1
|
Mant D, Orevi T, Kashtan N. Impact of micro-habitat fragmentation on microbial population growth dynamics. THE ISME JOURNAL 2025; 19:wrae256. [PMID: 39711055 PMCID: PMC11964898 DOI: 10.1093/ismejo/wrae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microbial communities thrive in virtually every habitat on Earth and are essential to the function of diverse ecosystems. Most microbial habitats are not spatially continuous and well-mixed, but rather composed, at the microscale, of many isolated or semi-isolated local patches of different sizes, resulting in partitioning of microbial populations into discrete local populations. The impact of this spatial fragmentation on population dynamics is not well-understood. Here, we study how such variably sized micro-habitat patches affect the growth dynamics of clonal microbial populations and how dynamics in individual patches dictate those of the metapopulation. To investigate this, we developed the μ-SPLASH, an ecology-on-a-chip platform, enabling the culture of microbes in microscopic landscapes comprised of thousands of microdroplets, with a wide range of sizes. Using the μ-SPLASH, we cultured the model bacteria Escherichia coli and based on time-lapse microscopy, analyzed the population dynamics within thousands of individual droplets. Our results reveal that growth curves substantially vary with droplet size. Although growth rates generally increase with drop size, reproductive success and the time to approach carrying capacity, display non-monotonic patterns. Combining μ-SPLASH experiments with computational modeling, we show that these patterns result from both stochastic and deterministic processes, and demonstrate the roles of initial population density, patchiness, and patch size distribution in dictating the local and metapopulation dynamics. This study reveals basic principles that elucidate the effects of habitat fragmentation and population partitioning on microbial population dynamics. These insights deepen our understanding of natural microbial communities and have significant implications for microbiome engineering.
Collapse
Affiliation(s)
- Dina Mant
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| | - Tomer Orevi
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| | - Nadav Kashtan
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
2
|
Volgusheva AA, Konyukhov IV, Antal TK. Acclimation of Primary Photosynthetic Reactions in the Cells of Chlamydomonas reinhardtii to Cadmium: Analysis of Cell Population Heterogeneity. Biophysics (Nagoya-shi) 2024; 69:401-407. [DOI: 10.1134/s0006350924700489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/30/2025] Open
|
3
|
Jian X, Guo X, Cai Z, Wei L, Wang L, Xing XH, Zhang C. Single-cell microliter-droplet screening system (MISS Cell): An integrated platform for automated high-throughput microbial monoclonal cultivation and picking. Biotechnol Bioeng 2023; 120:778-792. [PMID: 36477904 DOI: 10.1002/bit.28300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Solid plates have been used for microbial monoclonal isolation, cultivation, and colony picking since 1881. However, the process is labor- and resource-intensive for high-throughput requirements. Currently, several instruments have been integrated for automated and high-throughput picking, but complicated and expensive. To address these issues, we report a novel integrated platform, the single-cell microliter-droplet screening system (MISS Cell), for automated, high-throughput microbial monoclonal colony cultivation and picking. We verified the monoclonality of droplet cultures in the MISS Cell and characterized culture performance. Compared with solid plates, the MISS Cell generated a larger number of monoclonal colonies with higher initial growth rates using fewer resources. Finally, we established a workflow for automated high-throughput screening of Corynebacterium glutamicum using the MISS Cell and identified high glutamate-producing strains. The MISS Cell can serve as a universal platform to efficiently produce monoclonal colonies in high-throughput applications, overcoming the limitations of solid plates to promote rapid development in biotechnology.
