until April 2022. It aims to provide more integrated thinking, detailed awareness, and better knowledge of SGB. More than 200 chemical components have been discovered, including flavonoids, phenolic, phenolic acids, stilbenes, organic acids, phenylpropanoids, and others. Previous studies have demonstrated that SGB and its active ingredients show a wide range of pharmacological effects, including anti-infective, anti-cancer, anti-inflammatory, antioxidant, cardiovascular protection, etc. However, many studies on the biological activity of this plant were mainly based on crude extracts and active ingredients, and there is a lack of clinical studies and toxicity studies to support the development of drug design, development, and therapy. In summary, this review will provide specific and valuable suggestions and guidelines for further research and application of this plant in the medicinal field.
Collapse
Affiliation(s)
- Hao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Correspondence: Bing Zhang, Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, South Yang-Guang Road, Fang-shan District, Beijing, 100029, People’s Republic of China, Email
| | - Yao-lei Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhi-xin Ren
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jing-jian Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhi-qi Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhi-jian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao-meng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Dai R, Liu M, Xiang X, Li Y, Xi Z, Xu H. OMICS Applications for Medicinal Plants in Gastrointestinal Cancers: Current Advancements and Future Perspectives. Front Pharmacol 2022; 13:842203. [PMID: 35185591 PMCID: PMC8855055 DOI: 10.3389/fphar.2022.842203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancers refer to a group of deadly malignancies of the gastrointestinal tract and organs of the digestive system. Over the past decades, considerable amounts of medicinal plants have exhibited potent anticancer effects on different types of gastrointestinal cancers. OMICS, systems biology approaches covering genomics, transcriptomics, proteomics and metabolomics, are broadly applied to comprehensively reflect the molecular profiles in mechanistic studies of medicinal plants. Single- and multi-OMICS approaches facilitate the unravelling of signalling interaction networks and key molecular targets of medicinal plants with anti-gastrointestinal cancer potential. Hence, this review summarizes the applications of various OMICS and advanced bioinformatics approaches in examining therapeutic targets, signalling pathways, and the tumour microenvironment in response to anticancer medicinal plants. Advances and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xincheng Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| |
Collapse
|
7
|
Sun G, Zhuang W, Lin QT, Wang LM, Zhen YH, Xi SY, Lin XL. Partial response to Chinese patent medicine Kangliu pill for adult glioblastoma: A case report and review of the literature. World J Clin Cases 2021; 9:2845-2853. [PMID: 33969068 PMCID: PMC8058673 DOI: 10.12998/wjcc.v9.i12.2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common type of brain tumor and is invariably fatal, with a mean survival time of 8-15 mo for recently diagnosed tumors, and a 5-year survival rate of only 7.2%. The standard treatment for newly diagnosed glioblastoma includes surgery followed by concurrent chemoradiotherapy and further adjuvant temozolomide. However, the prognosis remains poor and long-term survival is rare. This report aimed to demonstrate a new therapeutic strategy for the treatment of glioblastoma.
CASE SUMMARY A patient was referred to the Department of Neurosurgery with an intracranial space-occupying lesion with a maximum diameter of approximately 5 cm. The tumor was compressing functional areas, and the patient accordingly underwent partial resection and concurrent chemoradiotherapy. The imaging and pathological findings were consistent with a diagnosis of glioblastoma with oligodendroglioma differentiation (World Health Organization IV). The patient was finally diagnosed with glioblastoma. However, the patient discontinued treatment due to intolerable side effects, and was prescribed Kangliu pill (KLP) 7.5 g three times/d, which he has continued to date. Significant shrinkage of the tumor (maximum diameter reduced from about 3.5 to about 2 cm) was found after 3 mo of KLP therapy, and the tumor was further reduced to about 1 cm after 3 years. The patient’s symptoms of headache, limb weakness, and left hemiplegia were relieved, with no side effects.
CONCLUSION KLP has been a successful intervention for glioblastoma, and the current case indicates that traditional Chinese medicine may offer effective alternative therapies for glioblastoma.
