1
|
Ahmad S, Akmal H, Shahzad K, Ahmad Khan MK, Jabeen F. Evaluating the Toxicity Induced by Bisphenol F in Labeo rohita Fish Using Multiple Biomarker Approach. SCIENTIFICA 2024; 2024:8646751. [PMID: 39555222 PMCID: PMC11567727 DOI: 10.1155/2024/8646751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 11/19/2024]
Abstract
Bisphenol F (BPF) is an emerging contaminant extensively used in the pharmaceutical, chemical, and food industries, exerting deleterious effects on human and wildlife health. Therefore, the current study was conducted to assess the toxicity induced by BPF in rohu Labeo rohita using multiple biomarkers such as oxidative stress, activity of antioxidant enzymes, biochemical parameters, histology, and genotoxicity. Fish were separated into four groups (T1-T4). Group T1 served as a control (0 μg/L), while Groups T2, T3, and T4 were exposed to BPF concentrations of 600 μg/L, 1200 μg/L, and 1800 μg/L, respectively, for 21 days. Results showed a significant (p < 0.05) increase in oxidative biomarkers (thiobarbituric acid reactive substance [TBARS] and reactive oxygen species [ROS]), while the concentration of antioxidant biomarkers (peroxidase [POD], superoxide dismutase [SOD], reduced glutathione [GSH], and catalase) was significantly (p < 0.05) decreased with the rising concentration of BPF in the liver, gills, and kidney of fish. Significant reduction (p < 0.05) in biochemical parameters was measured from collected whole blood, including red blood cells (RBCs), hemoglobin (HGB), mean corpuscular HGB (MCH), MC volume (MCV), hematocrit (HCT), MC HGB concentration (MCHC), platelets, low-density lipoprotein (LDL), cholesterol, high-density lipoprotein (HDL), total proteins, very LDL (VLDL), albumin and globulin, while white blood cells (WBCs), neutrophils, triglycerides, aspartate aminotransferase (AST), blood glucose, and alanine transaminase (ALT) levels were increased significantly (p < 0.05). Comet assay showed the DNA damage potential of BPF in erythrocytes. Histological examination showed that exposure to BPF causes several degenerative effects in the soft tissues (gills, liver, and kidney) of treated fish. It is concluded that BPF induces deleterious effects via disruptions in histological, genotoxic, and biochemical alterations in several organs of exposed fish.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | - Hasnain Akmal
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara 56130, Pakistan
| | | | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad 37251, Pakistan
| |
Collapse
|
2
|
Álvarez-González B, Hernández AF, Zafra-Gómez A, Chica-Redecillas L, Cuenca-López S, Vázquez-Alonso F, Martínez-González LJ, Álvarez-Cubero MJ. Exposure to environmental pollutants and genetic variants related to oxidative stress and xenobiotic metabolism-Association with prostate cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104455. [PMID: 38657881 DOI: 10.1016/j.etap.2024.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
This study assessed whether genetic variants coding for certain enzymes involved in xenobiotic detoxification, antioxidant defences and DNA repair, along with exposure to environmental chemicals, were associated with an increased prostate cancer (PCa) risk. The study population consisted of 300 men (150 PCa cases and 150 controls) which underwent prostate biopsy as their serum prostate specific antigen (PSA) levels were greater than 4 ng/ml. Genetic variants in GSTM1, GSTP1, SOD2, CAT, GPX1, XRCC1 were determined and data for chemical exposures was obtained through a structured questionnaire and by biomonitoring in a subsample of cases and controls. High serum PSA levels were associated with a greater risk of PCa, while physical exercise appears to exert a protective effect against its development. In addition, elevated urinary levels of certain organic pollutants, such as benzo(a)pyrene (BaP), bisphenol A (BPA), and ethyl-paraben (EPB), were associated with an increased risk of PCa.
Collapse
Affiliation(s)
- Beatriz Álvarez-González
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain
| | - Antonio F Hernández
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Alberto Zafra-Gómez
- Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, Granada 18071, Spain
| | - Lucia Chica-Redecillas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - Sergio Cuenca-López
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| |
Collapse
|
3
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
4
|
Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB. Bombesin-like receptor 3 expression induced by bisphenol A is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing inflammation in liver cells. Mol Biol Rep 2024; 51:271. [PMID: 38302795 DOI: 10.1007/s11033-023-09080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.
Collapse
Affiliation(s)
- Layla Qasim Ismael
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, 44001, Iraq
| | - Yong Yoke Keong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Chew Ai Lan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia.