Collapse
Affiliation(s)
- Xingjin Jian
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Xiaojie Guo
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Zhengshuo Cai
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Longfeng Wei
- College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Usai A, Theodoropoulos C, Di Caprio F, Altimari P, Cao G, Concas A. Structured population balances to support microalgae-based processes: Review of the state-of-art and perspectives analysis. Comput Struct Biotechnol J 2023; 21:1169-1188. [PMID: 36789264 PMCID: PMC9918424 DOI: 10.1016/j.csbj.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Design and optimization of microalgae processes have traditionally relied on the application of unsegregated mathematical models, thus neglecting the impact of cell-to-cell heterogeneity. However, there is experimental evidence that the latter one, including but not limited to variation in mass/size, internal composition and cell cycle phase, can play a crucial role in both cultivation and downstream processes. Population balance equations (PBEs) represent a powerful approach to develop mathematical models describing the effect of cell-to-cell heterogeneity. In this work, the potential of PBEs for the analysis and design of microalgae processes are discussed. A detailed review of PBE applications to microalgae cultivation, harvesting and disruption is reported. The review is largely focused on the application of the univariate size/mass structured PBE, where the size/mass is the only internal variable used to identify the cell state. Nonetheless, the need, addressed by few studies, for additional or alternative internal variables to identify the cell cycle phase and/or provide information about the internal composition is discussed. Through the review, the limitations of previous studies are described, and areas are identified where the development of more reliable PBE models, driven by the increasing availability of single-cell experimental data, could support the understanding and purposeful exploitation of the mechanisms determining cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Alessandro Usai
- Department of Chemical Engineering, University of Manchester, M13 9PL Manchester, United Kingdom,Biochemical and Bioprocess Engineering Group, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Constantinos Theodoropoulos
- Department of Chemical Engineering, University of Manchester, M13 9PL Manchester, United Kingdom,Biochemical and Bioprocess Engineering Group, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Pietro Altimari
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Giacomo Cao
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy,Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy,Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, CA, Italy
| | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy,Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy,Corresponding author at: Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy.
| |
Collapse
|
5
|
Zamzam G, Lee CW, Milne F, Etsell J, Durnford DG. Live long and prosper: Acetate and its effects on longevity in batch culturing of Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Taylor D, Verdon N, Lomax P, Allen RJ, Titmuss S. Tracking the stochastic growth of bacterial populations in microfluidic droplets. Phys Biol 2022; 19:026003. [PMID: 35042205 PMCID: PMC7613235 DOI: 10.1088/1478-3975/ac4c9b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Bacterial growth in microfluidic droplets is relevant in biotechnology, in microbial ecology, and in understanding stochastic population dynamics in small populations. However, it has proved challenging to automate measurement of absolute bacterial numbers within droplets, forcing the use of proxy measures for population size. Here we present a microfluidic device and imaging protocol that allows high-resolution imaging of thousands of droplets, such that individual bacteria stay in the focal plane and can be counted automatically. Using this approach, we track the stochastic growth of hundreds of replicateEscherichia colipopulations within droplets. We find that, for early times, the statistics of the growth trajectories obey the predictions of the Bellman-Harris model, in which there is no inheritance of division time. Our approach should allow further testing of models for stochastic growth dynamics, as well as contributing to broader applications of droplet-based bacterial culture.
Collapse
Affiliation(s)
- Daniel Taylor
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Nia Verdon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Peter Lomax
- Scottish Microelectronics Centre, Alexander Crum Brown Road, King's Buildings, Edinburgh, EH9 3FF, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Simon Titmuss
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
7
|
Damoo DY, Durnford DG. Long-term survival of Chlamydomonas reinhardtii during conditional senescence. Arch Microbiol 2021; 203:5333-5344. [PMID: 34383108 DOI: 10.1007/s00203-021-02508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Chlamydomonas reinhardtii undergoes conditional senescence when grown in batch culture due to nutrient limitation. Here, we explored plastid and photo-physiological adaptations in Chlamydomonas reinhardtii during a long-term ageing experiment by methodically sampling them over 22 weeks. Following exponential growth, Chlamydomonas entered an extended declining growth phase where cells continued to divide, although at a lower rate. Ultimately, this ongoing division was fueled by the recycling of macromolecules that was obvious in the rapidly declining protein and chlorophyll content in the cell during this phase. This process was sufficient to maintain a high level of cell viability as the culture entered stationary phase. Beyond that the cell viability starts to plummet. During the turnover of macromolecules after exponential growth that saw RuBisCO levels drop, the LHCII antenna was relatively stable. This, along with the upregulation of the light stress-related proteins (LHCSR), contributes to an efficient energy dissipation mechanism to protect the ageing cells from photooxidative stress during the senescence process. Ultimately, viability dropped to about 7% at 22 weeks in a batch culture. We anticipate that this research will help further understand the various acclimation strategies carried out by Chlamydomonas to maximize survival under conditional senescence.