Collapse
Affiliation(s)
- Ge Sun
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing-Tang Lin
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lei-Ming Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yu-Hang Zhen
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine and Cancer Research Center, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xiao-Lan Lin
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
8
|
Evaluation of anticancer effects of a pharmaceutically viable extract of a traditional polyherbal mixture against non-small-cell lung cancer cells. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:242-252. [PMID: 32139200 DOI: 10.1016/j.joim.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present work tested organic solvents to prepare an extract with anticancer properties from a polyherbal mixture containing Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizomes). We evaluate anticancer effects in non-small-cell lung cancer cells (NCI-H292), and discuss optimization for pharmaceutical use in the context of efficacy, yield and toxicity. METHODS Using different organic solvents, six extracts were prepared from the polyherbal mixture. Based on the cytotoxic effects of these extracts on NCI-H292 cells and normal lung cells (MRC-5), as evaluated by the sulphorhodamine B assay, the total ethyl acetate (T-EA) extract was selected for further analysis. The possible anticancer mechanisms were assessed by evaluating the extract's effects on apoptosis (through fluorescent microscopic analysis, DNA fragmentation analysis, caspase 3/7 assay and analysis of expression levels of apoptosis-related genes p53, Bax, survivin, Hsp70 and Hsp90), colony formation and antioxidant activity. RESULTS The extract had cytotoxic effects against NCI-H292 cells in a time- and dose-dependent manner. Significant antioxidant activity and inhibition of colony formation were also observed. The expression level of caspase 3/7 significantly (P < 0.001) increased in NCI-H292 cells treated with 50 μg/mL of the extract. The same dosage led to a significant increase in expression levels of Bax and p53 (P < 0.05 and P < 0.01 respectively), accompanied by a significant decrease (P < 0.0001) in survivin, Hsp70 and Hsp90. CONCLUSION T-EA extract of the above polyherbal mixture has cytotoxicity against NCI-H292 cells via induction of apoptosis, antioxidant effects and inhibition of colony formation.
Collapse
|
9
|
Huang R, Wang F, Yang Y, Ma W, Lin Z, Cheng N, Long Y, Deng S, Li Z. Recurrent activations of transient receptor potential vanilloid-1 and vanilloid-4 promote cellular proliferation and migration in esophageal squamous cell carcinoma cells. FEBS Open Bio 2019; 9:206-225. [PMID: 30761248 PMCID: PMC6356177 DOI: 10.1002/2211-5463.12570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Some members of the transient receptor potential vanilloid (TRPV) subfamily of cation channels are thermosensitive. Earlier studies have revealed the distribution and functions of these thermo‐TRPVs (TRPV1–4) in various organs, but their expression and function in the human esophagus are not fully understood. Here, we probed for the expression of the thermo‐TRPVs in one nontumor human esophageal squamous cell line and two esophageal squamous cell carcinoma (ESCC) cell lines. TRPV1, TRPV2, and TRPV4 proteins were found to be upregulated in ESCC cells, while TRPV3 was not detectable in any of these cell lines. Subsequently, channel function was evaluated via monitoring of Ca2+ transients by Ca2+ imaging and nonselective cation channel currents were recorded by whole‐cell patch clamp. We found that TRPV4 was activated by heat at 28 °C–35 °C, whereas TRPV1 and TRPV2 were activated by higher, noxious temperatures (44 °C and 53 °C, respectively). Furthermore, TRPV1 was activated by capsaicin (EC50 = 20.32 μm), and this effect was antagonized by AMG9810; TRPV2 was activated by a newly developed cannabinoid compound, O1821, and inhibited by tranilast. In addition, TRPV4 was activated by hypotonic solutions (220 m Osm), and this effect was abolished by ruthenium red. The effects of TRPV1 and TRPV4 on ESCC were also explored. Our data, for the first time, showed that the overactivation of TRPV1 and TRPV4 promoted the proliferation and/or migration of ESCC cells. In summary, TRPV1, TRPV2, and TRPV4 were functionally expressed in human esophageal squamous cells, and thermo‐TRPVs might play an important role in the development of ESCC.