| |
Collapse
|
5
|
Cao Y, Xu J, Liu J, Liang Y, Ao F, Wang S, Wei Z, Wang L. Bisphenol A exposure decreases sperm production and male fertility through inhibition PCBP2 expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123309-123323. [PMID: 37985585 DOI: 10.1007/s11356-023-30815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Growing evidence suggests that the exposure of bisphenol A (BPA), an endocrine disruptor that commonly present in the environment, can impair reproduction. However, conflicting results have been reported, and the underlying mechanism has not been fully understood. In this study, 3-week-old male mice were oral exposed to 50 mg/kg/d BPA or equivalent corn oil for 28 days. Their testis and epididymis were then collected for morphology examination by HE stains. The number of sperm was counted, and the morphology was analyzed by PNA (peptide nucleic acid) and pap staining. Fertilization capacity and successful rate were analyzed after mating with wide-type females. Spermatid DNA damage and apoptosis were evaluated by DFI, γH2AX stain, and TUNEL assay. RNA sequencing analysis was conducted to identify differentially expressed genes in testicular tissue of mice exposed to BPA. RNA interference was used to verify the regulatory mechanism of BPA exposure on gene expression in GC-2 cells. Our data showed that the total number of sperm was decreased and the morphology was impaired in BPA-exposed mice. In addition, the serum testosterone level and fertilization efficiency were also reduced. Mechanism studies showed that BPA could suppress the expression of PCBP2, a key regulatory gene in spermatid development, by activating the EZH2/H3K27me3. In conclusion, we found that BPA exposure can impair spermatid development via affecting key gene expression that is at least partially due to epigenetic modification.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Fei Ao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Shengnan Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Zexiao Wei
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52 Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
7
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
9
|
Štampar M, Ravnjak T, Domijan AM, Žegura B. Combined Toxic Effects of BPA and Its Two Analogues BPAP and BPC in a 3D HepG2 Cell Model. Molecules 2023; 28:molecules28073085. [PMID: 37049848 PMCID: PMC10095618 DOI: 10.3390/molecules28073085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Bisphenol A (BPA) is one of the most commonly used substances in the manufacture of various everyday products. Growing concerns about its hazardous properties, including endocrine disruption and genotoxicity, have led to its gradual replacement by presumably safer analogues in manufacturing plastics. The widespread use of BPA and, more recently, its analogues has increased their residues in the environment. However, our knowledge of their toxicological profiles is limited and their combined effects are unknown. In the present study, we investigated the toxic effects caused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP and BPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed that BPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP and BPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC) decreased cell viability in a dose-dependent manner, but the significant difference was only observed for the combination of BPA/BPC (both at 40 µM). After 96-h exposure, none of the BPs studied affected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cell viability in a dose-dependent manner that was significant for the combination of 4 µM BPA and 4 µM BPAP. None of the BPs and their binary mixtures studied affected the surface area and growth of spheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggered oxidative stress, as measured by the production of reactive oxygen species and malondialdehyde, at both exposure times. Overall, the results suggest that it is important to study the effects of BPs as single compounds. It is even more important to study the effects of combined exposures, as the combined effects may differ from those induced by single compounds.
Collapse
|
10
|
Hernandez A, Sonavane M, Smith KR, Seiger J, Migaud ME, Gassman NR. Dihydroxyacetone suppresses mTOR nutrient signaling and induces mitochondrial stress in liver cells. PLoS One 2022; 17:e0278516. [PMID: 36472985 PMCID: PMC9725129 DOI: 10.1371/journal.pone.0278516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Dihydroxyacetone (DHA) is the active ingredient in sunless tanning products and a combustion product from e-juices in electronic cigarettes (e-cigarettes). DHA is rapidly absorbed in cells and tissues and incorporated into several metabolic pathways through its conversion to dihydroxyacetone phosphate (DHAP). Previous studies have shown DHA induces cell cycle arrest, reactive oxygen species, and mitochondrial dysfunction, though the extent of these effects is highly cell-type specific. Here, we investigate DHA exposure effects in the metabolically active, HepG3 (C3A) cell line. Metabolic and mitochondrial changes were evaluated by characterizing the effects of DHA in metabolic pathways and nutrient-sensing mechanisms through mTOR-specific signaling. We also examined cytotoxicity and investigated the cell death mechanism induced by DHA exposure in HepG3 cells. Millimolar doses of DHA were cytotoxic and suppressed glycolysis and oxidative phosphorylation pathways. Nutrient sensing through mTOR was altered at both short and long time points. Increased mitochondrial reactive oxygen species (ROS) and mitochondrial-specific injury induced cell cycle arrest and cell death through a non-classical apoptotic mechanism. Despite its carbohydrate nature, millimolar doses of DHA are toxic to liver cells and may pose a significant health risk when higher concentrations are absorbed through e-cigarettes or spray tanning.
Collapse
Affiliation(s)
- Arlet Hernandez
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham AL, United States of America
| | - Manoj Sonavane
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham AL, United States of America
| | - Kelly R. Smith
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Jensyn Seiger
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama Whiddon College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham AL, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
12
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
13
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
14
|
Lee JL, Wang YC, Hsu YA, Chen CS, Weng RC, Lu YP, Chuang CY, Wan L. Bisphenol A Coupled with a High-Fat Diet Promotes Hepatosteatosis through Reactive-Oxygen-Species-Induced CD36 Overexpression. TOXICS 2022; 10:208. [PMID: 35622622 PMCID: PMC9145332 DOI: 10.3390/toxics10050208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that affects lipid metabolism and contributes to non-alcoholic fatty liver disease (NAFLD). The mechanism of BPA exposure in hepatic lipid accumulation and its potential effect on NAFLD remain unclear. This study investigated the effect of BPA-exposure-induced hepatic lipid deposition on the pathology of NAFLD and its underlying mechanism in vitro and in vivo. BPA increased intracellular reactive oxygen species (ROS) levels, and promoted fatty acid uptake through upregulation of a free fatty acid uptake transporter, cluster of differentiation 36 (CD36), in HUH-7 cells. Additionally, C57BL/6 mice administered a high-fat/high-cholesterol/high-cholic acid diet (HFCCD) and BPA (50 mg/kg body weight) for 8 weeks developed a steatohepatitis-like phenotype, characterized by alpha-smooth muscle actin (α-SMA, an indicator of hepatic fibrosis) and cleaved caspase 3 (an indicator of apoptosis) in hepatic tissue; moreover, they had a higher oxidative stress index of 8-hydroxydeoxyguanosine (8-OHdG) in liver tissue compared to the control group. Treatment with ROS scavenger n-acetylcysteine (NAC) ameliorated BPA-mediated HFCCD-induced lipid accumulation and steatohepatitis in the livers of treated mice. Our study indicates that BPA acts synergistically to increase hepatic lipid uptake and promote NAFLD development by stimulating ROS-induced CD36 overexpression.