Collapse
Affiliation(s)
- Djihane Yushrina Damoo
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.,Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
8
|
Morales-de la Cruz X, Mandujano-Chávez A, Browne DR, Devarenne TP, Sánchez-Segura L, López MG, Lozoya-Gloria E. In Silico and Cellular Differences Related to the Cell Division Process between the A and B Races of the Colonial Microalga Botryococcus braunii. Biomolecules 2021; 11:biom11101463. [PMID: 34680096 PMCID: PMC8533097 DOI: 10.3390/biom11101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
Botryococcus braunii produce liquid hydrocarbons able to be processed into combustion engine fuels. Depending on the growing conditions, the cell doubling time can be up to 6 days or more, which is a slow growth rate in comparison with other microalgae. Few studies have analyzed the cell cycle of B. braunii. We did a bioinformatic comparison between the protein sequences for retinoblastoma and cyclin-dependent kinases from the A (Yamanaka) and B (Showa) races, with those sequences from other algae and Arabidopsis thaliana. Differences in the number of cyclin-dependent kinases and potential retinoblastoma phosphorylation sites between the A and B races were found. Some cyclin-dependent kinases from both races seemed to be phylogenetically more similar to A. thaliana than to other microalgae. Microscopic observations were done using several staining procedures. Race A colonies, but not race B, showed some multinucleated cells without chlorophyll. An active mitochondrial net was detected in those multinucleated cells, as well as being defined in polyphosphate bodies. These observations suggest differences in the cell division processes between the A and B races of B. braunii.
Collapse
Affiliation(s)
- Xochitl Morales-de la Cruz
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | | | - Daniel R. Browne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
- Pacific Biosciences, Chicago, IL 60606, USA
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
| | - Lino Sánchez-Segura
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | - Mercedes G. López
- Biochemistry and Biotechnology Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
| | - Edmundo Lozoya-Gloria
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
- Correspondence: ; Tel.: +52-462-6239659
| |
Collapse
|
9
|
Ma F, Salomé PA, Merchant SS, Pellegrini M. Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. THE PLANT CELL 2021; 33:1042-1057. [PMID: 33585940 PMCID: PMC8226295 DOI: 10.1093/plcell/koab025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 05/02/2023]
Abstract
The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described transcriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communities. Second, scRNA-seq successfully separated single cells into nonoverlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosynthesis and cell division to economize resources. Notably, these groups of cells not only recapitulated known patterns observed with bulk RNA-seq but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk RNA-seq data represent an average of typically hidden heterogeneity in the population.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Polerecky L, Masuda T, Eichner M, Rabouille S, Vancová M, Kienhuis MVM, Bernát G, Bonomi-Barufi J, Campbell DA, Claquin P, Červený J, Giordano M, Kotabová E, Kromkamp J, Lombardi AT, Lukeš M, Prášil O, Stephan S, Suggett D, Zavřel T, Halsey KH. Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Front Microbiol 2021; 12:620915. [PMID: 33613489 PMCID: PMC7890256 DOI: 10.3389/fmicb.2021.620915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 12/05/2022] Open
Abstract
Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-mer, France
- Sorbonne Université, CNRS, Laboratoire d’Océanographie Microbienne, Banyuls-sur-mer, France
| | - Marie Vancová
- Institute of Parasitology, Czech Academy of Sciences, Biology Centre, České Budějovice, Czechia
| | | | - Gabor Bernát
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Jose Bonomi-Barufi
- Botany Department, Federal University of Santa Catarina, Campus de Trindade, Florianópolis, Brazil
| | | | - Pascal Claquin
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Normandie Université, Esplanade de la Paix, France
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Mario Giordano
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, College of Sciences, Shantou University, Shantou, China
| | - Eva Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Jacco Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands
| | | | - Martin Lukeš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Ondrej Prášil
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Susanne Stephan
- Department Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, Berlin, Germany
| | - David Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tomas Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
12
|
Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196736] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydomonas reinhardtii is a green microalgae used as a model organism associated with biotechnological applications, yet its nutritional value has not been assessed. This study investigates the nutritional capacity of C. reinhardtii as an additional value for this species beyond its known potential in biofuels and bio-products production. The composition of key nutrients in C. reinhardtii was compared with Chlorella and Spirulina, the species widely regarded as a superfood. The results revealed that the protein content of C. reinhardtii (46.9%) was comparable with that of Chlorella (45.3) and Spirulina (50.4%) on a dry weight basis. C. reinhardtii contained all the essential amino acids with good scores based on FAO/WHO values (0.9–1.9) as in Chlorella and Spirulina. Unsaturated fatty acids predominated the total fatty acids profile of C. reinhardtii were ~74 of which ~48% are n-3 fatty acids. Alpha-linolenic acid (ALA) content in C. reinhardtii (42.4%) was significantly higher than that of Chlorella (23.4) and Spirulina (0.12%). For minerals, Spirulina was rich in iron (3.73 mg/g DW) followed by Chlorella (1.34 mg/g DW) and C. reinhardtii (0.96 mg/g DW). C. reinhardtii, unlike the other two species, consisted of selenium (10 µg/g DW), and had a remarkably lower heavy metal load. Moreover, C. reinhardtii contained relatively high concentrations of chlorophyll (a + b) and total carotenoids (28.6 mg/g DW and 6.9 mg/g DW, respectively) compared with Chlorella (12.0 mg/g DW and 1.8 mg/g DW, respectively) and Spirulina (8.6 mg/g DW and 0.8 mg/g DW, respectively). This study confirms that, based on its nutrient credentials, C. reinhardtii has great potential as a new superfood or ingredient for a food supplement.
Collapse
|
13
|
Jeyhani M, Thevakumaran R, Abbasi N, Hwang DK, Tsai SSH. Microfluidic Generation of All-Aqueous Double and Triple Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906565. [PMID: 31985166 DOI: 10.1002/smll.201906565] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Indexed: 05/22/2023]
Abstract
Higher order emulsions are used in a variety of different applications in biomedicine, biological studies, cosmetics, and the food industry. Conventional droplet generation platforms for making higher order emulsions use organic solvents as the continuous phase, which is not biocompatible and as a result, further washing steps are required to remove the toxic continuous phase. Recently, droplet generation based on aqueous two-phase systems (ATPS) has emerged in the field of droplet microfluidics due to their intrinsic biocompatibility. Here, a platform to generate all-aqueous double and triple emulsions by introducing pressure-driven flows inside a microfluidic hybrid device is presented. This system uses a conventional microfluidic flow-focusing geometry coupled with a coaxial microneedle and a glass capillary embedded in flow-focusing junctions. The configuration of the hybrid device enables the focusing of two coaxial two-phase streams, which helps to avoid commonly observed channel-wetting problems. It is shown that this approach achieves the fabrication of higher-order emulsions in a poly(dimethylsiloxane)-based microfluidic device, and controls the structure of the all-aqueous emulsions. This hybrid microfluidic approach allows for facile higher-order biocompatible emulsion formation, and it is anticipated that this platform will find utility for generating biocompatible materials for various biotechnological applications.
Collapse
Affiliation(s)
- Morteza Jeyhani
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Risavarshni Thevakumaran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Niki Abbasi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Dae Kun Hwang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
14
|
Hsu SC, Browne DR, Tatli M, Devarenne TP, Stern DB. N-terminal sequences affect expression of triterpene biosynthesis enzymes in Chlamydomonas chloroplasts. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Solsona M, Vollenbroek JC, Tregouet CBM, Nieuwelink AE, Olthuis W, van den Berg A, Weckhuysen BM, Odijk M. Microfluidics and catalyst particles. LAB ON A CHIP 2019; 19:3575-3601. [PMID: 31559978 DOI: 10.1039/c9lc00318e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this review article, we discuss the latest advances and future perspectives of microfluidics for micro/nanoscale catalyst particle synthesis and analysis. In the first section, we present an overview of the different methods to synthesize catalysts making use of microfluidics and in the second section, we critically review catalyst particle characterization using microfluidics. The strengths and challenges of these approaches are highlighted with various showcases selected from the recent literature. In the third section, we give our opinion on the future perspectives of the combination of catalytic nanostructures and microfluidics. We anticipate that in the synthesis and analysis of individual catalyst particles, generation of higher throughput and better understanding of transport inside individual porous catalyst particles are some of the most important benefits of microfluidics for catalyst research.