Collapse
Affiliation(s)
- Rongqi Huang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China
| | - Fei Wang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuchen Yang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Na Cheng
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Yan Long
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Sihao Deng
- Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China.,GZMU-GIBH Joint School of Life Sciences Guangzhou Medical University China
| |
Collapse
|
10
|
Zhao JW, Zheng CY, Wei H, Wang DW, Zhu W. Proapoptic and immunotoxic effects of sulfur-fumigated polysaccharides from Smilax glabra Roxb. in RAW264.7 cells. Chem Biol Interact 2018; 292:84-93. [DOI: 10.1016/j.cbi.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/17/2018] [Accepted: 07/11/2018] [Indexed: 02/03/2023]
|
11
|
Lumlerdkij N, Tantiwongse J, Booranasubkajorn S, Boonrak R, Akarasereenont P, Laohapand T, Heinrich M. Understanding cancer and its treatment in Thai traditional medicine: An ethnopharmacological-anthropological investigation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:259-273. [PMID: 29409982 DOI: 10.1016/j.jep.2018.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai traditional medicine (TTM) is widely practiced in Thailand and continues to gain importance in cancer management, but little is known about the TTM practitioners' emic concepts and practice. AIM OF THE STUDY With this study we firstly aim to document the practice of cancer treatment and prevention by TTM practitioners and, secondly, to evaluate how such traditional concepts and practices are correlated with biomedical ones. This in turn can form the basis for developing novel strategies for designing pharmacological experiments and longer term strategies to develop TTM practice. METHODS Semi-structured interviews with 33 TTM practitioners were performed in five provinces in different regions of Thailand. The following information were recorded; basic information of informants, descriptions of cancer (mareng in Thai), causes, diagnosis, treatment, and prevention. Plants used in the treatment and prevention of mareng were also collected. RESULTS Using an in depth ethnographic approach four representative case studies to assist in a better understanding of the characteristics of mareng, its diagnosis, treatment, and prevention are reported here. Five characteristics of mareng - waste accumulation (khong sia), chronic illnesses (krasai), inflammation (kan aksep), bad blood (luead) and lymph (namlueang), and the imbalance of four basic elements (dhātu si) - have been identified. Explanatory models of cancer in TTM were linked with biomedical concepts and relevant pharmacological actions. Traditional uses and available scientific evidence of medicinal plants mentioned in the case studies for the treatment or prevention of mareng are presented and discussed. CONCLUSION Here for the first time five main characteristics of cancer based on Thai traditional medical concepts are analysed. Our findings are relevant not only for the planning of clinical studies or pharmacological experiment in the search for novel compounds for cancer treatment and prevention, but also for the integration of Thai traditional medicine in cancer care.
Collapse
MESH Headings
- Aged
- Anthropology, Medical
- Antineoplastic Agents, Phytogenic/adverse effects
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/therapeutic use
- Asian People/psychology
- Cultural Characteristics
- Ethnopharmacology
- Female
- Health Knowledge, Attitudes, Practice/ethnology
- Humans
- Interviews as Topic
- Male
- Medicine, Traditional
- Middle Aged
- Neoplasms/drug therapy
- Phytotherapy
- Plant Extracts/adverse effects
- Plant Extracts/isolation & purification
- Plant Extracts/therapeutic use
- Plants, Medicinal/adverse effects
- Plants, Medicinal/chemistry
- Plants, Medicinal/classification
- Thailand
Collapse
Affiliation(s)
- Natchagorn Lumlerdkij
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Jaturapat Tantiwongse
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Suksalin Booranasubkajorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Ranida Boonrak
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Tawee Laohapand
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Michael Heinrich
- Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
12
|
Distinguishing Smilax glabra and Smilax china rhizomes by flow-injection mass spectrometry combined with principal component analysis. ACTA PHARMACEUTICA 2018; 68:87-96. [PMID: 29453916 DOI: 10.2478/acph-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 11/20/2022]
Abstract
Flow-injection mass spectrometry (FIMS) coupled with a chemometric method is proposed in this study to profile and distinguish between rhizomes of Smilax glabra (S. glabra) and Smilax china (S. china). The proposed method employed an electrospray-time-of-flight MS. The MS fingerprints were analyzed using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) with the aid of SIMCA software. Findings showed that the two kinds of samples perfectly fell into their own classes. Further predictive study showed desirable predictability and the tested samples were successfully and reliably identified. The study demonstrated that the proposed method could serve as a powerful tool for distinguishing between S. glabra and S. china.
Collapse
|
13
|
Hua S, Zhang Y, Liu J, Dong L, Huang J, Lin D, Fu X. Ethnomedicine, Phytochemistry and Pharmacology of Smilax glabra: An Important Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:261-297. [PMID: 29433390 DOI: 10.1142/s0192415x18500143] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smilax glabra (SG) Roxb., a well-known traditional Chinese medicine, has been extensively used worldwide for its marked pharmacological activities for treating syphilitic poisoned sores, limb hypertonicity, morbid leucorrhea, eczema pruritus, strangury due to heat, carbuncle toxin, and many other human ailments. Approximately 200 chemical compounds have been isolated from SG Roxb., and the major components have been determined to be flavonoids and flavonoid glycosides, phenolic acids, and steroids. Among these active compounds, the effects of astilbin, which is used as a quality control marker to determine the quality of SG Roxb., have been widely investigated. Based on in vivo and in vitro studies, the primary active components of SG Roxb. possess various pharmacological activities, such as cytotoxic, anti-inflammatory and immune-modulatory effects, anti-oxidant, hepatoprotective, antiviral, antibacterial, and cardiovascular system protective activities. However, an extensive study to determine the relationship between the chemical compositions and pharmacological effects of SG Roxb. has not been conducted and is worth of our study. Improving the means of utilizing the effects of SG is crucial. The present paper reviews the ethnopharmacology, phytochemistry, and pharmacology of SG Roxb. and assesses its ethnopharmacological use in order to explore its therapeutic potential for future research.