Collapse
Affiliation(s)
- Jyun-Lin Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung 427, Taiwan;
| | - Yu-An Hsu
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chih-Sheng Chen
- Division of Chinese Medicine, Asia University Hospital, Taichung 413, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 401, Taiwan
- Department of Chinese Medicine, China Medicine University Hospital, Taichung 404, Taiwan
| | - Rui-Cian Weng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan;
- National Applied Research Laboratories, Taiwan Instrument Research Institute (TIRI), Hsinchu 300, Taiwan;
| | - Yen-Pei Lu
- National Applied Research Laboratories, Taiwan Instrument Research Institute (TIRI), Hsinchu 300, Taiwan;
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
15
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
16
|
Chen H, Zhong K, Zhang Y, Xie L, Chen P. Bisphenol A Interferes with Redox Balance and the Nrf2 Signaling Pathway in Xenopus tropicalis during Embryonic Development. Animals (Basel) 2022; 12:ani12070937. [PMID: 35405925 PMCID: PMC8996838 DOI: 10.3390/ani12070937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Toxicological studies of the effects of BPA on tropical clawed frog (Xenopus tropicalis) early embryos show that temporary exposure to BPA during early embryonic development can result in dramatic teratogenesis, DNA damage, and abnormal gene expression. The overall results of this study provide valuable insights for a more holistic assessment of the environmental risks related to BPA in aquatic ecosystems. Abstract Bisphenol A (BPA), an environmental estrogen, is widely used and largely released into the hydrosphere, thus inducing adverse effects in aquatic organisms. Here, Xenopus tropicalis was used as an animal model to investigate the oxidative effects of BPA on early embryonic development. BPA exposure prevalently caused development delay and shortened body length. Furthermore, BPA exposure significantly increased the levels of reactive oxygen species (ROS) and DNA damage in embryos. Thus, the details of BPA interference with antioxidant regulatory pathways during frog early embryonic development should be further explored.
Collapse
Affiliation(s)
- Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Keke Zhong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
- Correspondence: (L.X.); (P.C.)
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
- Correspondence: (L.X.); (P.C.)
| |
Collapse
|
17
|
Afzal G, Ahmad HI, Hussain R, Jamal A, Kiran S, Hussain T, Saeed S, Nisa MU. Bisphenol A Induces Histopathological, Hematobiochemical Alterations, Oxidative Stress, and Genotoxicity in Common Carp ( Cyprinus carpio L.). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5450421. [PMID: 35126815 PMCID: PMC8816551 DOI: 10.1155/2022/5450421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is one of the environmental endocrine disrupting toxicants and is widely used in the industry involving plastics, polycarbonate, and epoxy resins. This study was designed to investigate the toxicological effects of BPA on hematology, serum biochemistry, and histopathology of different organs of common carp (Cyprinus carpio). A total of 60 fish were procured and haphazardly divided into four groups. Each experimental group contained 15 fish. The fish retained in group A was kept as the untreated control group. Three levels of BPA 3.0, 4.5, and 6 mg/L were given to groups B, C, and D for 30 days. Result indicated significant reduction in hemoglobin (Hb), lymphocytes, packed cell volume (PCV), red blood cells (RBC), and monocytes in a dose-dependent manner as compared to the control group. However, significantly higher values of leucocytes and neutrophils were observed in the treated groups (P < 0.05). Results on serum biochemistry revealed that the quantity of glucose, cholesterol, triglycerides, urea, and creatinine levels was significantly high (P < 0.05). Our study results showed significantly (P < 0.05) increase level of oxidative stress parameters like reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and lower values of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in treated groups (4.5 mg/L and 6 mg/L)) in the brain, liver, gills, and kidneys. Our study depicted significant changes in erythrocytes (pear shaped erythrocytes, leptocytes, microcytes, spherocytes, erythrocytes with broken, lobed, micronucleus, blabbed, vacuolated nucleus, and nuclear remnants) among treated groups (4.5 mg/L and 6 mg/L). Comet assay showed increased genotoxicity in different tissues including the brain, liver, gills, and kidneys in the treated fish group. Based on the results of our experiment, it can be concluded that the BPA exposure to aquatic environment is responsible for deterioration of fish health, performance leading to dysfunction of multiple vital organs.