Collapse
Affiliation(s)
- M Solsona
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - J C Vollenbroek
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - C B M Tregouet
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A-E Nieuwelink
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - W Olthuis
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - M Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| |
Collapse
|
16
|
|
17
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
18
|
Bodénès P, Wang HY, Lee TH, Chen HY, Wang CY. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:33. [PMID: 30815031 PMCID: PMC6376642 DOI: 10.1186/s13068-019-1369-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 05/03/2023]
Abstract
This review presents a critical assessment of emerging microfluidic technologies for the application on biological productions of biofuels and other chemicals from microalgae. Comparisons of cell culture designs for the screening of microalgae strains and growth conditions are provided with three categories: mechanical traps, droplets, or microchambers. Emerging technologies for the in situ characterization of microalgae features and metabolites are also presented and evaluated. Biomass and secondary metabolite productivities obtained at microscale are compared with the values obtained at bulk scale to assess the feasibility of optimizing large-scale operations using microfluidic platforms. The recent studies in microsystems for microalgae pretreatment, fractionation and extraction of metabolites are also reviewed. Finally, comments toward future developments (high-pressure/-temperature process; solvent-resistant devices; omics analysis, including genome/epigenome, proteome, and metabolome; biofilm reactors) of microfluidic techniques for microalgae applications are provided.
Collapse
Affiliation(s)
- Pierre Bodénès
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Hua Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yen Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Ferraro D, Serra M, Filippi D, Zago L, Guglielmin E, Pierno M, Descroix S, Viovy JL, Mistura G. Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand. LAB ON A CHIP 2018; 19:136-146. [PMID: 30484796 DOI: 10.1039/c8lc01182f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics is a powerful technology that finds many applications in chemistry and biomedicine. Among different configurations, droplets confined in a capillary (or plugs) present a number of advantages: they allow positional identification and simplify the integration of complex multi-steps protocols. However, these protocols rely on the control of droplet speed, which is affected by a complex and still debated interplay of various physico-chemical parameters like droplet length, viscosity ratio between droplets and carrier fluid, flow rate and interfacial tension. We present here a systematic investigation of the droplet speed as a function of their length and interfacial tension, and propose a novel, simple and robust methodology to control the relative distance between consecutive droplets flowing in microfluidic channels through the addition of surfactants either into the dispersed and/or into the continuous phases. As a proof of concept application, we present the possibility to accurately trigger in space and time the merging of two confined droplets flowing in a uniform cross-section circular capillary. This approach is further validated by monitoring a conventional enzymatic reaction used to quantify the concentration of H2O2 in a biological sample, showing its potentialities in both continuous and stopped assay methods.
Collapse
Affiliation(s)
- D Ferraro
- Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, via Marzolo 8, 35131 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Umen JG. Sizing up the cell cycle: systems and quantitative approaches in Chlamydomonas. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:96-103. [PMID: 30212737 PMCID: PMC6269190 DOI: 10.1016/j.pbi.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The unicellular green alga Chlamydomonas provides a simplified model for defining core cell cycle functions conserved in the green lineage and for understanding multiple fission, a common cell cycle variation found in many algae. Systems-level approaches including a recent groundbreaking screen for conditional lethal cell cycle mutants and genome-wide transcriptome analyses are revealing the complex relationships among cell cycle regulators and helping define roles for CDKA/CDK1 and CDKB, the latter of which is unique to the green lineage and plays a central role in mitotic regulation. Genetic screens and quantitative single-cell analyses have provided insight into cell-size control during multiple fission including the identification of a candidate `sizer' protein. Quantitative single-cell tracking and modeling are promising approaches for gaining additional insight into regulation of cellular and subcellular scaling during the Chlamydomonas cell cycle.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA.