Collapse
Affiliation(s)
- Shiyao Hua
- * School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yiwei Zhang
- † School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Jiayue Liu
- * School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lin Dong
- * School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Jun Huang
- * School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Dingbo Lin
- ¶ Department of Nutritional Sciences, Oklahoma State University, 419 Human Sciences, Stillwater 74078, USA
| | - Xueyan Fu
- * School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China.,‡ Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China.,§ Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, P. R. China
| |
Collapse
|
14
|
She T, Feng J, Lian S, Li R, Zhao C, Song G, Luo J, Dawuti R, Cai S, Qu L, Shou C. Sarsaparilla (Smilax Glabra Rhizome) Extract Activates Redox-Dependent ATM/ATR Pathway to Inhibit Cancer Cell Growth by S Phase Arrest, Apoptosis, and Autophagy. Nutr Cancer 2017; 69:1281-1289. [PMID: 29111814 DOI: 10.1080/01635581.2017.1362447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tiantian She
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Junnan Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ruobing Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guoliang Song
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Jie Luo
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Rouxianguli Dawuti
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Shaoqing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
15
|
Mannarreddy P, Denis M, Munireddy D, Pandurangan R, Thangavelu KP, Venkatesan K. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines. Biomed Pharmacother 2017; 95:1375-1387. [PMID: 28946185 DOI: 10.1016/j.biopha.2017.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023] Open
Abstract
The wild weed Cyperus rotundus is commonly used as traditional medicine in different parts of the world. Sequential extraction of C. rotundus rhizome with solvents of different polarity namely hexane, chloroform, ethyl acetate, methanol and water were prepared and the free radical scavenging activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Based on high antioxidant activity of methanolic extract of C. rotundus rhizome (MRCr) was further investigated for its cytotoxic effect on different human cancer cell lines-breast (MCF-7), cervical (HeLa), liver (Hep G2), prostate (PC-3), colorectal (HT-29) and normal cell line (MCF-12A) by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay evaluated as 50% inhibition of growth (IC50). Apoptosis cells were analysed by flow cytometry stained with annexin V-Fluorescein isothiocyanate conjugate (AF) and propidium iodide (PI). The cellular and nuclear changes were examined under light and fluorescent microscope using 4', 6' diamino-2-phenylindole (DAPI) stain, dual stains of AF/PI and acridine orange/ethidium bromide (AO/EB). The cytotoxic effects on the tested cancer cell lines ranged from 4.52±0.57 to 9.85±0.68μgml-1. The migration assay was showed the inhibitory effect with MRCr. The MRCr showed significant anticancer activity against all the tested cancer cell lines and also protected the non-cancer cells. The anticancer activity suggests further elucidation for the formulation of natural pharmaceutical products in the treatment of cancer.
Collapse
Affiliation(s)
- Prabu Mannarreddy
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| | - Maghil Denis
- Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | - Durgadevi Munireddy
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | - Ranjani Pandurangan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | | | - Kaviyarasan Venkatesan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| |
Collapse
|
16
|
Li Y, Deng S, Ζhao Y, Liu L, Zhao R. Smilax glabra Rhizoma affects the pharmacokinetics and tissue distribution of methotrexate by increasing the P‑glycoprotein mRNA expression in rats after oral administration. Mol Med Rep 2017; 16:7633-7640. [PMID: 28944899 DOI: 10.3892/mmr.2017.7559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
Methotrexate (MTX) is a widely used immunosuppressant and anticancer agent with high toxicity. Smilax glabra Rhizoma (SGR) has the effect of detoxification and immunoregulation, and has been used as both food and folk medicine in many countries. Co‑administration of MTX and SGR occurs in several diseases. However, whether they work synergistically or are incompatible remains unknown. In the present study, MTX was administrated to rats alone or combined with SGR. Blood and tissue samples were collected at designated times. The concentrations of MTX were determined by high‑performance liquid chromatography. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detected the gene expression. SGR decreased the AUC0‑t and Cmax of MTX by 44.5 and 48.2%, but in a tissue‑dependent manner. The total exposure of MTX was significantly decreased in the small intestine, stomach, plasma, and kidney by 61.6, 34.7, 63.3 and 46.1%, respectively, but was increased in the lung and spleen by 82.9 and 21.0%, respectively. RT‑qPCR demonstrated that SGR increased the mean P‑glycoprotein (gp) mRNA expression in the small intestine 2.54 times, but had a marginal effect on the expression of organic anion transporting polypeptide 2, and organic anion transporter (OAT)1 and OAT2. These results suggested that SGR affects the pharmacokinetics of MTX in a tissue‑dependent manner by affecting P‑gp, and the clinical effect of co‑administration depended on the disease site.