Collapse
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, Makkah 715, Saudi Arabia
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mehr un Nisa
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Xia T, Guo J, Zhang B, Song C, Zhao Q, Cui B, Liu Y. Bisphenol A Promotes the Progression of Colon Cancer Through Dual-Targeting of NADPH Oxidase and Mitochondrial Electron-Transport Chain to Produce ROS and Activating HIF-1α/VEGF/PI3K/AKT Axis. Front Endocrinol (Lausanne) 2022; 13:933051. [PMID: 35860704 PMCID: PMC9289207 DOI: 10.3389/fendo.2022.933051] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bisphenol A (BPA) is a high-production-volume industrial chemical. Despite recent research conducted on its carcinogenicity, its role in the development of colon cancer (CC) has been rarely studied. This study aims to evaluate the effects of BPA on the migration and invasion of CC cells. First, we clinically verified that patients with CC exhibit higher serum BPA level than healthy donors. Subsequently, different CC cell lines were exposed to a series of BPA concentrations, and the migration and invasion of cells were detected by the wound healing test and transwell assay. Finally, N-acetyl-L-cysteine (NAC) and siHIF-1α intervention was used to explore the effects of ROS and HIF-1α on cell migration and invasion, respectively. The results demonstrated that the occurrence of BPA-induced migration and invasion were dependent on the dose and time and was most pronounced in DLD1 cells. ROS production was jointly driven by NADPH oxidase (NOX) and mitochondrial electron-transport chain (ETC). Furthermore, the intervention of NAC and siHIF-1α blocked the HIF-1α/VEGF/PI3K/AKT axis and inhibited cell migration and invasion. In conclusion, our results suggest that BPA exposure promotes the excessive production of ROS induced by NOX and ETC, which in turn activates the HIF-1α/VEGF/PI3K/AKT axis to promote the migration and invasion of CC cells. This study provides new insights into the carcinogenic effects of BPA on CC and warns people to pay attention to environmental pollution and the harm caused to human health by low-dose BPA.
Collapse
Affiliation(s)
| | | | | | | | | | - Binbin Cui
- *Correspondence: Binbin Cui, ; Yanlong Liu,
| | | |
Collapse
|
19
|
Escarda-Castro E, Herráez MP, Lombó M. Effects of bisphenol A exposure during cardiac cell differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117567. [PMID: 34126515 DOI: 10.1016/j.envpol.2021.117567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
Collapse
Affiliation(s)
- Enrique Escarda-Castro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, Madrid, Spain.
| |
Collapse
|
20
|
Engin AB, Engin A. Risk of Alzheimer's disease and environmental bisphenol A exposure. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA. On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 2021; 55:384-404. [PMID: 33494618 DOI: 10.1080/10715762.2021.1876855] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyl radical (HO•) is the most reactive toward DNA among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms. HO• is generated also by exogenous sources such as ionizing radiations. In this review we focus on the purine DNA damage by HO• radicals. In particular, emphasis is given on mechanistic aspects for the various lesion formation and their interconnections. Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated by various ROS (including HO•), the formation of 5',8-cyclopurine (cPu) lesions in vitro and in vivo relies exclusively on the HO• attack. Methodologies generally utilized for the purine lesions quantification in biological samples are reported and critically discussed. Recent results on cPu and 8-oxo-Pu lesions quantification in various types of biological specimens associated with the cellular repair efficiency as well as with distinct pathologies are presented, providing some insights on their biological significance.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
22
|
Akram R, Iqbal R, Hussain R, Jabeen F, Ali M. Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115896. [PMID: 33187850 DOI: 10.1016/j.envpol.2020.115896] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) is one of the emerging contaminants associated with deleterious health effects on both public and wildlife and is extensively incorporated into different industrial products. Therefore, the current trial was conducted to determine the oxidative stress, status of different antioxidant enzymes and genotoxic potential of bisphenol A in fresh water fish at low concentrations. For this purpose, a total of 80 fresh water bighead carp (Aristicthys nobilis) received from commercial fish center were randomly divided and kept in four groups (A-D). Fish in groups (B-D) were exposed to different levels of BPA for a period of 60 days while fish of group A served as control group. Treated fish exhibited different physical and behavioral ailments in a time and treatment manners. Results showed significantly (p < 0.05) increased quantity of different oxidative stress biomarkers such as thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH) and the contents of reactive oxygen species (ROS) in gills, liver, kidneys and brain of exposed fish. Concentration of different antioxidant enzymes like catalase, superoxide dismutase, peroxidase and total proteins was significantly (p < 0.05) decreased in gills, liver, kidneys and brain of exposed fish. Results showed significantly (p < 0.05) increased frequency of morphological alterations, nuclear changes in red blood cells and increased DNA damage potential of bisphenol A in gills, liver, kidneys and brain tissues. The current trial concludes that even at very low concentrations bisphenol A causes toxic effects via turbulences in physiological and biochemical parameters in multiple tissues of fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
23
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
24
|