| |
Collapse
|
21
|
Kim YH, Im DJ. Control of the culture conditions of Chlamydomonas reinhardtii for efficient delivery of exogenous materials in electroporation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Metabolic heterogeneity in clonal microbial populations. Curr Opin Microbiol 2018; 45:30-38. [DOI: 10.1016/j.mib.2018.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/22/2022]
|
23
|
Rouzeau C, Dagkesamanskaya A, Langer K, Bibette J, Baudry J, Pompon D, Anton-Leberre V. Adaptive response of yeast cells to triggered toxicity of phosphoribulokinase. Res Microbiol 2018; 169:335-342. [PMID: 29964131 DOI: 10.1016/j.resmic.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
Adjustment of plasmid copy number resulting from the balance between positive and negative impacts of borne synthetic genes, plays a critical role in the global efficiency of multistep metabolic engineering. Differential expression of co-expressed engineered genes is frequently observed depending on growth phases, metabolic status and triggered adjustments of plasmid copy numbers, constituting a dynamic process contributing to minimize global engineering burden. A yeast model involving plasmid based expression of phosphoribulokinase (PRKp), a key enzyme for the reconstruction of synthetic Calvin cycle, was designed to gain further insights into such a mechanism. A conditional PRK expression cassette was cloned either onto a low (ARS-CEN based) or a high (2-micron origin based) copy number plasmid using complementation of a trp1 genomic mutation as constant positive selection. Evolution of plasmid copy numbers, PRKp expressions, and cell growth rates were dynamically monitored following gene de-repression through external doxycycline concentration shifts. In the absence of RubisCO encoding gene permitting metabolic recycling, PRKp expression that led to depletion of ribulose phosphate, a critical metabolite for aromatic amino-acids biosynthesis, and accumulation of the dead-end diphosphate product contribute to toxicity. Triggered copy number adjustment was found to be a dynamic process depending both on plasmid types and levels of PRK induction. With the ARS-CEN plasmid, cell growth was abruptly affected only when level PRKp expression exceeded a threshold value. In contrast, a proportional relationship was observed with the 2-micron plasmid consistent with large copy number adjustments. Micro-compartment partitioning of bulk cultures by embedding individual cells into inverse culture medium/oil droplets, revealed the presence of slow and fast growing subpopulations that differ in relative proportions for low and high copy number plasmids.
Collapse
Affiliation(s)
| | | | - Krzysztof Langer
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Denis Pompon
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
24
|
Xu K, Hutchins D, Gao K. Coccolith arrangement follows Eulerian mathematics in the coccolithophore Emiliania huxleyi. PeerJ 2018; 6:e4608. [PMID: 29666762 PMCID: PMC5896503 DOI: 10.7717/peerj.4608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Background The globally abundant coccolithophore, Emiliania huxleyi, plays an important ecological role in oceanic carbon biogeochemistry by forming a cellular covering of plate-like CaCO3 crystals (coccoliths) and fixing CO2. It is unknown how the cells arrange different-sized coccoliths to maintain full coverage, as the cell surface area of the cell changes during daily cycle. Methods We used Euler’s polyhedron formula and CaGe simulation software, validated with the geometries of coccoliths, to analyze and simulate the coccolith topology of the coccosphere and to explore the arrangement mechanisms. Results There were only small variations in the geometries of coccoliths, even when the cells were cultured under variable light conditions. Because of geometric limits, small coccoliths tended to interlock with fewer and larger coccoliths, and vice versa. Consequently, to sustain a full coverage on the surface of cell, each coccolith was arranged to interlock with four to six others, which in turn led to each coccosphere contains at least six coccoliths. Conclusion The number of coccoliths per coccosphere must keep pace with changes on the cell surface area as a result of photosynthesis, respiration and cell division. This study is an example of natural selection following Euler’s polyhedral formula, in response to the challenge of maintaining a CaCO3 covering on coccolithophore cells as cell size changes.