Collapse
Affiliation(s)
- Yang Li
- Key Research Laboratory of Gynecology, Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Shigui Deng
- Department of The Public Experiment Platform, Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Ya Ζhao
- Department of Chinese Medicine Property Team, Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lijuan Liu
- Department of Chinese Medicine Property Team, Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Ruizhi Zhao
- Department of Chinese Medicine Property Team, Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
17
|
Astilbin from Smilax glabra Roxb. Attenuates Inflammatory Responses in Complete Freund's Adjuvant-Induced Arthritis Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8246420. [PMID: 29104606 PMCID: PMC5585559 DOI: 10.1155/2017/8246420] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 12/13/2022]
Abstract
Astilbin, a flavonoid compound, was isolated from the rhizome of Smilax glabra Roxb. (with red cross-section) grown in Guizhou Province, China. We accessed its effect and potential mechanism on attenuation of the inflammatory response in CFA-induced AA rats. Our results showed that daily oral administration of astilbin at 5.3 mg/kg reduced joint damage in the hind paw of AA rats. Accordingly, astilbin exhibited remarkable inhibitory effects on TNF-α, IL-1β, and IL-6 mRNA expression. Significant decrease of serum cytokine levels of TNF-α, IL-1β, and IL-6 was also observed in astilbin-treated AA rats compared to the vehicle-treated AA rats. The reduced expression of these cytokines was associated with protein activity suppression of three key molecular targets in the pathogenesis of RA, including IKKβ, NF-κB p65 subunit, and TLR adaptor MyD88. Furthermore, the therapeutic effects of astilbin on the inhibition of cytokines production as well as the reduction of inflammatory response in AA rats are close to a commonly used antirheumatic drug, leflunomide. Collectively, our data suggest that the action mechanism of astilbin, as an anti-inflammatory agent for RA treatment, is associated with modulating the production of proinflammatory cytokines and inhibiting the expression of key elements in NF-κB signaling pathway mediated by TLR.
Collapse
|
18
|
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017; 12:20. [PMID: 28702078 PMCID: PMC5506596 DOI: 10.1186/s13020-017-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
In traditional Chinese medicine (TCM) theory, pathogenic heat and toxins, which are akin to the inflammatory factors, are the causes of cancer and could promote its virulent development. Therefore, heat-clearing and detoxicating (HCD) herbs are essential components of TCM formulas for cancer treatment. An increasing interest has been focused on the study of HCD herbs and accumulated evidences have shown that HCD herbs or HCD herbs-based formulas exhibited remarkable anticancer effects when used alone or combined with other therapeutic approaches. Some of the HCD herb-derived products have been tested in clinical trials. Studies revealed that extracts or pure compounds of the HCD herbs showed a broad anticancer spectrum against both solid and hematologic malignancies without significant toxic effects. Notably, some HCD herbs or formulas could strongly enhance the anticancer activities of chemo- or radio-therapy and alleviate their side effects. The anticancer activities of HCD herb exacts or the pure compounds were reported to be through multiple cellular or molecular mechanisms, such as induction of cancer cell apoptosis, differentiation and cell cycle arrest, inhibition of cancer cell growth, invasion and metastasis, and inhibition of tumor angiogenesis. In this review, we provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate the further study and application of HCD herbs.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| |
Collapse
|
19
|
Corder EH, Khalsa KPS. Rejuvenation by inhibiting TGF-β1/pSmad signaling. Oncotarget 2015. [PMID: 26219335 PMCID: PMC4627256 DOI: 10.18632/oncotarget.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|