Fan X, Hou T, Jia J, Tang K, Wei X, Wang Z. Discrepant dose responses of bisphenol A on oxidative stress and DNA methylation in grass carp ovary cells. CHEMOSPHERE 2020; 248:126110. [PMID: 32041077 DOI: 10.1016/j.chemosphere.2020.126110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA), is a common contaminant in diverse environmental compartments and its endocrine disruptive effect on living organisms has been widely reported. Further works are still required to facilitate the research on cytotoxicity and genotoxicity. In the present study, grass carp ovary (GCO) cells were used to investigate cellular oxidative stress and genomic DNA methylation under BPA exposure. Results showed that BPA exposure for 48 h arrested cell proliferation and viability. The oxidative stress was distinctly enhanced with increased reactive oxygen species (ROS), malondialdehyde level, and oxidation of reduced glutathione (GSH) in 30 μM BPA group. Furthermore, the global 5-methylcytosine (5 mC) level was elevated and showed inverted U-shaped responses to the BPA doses. Besides, one-carbon metabolism and de novo GSH synthesis were disrupted at 30 μM BPA. Current data suggested that low dose of BPA exposure could exhibit hormesis in recycling circular biosynthesis of GSH and scavenging ROS to create a relatively reductive intracellular environment, and up-regulate transcripts of methyltransferases that increased the 5 mC level in GCO cells. While high dose of BPA distinctly induced oxidative stress, elevated de novo GSH synthesis, and then attenuated transmethylation activity and decreased 5 mC level. Current study highlighted the discrepant dose responses of BPA in fish ovary cells that facilitated the understanding of pleiotropic consequences in organisms.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kui Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuefeng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Meli R, Monnolo A, Annunziata C, Pirozzi C, Ferrante MC. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants (Basel) 2020; 9:E405. [PMID: 32397641 PMCID: PMC7278868 DOI: 10.3390/antiox9050405] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the "fil rouge" of BPA's toxic mechanisms of action with pleiotropic outcomes on reproduction. Here, we focus on the protective effects of five classes of antioxidants-vitamins and co-factors, natural products (herbals and phytochemicals), melatonin, selenium, and methyl donors (used alone or in combination)-that have been found useful to counteract BPA toxicity in male and female reproductive functions.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| |
Collapse
|
26
|
Špačková J, Oliveira D, Puškár M, Ďurovcová I, Gaplovská-Kyselá K, Oliveira R, Ševčovičová A. Endocrine-Independent Cytotoxicity of Bisphenol A Is Mediated by Increased Levels of Reactive Oxygen Species and Affects Cell Cycle Progression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:869-875. [PMID: 31880940 DOI: 10.1021/acs.jafc.9b06853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is used for the production of plastics and epoxy resins, which are part of packaging materials for food and beverages, and can migrate into food and the environment, thus exposing human beings to its effects. Exposure to BPA has been associated with oxidative stress, cell cycle changes, and genotoxicity, and is mediated by its known endocrine-disrupting activity. Possible BPA cytotoxicity without mediation by estrogen receptors has been reported in the literature. Here, we show the toxic effects of BPA by live-cell imaging on the fission yeast Schizosaccharomyces pombe, an experimental model lacking estrogen receptors, which were in line with data from flow cytometry on intracellular oxidation (76.4 ± 14.4 and 19.4 ± 16.1% of fluorescent cells for BPA treatment and control, respectively; p < 0.05) as well as delay in cell cycle progression (after 90 min of experiment, 48.4 ± 4.30 and 64.6 ± 5.46% of cells with a 4C DNA content for BPA treatment and control, respectively; p < 0.05) upon exposure to BPA. These results strongly support the possibilities that BPA-induced cell cycle changes can be independent of estrogen receptors and that live-cell imaging is a powerful tool for genotoxic analysis.
Collapse
Affiliation(s)
- Jana Špačková
- Faculty of Natural Sciences, Department of Genetics , Comenius University , Ilkovičova 6, Mlynská dolina , 842 15 Bratislava , Slovakia
| | - Daniela Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Marek Puškár
- Faculty of Natural Sciences, Department of Genetics , Comenius University , Ilkovičova 6, Mlynská dolina , 842 15 Bratislava , Slovakia
| | - Ivana Ďurovcová
- Faculty of Natural Sciences, Department of Genetics , Comenius University , Ilkovičova 6, Mlynská dolina , 842 15 Bratislava , Slovakia
| | - Katarína Gaplovská-Kyselá
- Faculty of Natural Sciences, Department of Genetics , Comenius University , Ilkovičova 6, Mlynská dolina , 842 15 Bratislava , Slovakia
| | - Rui Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering, Department of Biology , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Andrea Ševčovičová
- Faculty of Natural Sciences, Department of Genetics , Comenius University , Ilkovičova 6, Mlynská dolina , 842 15 Bratislava , Slovakia
| |
Collapse
|
27
|
Kose O, Rachidi W, Beal D, Erkekoglu P, Fayyad-Kazan H, Kocer Gumusel B. The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE-1 cells: A comparative study. J Appl Toxicol 2019; 40:643-654. [PMID: 31875995 DOI: 10.1002/jat.3934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor and it is widely used mainly in the plastics industry. Due to recent reports on its possible impact on health (particularly on the male reproductive system), bisphenol F (BPF) and bisphenol S (BPS) are now being used as alternatives. In this study, RWPE-1 cells were used as a model to compare cytotoxicity, oxidative stress-causing potential and genotoxicity of these chemicals. In addition, the effects of the bisphenol derivatives were assessed on DNA repair proteins. RWPE-1 cells were incubated with BPA, BPF, and BPS at concentrations of 0-600 μM for 24 h. The inhibitory concentration 20 (IC20 , concentration that causes 20% of cell viability loss) values for BPA, BPF, and BPS were 45, 65, and 108 μM, respectively. These results indicated that cytotoxicity potentials were ranked as BPA > BPF > BPS. We also found alterations in superoxide dismutase, glutathione peroxidase and glutathione reductase activities, and glutathione and total antioxidant capacity in all bisphenol-exposed groups. In the standard and modified Comet assay, BPS produced significantly higher levels of DNA damage vs the control. DNA repair proteins (OGG1, Ape-1, and MyH) involved in the base excision repair pathway, as well as p53 protein levels were down-regulated in all of the bisphenol-exposed groups. We found that the BPA alternatives were also cytotoxic and genotoxic, and changed the expressions of DNA repair enzymes. Therefore, further studies are needed to assess whether they can be used safely as alternatives to BPA or not.