Collapse
Affiliation(s)
- Kai Xu
- College of Fisheries, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - David Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
25
|
|
26
|
Alizadehgiashi M, Khabibullin A, Li Y, Prince E, Abolhasani M, Kumacheva E. Shear-Induced Alignment of Anisotropic Nanoparticles in a Single-Droplet Oscillatory Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:322-330. [PMID: 29202244 DOI: 10.1021/acs.langmuir.7b03648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flow-induced alignment of shape-anisotropic colloidal particles is of great importance in fundamental research and in the fabrication of structurally anisotropic materials; however, rheo-optical studies of shear-induced particle orientation are time- and labor-intensive and require complicated experimental setups. We report a single-droplet oscillatory microfluidic strategy integrated with in-line polarized light imaging as a strategy for studies of shear-induced alignment of rod-shape nanoparticles. Using an oscillating droplet of an aqueous isotropic suspension of cellulose nanocrystals (CNCs), we explore the effect of the shear rate and suspension viscosity on the flow-induced CNC alignment and subsequent relaxation to the isotropic state. The proposed microfluidic strategy enables high-throughput studies of shear-induced orientations in structured liquid under precisely controlled experimental conditions. The results of such studies can be used in the development of structure-anisotropic materials.
Collapse
Affiliation(s)
- Moien Alizadehgiashi
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Amir Khabibullin
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yunfeng Li
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
27
|
Florea M. Aging and immortality in unicellular species. Mech Ageing Dev 2017; 167:5-15. [PMID: 28844968 DOI: 10.1016/j.mad.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/21/2017] [Accepted: 08/13/2017] [Indexed: 12/22/2022]
Abstract
It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging.
Collapse
Affiliation(s)
- Michael Florea
- Graduate School of Arts and Sciences, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Taylor GT, Suter EA, Li ZQ, Chow S, Stinton D, Zaliznyak T, Beaupré SR. Single-Cell Growth Rates in Photoautotrophic Populations Measured by Stable Isotope Probing and Resonance Raman Microspectrometry. Front Microbiol 2017; 8:1449. [PMID: 28824580 PMCID: PMC5541042 DOI: 10.3389/fmicb.2017.01449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/x¯), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Elizabeth A Suter
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Zhuo Q Li
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Stephanie Chow
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Dallyce Stinton
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Tatiana Zaliznyak
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Steven R Beaupré
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
29
|
Elitas M, Sadeghi S, Karamahmutoglu H, Gozuacik D, Serdar Turhal N. Microfabricated platforms to quantitatively investigate cellular behavior under the influence of chemical gradients. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Dressler OJ, Casadevall I Solvas X, deMello AJ. Chemical and Biological Dynamics Using Droplet-Based Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:1-24. [PMID: 28375703 DOI: 10.1146/annurev-anchem-061516-045219] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
Collapse
Affiliation(s)
- Oliver J Dressler
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| | | | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
31
|
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C. Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnol J 2017; 12. [PMID: 28544731 DOI: 10.1002/biot.201600549] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Phenotypic plasticity of microbial cells has attracted much attention and several research efforts have been dedicated to the description of methods aiming at characterizing phenotypic heterogeneity and its impact on microbial populations. However, different approaches have also been suggested in order to take benefit from noise in a bioprocess perspective, e.g. by increasing the robustness or productivity of a microbial population. This review is dedicated to outline these controlling methods. A common issue, that has still to be addressed, is the experimental identification and the mathematical expression of noise. Indeed, the effective interfacing of microbial physiology with external parameters that can be used for controlling physiology depends on the acquisition of reliable signals. Latest technologies, like single cell microfluidics and advanced flow cytometric approaches, enable linking physiology, noise, heterogeneity in productive microbes with environmental cues and hence allow correctly mapping and predicting biological behavior via mathematical representations. However, like in the field of electronics, signals are perpetually subjected to noise. If appropriately interpreted, this noise can give an additional insight into the behavior of the individual cells within a microbial population of interest. This review focuses on recent progress made at describing, treating and exploiting biological noise in the context of microbial populations used in various bioprocess applications.
Collapse
Affiliation(s)
- Frank Delvigne
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Jonathan Baert
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Hosni Sassi
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Patrick Fickers
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Alexander Grünberger
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
32
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
33
|
Ledvina V, Janečková E, Matalová E, Klepárník K. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells. Anal Bioanal Chem 2016; 409:269-274. [PMID: 27757513 DOI: 10.1007/s00216-016-9998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023]
Abstract
Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo® 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.