Collapse
Affiliation(s)
- Ozge Kose
- Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Hacettepe University, Ankara, Turkey
| | - Walid Rachidi
- Faculté de Médecine-Pharmacie¸ Domaine de la Merci, University Grenoble Alpes, Grenoble, France.,Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut Nanosciences et Cryogénie (INAC), Systèmes Moléculaires et NanoMatériaux pour l'Energie et la Santé (SyMMES), Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - David Beal
- Faculté de Médecine-Pharmacie¸ Domaine de la Merci, University Grenoble Alpes, Grenoble, France.,Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut Nanosciences et Cryogénie (INAC), Systèmes Moléculaires et NanoMatériaux pour l'Energie et la Santé (SyMMES), Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Hacettepe University, Ankara, Turkey
| | - Hussein Fayyad-Kazan
- Faculty of Sciences I, Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Belma Kocer Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
28
|
Hercog K, Maisanaba S, Filipič M, Sollner-Dolenc M, Kač L, Žegura B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:267-276. [PMID: 31207516 DOI: 10.1016/j.scitotenv.2019.05.486] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 05/25/2023]
Abstract
The use of bisphenol A (BPA) in manufacturing of plastics is being gradually replaced by presumably safer analogues such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF). Despite their widespread occurrence in the environment, there is a knowledge gap in their toxicological profiles. We investigated cytotoxic/genotoxic effects as well as changes in the expression of selected genes involved in the xenobiotic metabolism, response to oxidative stress and DNA damage upon exposure to BPs and their mixtures in human hepatocellular carcinoma HepG2 cells. BPS and BPF slightly decreased the viability of HepG2 cells, while BPAF was the most cytotoxic compound tested. BPA, BPF and BPAF induced the formation of DNA double strand breaks determined with γH2AX assay, while BPS was inactive (5-20 μg/mL). All four BPs up-regulated the expression of CYP1A1 and UGT1A1, while BPS up-regulated and BPAF down-regulated also the expression of GST1A. Only BPA up-regulated oxidative stress responsive gene GCLC, while BPAF up-regulated the expression of CDKN1A and GADD45a. At concentrations relevant for human exposure (ng/mL range) BPA and its analogues as individual compounds and in mixtures did not exert genotoxic activity, whereas BPA and BPAF as well as the mixtures up-regulated the expressions of CYP1A1 and UGT1A1.
Collapse
Affiliation(s)
- Klara Hercog
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sara Maisanaba
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, Spain; Area of Toxicology, Department of Molecular Biology and Biochemistry Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Lidija Kač
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Lee KJ, Piett CG, Andrews JF, Mann E, Nagel ZD, Gassman NR. Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS One 2019; 14:e0223725. [PMID: 31596905 PMCID: PMC6785058 DOI: 10.1371/journal.pone.0223725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-positive breast cancer, XRCC1-deficient tumors have been identified and proposed as targets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1 is a scaffold protein that functions in base excision repair (BER) by mediating essential interactions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1, DNA polymerase β (POL β), and DNA ligases. Loss of XRCC1 confers BER defects and hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple negative breast cancers (TNBC), for which new therapeutic targets and therapies are needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we examined XRCC1 expression in the TCGA database and its expression and localization in TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions and single-strand breaks. Subcellular localization of POL β also varied and did not correlate with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in XRCC1 expression, localization, and measure repair capacity. The results confirmed that XRCC1 expression changes indicate DNA repair capacity changes but emphasize that basal DNA damage levels along with protein localization are better indicators of DNA repair defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and tumors, XRCC1 expression levels should be assessed when evaluating treatment responses of TNBC preclinical model cells.
Collapse
Affiliation(s)
- Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Elise Mann
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Natalie R. Gassman
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sonavane M, Gassman NR. Bisphenol A co-exposure effects: a key factor in understanding BPA's complex mechanism and health outcomes. Crit Rev Toxicol 2019; 49:371-386. [PMID: 31256736 DOI: 10.1080/10408444.2019.1621263] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disrupting chemical widely used in the production of consumer products, such as polycarbonate plastics, epoxies, and thermal receipt paper. Human exposure to BPA is ubiquitous due to its high-volume production and use. BPA exposure has been associated with obesity, diabetes, reproductive disorders, and cancer. Yet, the molecular mechanisms or modes of action underlying these disease outcomes are poorly understood due to the pleiotropic effects induced by BPA. A further confounding factor in understanding BPA's impact on human health is that co-exposure of BPA with endogenous and exogenous agents occurs during the course of daily life. Studies investigating BPA exposure effects and their relationship to adverse health outcomes often ignore interactions between BPA and other chemicals present in the environment. This review examines BPA co-exposure studies to highlight potentially unexplored mechanisms of action and their possible associations with the adverse health effects attributed to BPA. Importantly, both adverse and beneficial co-exposure effects are observed between BPA and natural chemicals or environmental stressors in in vitro and in vivo models. These interactions clearly influence cellular responses and impact endpoint measures and need to be considered when evaluating BPA exposures and their health effects.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Natalie R Gassman
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
31
|
Association of Bisphenol A Exposure with LINE-1 Hydroxymethylation in Human Semen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081770. [PMID: 30126118 PMCID: PMC6121318 DOI: 10.3390/ijerph15081770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, has been shown to alter DNA methylation. However, little information is available about the effect of BPA exposure on DNA hydroxymethylation in humans. The objective of the present study was to examine whether BPA exposure was associated with DNA hydroxymethylation in human semen samples. We measured urine BPA levels and LINE-1 hydroxymethylation in 158 male factory workers selected from an occupational cohort study conducted in China between 2004 and 2008. Among them, there were 72 male workers with occupational BPA exposure (BPA-exposed group) and 86 male workers without occupational BPA exposure (unexposed group). Multivariate linear regression models were used to examine the association of exposure to BPA with LINE-1 hydroxymethylation. LINE-1 was more highly hydroxymethylated in the BPA-exposed group than in the unexposed group (median 12.97% vs. 9.68%, respectively; p < 0.05), after adjusting for the potential confounders. The medians of 5-hydroxymethylcytosine (5hmC) generally increased with increasing urine BPA levels: 8.79%, 12.16%, 11.53%, and 13.45%, for undetected BPA and corresponding tertiles for the detected BPA, respectively. After analysis using data at individual level, our findings indicated that BPA exposure was associated with alterations of sperm LINE-1 hydroxymethylation, which might have implications for understanding the mechanisms underlying BPA-induced adverse effects on male reproductive function.