Collapse
Affiliation(s)
- Vojtěch Ledvina
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic.,Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| | - Eva Janečková
- Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic
| | - Eva Matalová
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
34
|
Abolhasani M, Jensen KF. Oscillatory multiphase flow strategy for chemistry and biology. LAB ON A CHIP 2016; 16:2775-2784. [PMID: 27397146 DOI: 10.1039/c6lc00728g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Collapse
Affiliation(s)
- Milad Abolhasani
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
36
|
Cybulski O, Jakiela S, Garstecki P. Whole Teflon valves for handling droplets. LAB ON A CHIP 2016; 16:2198-210. [PMID: 27182628 DOI: 10.1039/c6lc00375c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose and test a new whole-Teflon gate valve for handling droplets. The valve allows droplet plugs to pass through without disturbing them. This is possible due to the geometric design, the choice of material and lack of any pulses of flow generated by closing or opening the valve. The duct through the valve resembles a simple segment of tubing, without constrictions, change in lumen or side pockets. There are no extra sealing materials with different wettability or chemical resistance. The only material exposed to liquids is FEP Teflon, which is resistant to aggressive chemicals and fully biocompatible. The valve can be integrated into microfluidic systems: we demonstrate a complex system for culturing bacteria in hundreds of microliter droplet chemostats. The valve effectively isolates modules of the system to increase precision of operations on droplets. We verified that the valve allowed millions of droplet plugs to safely pass through, without any cross-contamination with bacteria between the droplets. The valve can be used in automating complex microfluidic systems for experiments in biochemistry, biology and organic chemistry.
Collapse
Affiliation(s)
- Olgierd Cybulski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
37
|
Cottinet D, Condamine F, Bremond N, Griffiths AD, Rainey PB, de Visser JAGM, Baudry J, Bibette J. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution. PLoS One 2016; 11:e0152395. [PMID: 27077662 PMCID: PMC4831777 DOI: 10.1371/journal.pone.0152395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/04/2022] Open
Abstract
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.
Collapse
Affiliation(s)
- Denis Cottinet
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
- * E-mail: (DC); (J. Bibette)
| | - Florence Condamine
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
| | - Nicolas Bremond
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
| | - Andrew D. Griffiths
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
| | - Paul B. Rainey
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Jean Baudry
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
| | - Jérôme Bibette
- Chemistry Biology Innovation (CNRS UMR 8231), École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), PSL* Research University, Paris, France
- * E-mail: (DC); (J. Bibette)
| |
Collapse
|
38
|
Illing R, Burkart C, Pfitzner D, Jungmann D, Baraban L, Cuniberti G. Ecotoxicity assessment using ciliate cells in millifluidic droplets. BIOMICROFLUIDICS 2016; 10:024115. [PMID: 27051472 PMCID: PMC4808060 DOI: 10.1063/1.4944869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/15/2016] [Indexed: 06/01/2023]
Abstract
Precise analysis of the aquatic cells and their responses to the toxic chemicals, i.e., water disinfective agents, is of crucial importance due to their role in the ecosystem. We demonstrate the application of the droplets based millifluidic tool for isolating and longtime monitoring of single Paramecium tetraurelia cells using a large number of water-in-oil emulsion droplets. Due to the automated monitoring of the fluorescence signal, the droplets containing cells are distinguished from the empty reservoirs. A viability indicator is used to follow the metabolic dynamic of the cells in every single droplet. Finally, we perform ecotoxicity tests in droplets, exposing the encapsulated paramecia cells to silver nitrate for determination of EC50 levels, and compare the output with the conventional microtiter plate assay.
Collapse
Affiliation(s)
| | - Corinna Burkart
- Institute of Hydrobiology , TU Dresden, 01062 Dresden, Germany
| | - Daniel Pfitzner
- Institute of Hydrobiology , TU Dresden, 01062 Dresden, Germany
| | - Dirk Jungmann
- Institute of Hydrobiology , TU Dresden, 01062 Dresden, Germany
| | - Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
| | | |
Collapse
|