Collapse
|
32
|
Sonavane M, Sykora P, Andrews JF, Sobol RW, Gassman NR. Camptothecin Efficacy to Poison Top1 Is Altered by Bisphenol A in Mouse Embryonic Fibroblasts. Chem Res Toxicol 2018; 31:510-519. [PMID: 29799191 DOI: 10.1021/acs.chemrestox.8b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Peter Sykora
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Joel F Andrews
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Robert W Sobol
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Natalie R Gassman
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| |
Collapse
|
33
|
Mokra K, Woźniak K, Bukowska B, Sicińska P, Michałowicz J. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. CHEMOSPHERE 2018; 201:119-126. [PMID: 29518729 DOI: 10.1016/j.chemosphere.2018.02.166] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/25/2023]
Abstract
Because bisphenol A (BPA) and some of its analogs have been supposed to influence development of cancer, we have assessed the effect of BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on DNA bases oxidation, which is a key process in cancer initiation. The analysis was conducted on human peripheral blood mononuclear cells (PBMCs), which are very useful model to assess genotoxic potential of various toxicants in different cell types. In order to determine oxidative damage to DNA pyrimidines and purines, alkaline version of the comet assay with DNA glycosylases, i.e. endonuclease III (Nth) and human 8-oxoguanine DNA glycosylase (hOGG1) was used. PBMCs were exposed to BPA or its analogs in the concentrations of 0.01, 0.1 and 1 μg/mL for 4 h and 0.001, 0.01 and 0.1 μg/mL for 48 h. We have observed that BPA, BPS, BPF and particularly BPAF caused oxidative damage to DNA pyrimidines and more strongly to purines in human PBMCs. The results have also shown that BPS, which is the most commonly used as a substitute for BPA in the manufacture induced definitely the smallest oxidative DNA bases lesions in PBMCs. Moreover, we have noticed that BPA, BPF and BPAF caused DNA damage at very low concentration of 1 ng/mL.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| |
Collapse
|
34
|
Burks H, Pashos N, Martin E, Mclachlan J, Bunnell B, Burow M. Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Mol Cell Endocrinol 2017; 457:13-19. [PMID: 28012841 DOI: 10.1016/j.mce.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most frequently diagnosed malignancies in women and is characterized by predominantly estrogen dependent growth. Endocrine disruptors (EDCs) have estrogenic properties which have been shown to increase breast cancer risk. While the direct effects of EDCs on breast cancer cell biology and tumor progression have been well studied, the roles for EDCs on tumor microenvironment composition, signaling and structure are incompletely defined. Estrogen targeting of tumor stromal cells can drive paracrine signaling to breast cancer cells regulating tumorigenesis and progression. Additionally, estrogen and estrogen receptor signaling has been shown to alter breast architecture and extracellular matrix component synthesis. Unsurprisingly, EDCs have been shown to induce structural changes in the mammary gland as well as increased collagen fibers in the tissue stroma. Previous work demonstrates that human mesenchymal stem cells (hMSC) are essential components of the tumor microenvironment and are direct targets of both estrogens and EDCs. Furthermore, estrogen-stem cell cross talk has been implicated in breast cancer progression and results in increased tumor cell proliferation, angiogenesis and invasion. This review aims to dissect the possible relationship and mechanisms between EDCs, the tumor microenvironment, and breast cancer progression.
Collapse
Affiliation(s)
- Hope Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - John Mclachlan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
35
|
Low dose administration of Bisphenol A induces liver toxicity in adult rats. Biochem Biophys Res Commun 2017; 494:107-112. [DOI: 10.1016/j.bbrc.2017.10.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 01/01/2023]
|
36
|
Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, Janoshazi AK, Stefanick DF, Horton JK, Krasich R, Longley MJ, Copeland WC, Griffith JD, Wilson SH. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst) 2017; 60:77-88. [PMID: 29100041 PMCID: PMC5919216 DOI: 10.1016/j.dnarep.2017.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA; University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36604, USA
| | - Agnes K Janoshazi
- Signal Transduction Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Hughes CL, Waters MD. What Stressors Cause Cancer and When? TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:1-60. [DOI: 10.1002/9781119023647.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Claude L. Hughes
- Therapeutic Science and Strategy Unit, QuintilesIMS, Inc.; Department of Obstetrics and Gynecology; Duke University Medical Center; and Department of Mathematics, North Carolina State University; Morrisville NC USA
| | | |
Collapse
|
38
|
Gassman NR, Wilson SH. Bisphenol A and Nongenotoxic Drivers of Cancer. TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:415-438. [DOI: 10.1002/9781119023647.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Natalie R. Gassman
- Department of Oncologic Sciences; University of South Alabama Mitchell Cancer Institute; Mobile AL USA
| | - Samuel H. Wilson
- Genome Integrity and Structural Biology Laboratory; National Institute of Environmental Health Sciences (NIEHS); Research Triangle Park NC USA
| |
Collapse
|
39
|
Occupational Exposure to Bisphenol A (BPA): A Reality That Still Needs to Be Unveiled. TOXICS 2017; 5:toxics5030022. [PMID: 29051454 PMCID: PMC5634705 DOI: 10.3390/toxics5030022] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, is one of the most utilized industrial chemicals worldwide, with the ability to interfere with/or mimic estrogenic hormones with associated biological responses. Environmental human exposure to this endocrine disruptor, mostly through oral intake, is considered a generalized phenomenon, particularly in developed countries. However, in the context of occupational exposure, non-dietary exposure sources (e.g., air and contact) cannot be underestimated. Here, we performed a review of the literature on BPA occupational exposure and associated health effects. Relevantly, the authors only identified 19 studies from 2009 to 2017 that demonstrate that occupationally exposed individuals have significantly higher detected BPA levels than environmentally exposed populations and that the detection rate of serum BPA increases in relation to the time of exposure. However, only 12 studies performed in China have correlated potential health effects with detected BPA levels, and shown that BPA-exposed male workers are at greater risk of male sexual dysfunction across all domains of sexual function; also, endocrine disruption, alterations to epigenetic marks (DNA methylation) and epidemiological evidence have shown significant effects on the offspring of parents exposed to BPA during pregnancy. This overview raises awareness of the dramatic and consistent increase in the production and exposure of BPA and creates urgency to assess the actual exposure of workers to this xenoestrogen and to evaluate potential associated adverse health effects.
Collapse
|
40
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
41
|
Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:60-71. [PMID: 28181297 PMCID: PMC5458620 DOI: 10.1002/em.22072] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. Environ. Mol. Mutagen. 58:60-71, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, 36604-1405
| |
Collapse
|
42
|
Mokra K, Kuźmińska-Surowaniec A, Woźniak K, Michałowicz J. Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol 2016; 100:62-69. [PMID: 27923681 DOI: 10.1016/j.fct.2016.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/26/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
In the present study, we have investigated DNA-damaging potential of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) in human peripheral blood mononuclear cells (PBMCs) using the alkaline and neutral versions of the comet assay, which allowed to evaluate DNA single strand-breaks (SSBs) and double strand-breaks (DSBs). The use of the alkaline version of comet assay made also possible to analyze the kinetics of DNA repair in PBMCs after exposure of the cells to BPA or its analogs. We have observed an increase in DNA damage in PBMCs treated with BPA or its analogs in the concentrations ranging from 0.01 to 10 μg/ml after 1 and 4 h incubation. It was noted that bisphenols studied caused DNA damage mainly via SSBs, while DNA fragmentation via double DSBs was low. The strongest changes in DNA damage were provoked by BPA and particularly BPAF, which were capable of inducing SSBs even at 0.01 μg/ml, while BPS caused the lowest changes (only at 10 μg/ml). We have also observed that PBMCs significantly repaired bisphenols-induced DNA damage but they were unable (excluding cells treated with BPS) to repair totally DNA breaks.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St, 90-001 Łódź, Poland
| | - Agnieszka Kuźmińska-Surowaniec
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St, 90-001 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St, 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St, 90-001 Łódź, Poland.
| |
Collapse
|
43
|
Gassman NR, Coskun E, Jaruga P, Dizdaroglu M, Wilson SH. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1241-52. [PMID: 27082013 PMCID: PMC4977032 DOI: 10.1289/ehp237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). OBJECTIVES We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. METHODS Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. RESULTS We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. CONCLUSION These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the cellular microenvironment that may promote survival. CITATION Gassman NR, Coskun E, Jaruga P, Dizdaroglu M, Wilson SH. 2016. Combined effects of high-dose bisphenol A and oxidizing agent (KBrO3) on cellular microenvironment, gene expression, and chromatin structure of Ku70-deficient mouse embryonic fibroblasts. Environ Health Perspect 124:1241-1252; http://dx.doi.org/10.1289/EHP237.
Collapse
Affiliation(s)
- Natalie R. Gassman
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Samuel H. Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to S.H. Wilson, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-12233 USA. Telephone: (919) 541-4701. E-mail:
| |
Collapse
|
44
|
Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair (Amst) 2015; 31:52-63. [PMID: 25996408 DOI: 10.1016/j.dnarep.2015.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
Microscopy and micro-irradiation imaging techniques have significantly advanced our knowledge of DNA damage tolerance and the assembly of DNA repair proteins at the sites of damage. While these tools have been extensively applied to the study of nucleotide excision repair and double-strand break repair, their application to the repair of oxidatively-induced base lesions and single-strand breaks is just beginning to yield new insights. This review will focus on examining micro-irradiation techniques reported to create base lesions and single-strand breaks; these lesions are considered to be primarily addressed by proteins involved in the base excision repair (BER) pathway. By examining conditions for generating these DNA lesions and reviewing information on the assembly and dissociation of repair complexes at the induced lesion sites, we hope to promote further investigations into BER and to stimulate further development and enhancement of these techniques for the study of BER.
Collapse
|