1
|
Donia M, Aref NE, Zeineldin M, Megahed A, Blair B, Lowe J, Aldridge B. Impact of Parenteral Ceftiofur on Developmental Dynamics of Early Life Fecal Microbiota and Antibiotic Resistome in Neonatal Lambs. Antibiotics (Basel) 2025; 14:434. [PMID: 40426501 PMCID: PMC12108499 DOI: 10.3390/antibiotics14050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Early gut microbiome development is critical for neonatal health, and its dysbiosis may impact long-term animal productivity. This study examined the effects of parenteral Ceftiofur Crystalline Free Acid (CCFA) on the composition and diversity of the neonatal lamb fecal microbiome. The emergence of antimicrobial resistance genes associated with CCFA exposure was also investigated. Results: There were distinct microbial populations in the CCFA-treated lambs compared to the control group at each time point, with a highly significant decrease in alpha and beta diversity. The CCFA treatment showed a reduction in several key microbial taxa during nursing, but these differences were diminished by day 56. Unlike the control group, CCFA-treated lambs had core microbes potentially carrying multiple antibiotic resistance genes, including those for beta-lactam, fosfomycin, methicillin, and multidrug resistance. Methods: Twenty-four healthy neonatal lambs were randomly assigned to CCFA-treated (n = 12) and control (n = 12) groups. Fecal samples were collected on days 0, 7, 14, 28, and 56. Genomic DNA was extracted and sequenced using the Illumina MiSeq platform. Microbial composition was analyzed using the MG-RAST pipeline with the RefSeq database. Conclusions: Despite temporary reductions in critical bacterial populations during nursing, the early sheep fecal microbiome demonstrated resilience by repopulating after CCFA antibiotic disruption. While this highlights microbiota stability after short-course antibiotic exposure, the transient disturbance underscores potential risks to early gut health. Importantly, persistent CCFA resistance poses environmental dissemination risks, emphasizing the need for cautious antibiotic use in livestock to mitigate ecological impacts.
Collapse
Affiliation(s)
- Mohamed Donia
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA;
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nasr-Eldin Aref
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | - Mohamed Zeineldin
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh 13736, Egypt; (M.Z.); (A.M.)
| | - Ameer Megahed
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh 13736, Egypt; (M.Z.); (A.M.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benjamin Blair
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA; (B.B.); (J.L.)
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA; (B.B.); (J.L.)
| | - Brian Aldridge
- Department of Veterinary Medicine and Sciences, College of Veterinary Medicine, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Wagner S, Weber M, Paul LS, Grümpel-Schlüter A, Kluess J, Neuhaus K, Fuchs TM. Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies. Front Microbiol 2025; 16:1481197. [PMID: 40196033 PMCID: PMC11973300 DOI: 10.3389/fmicb.2025.1481197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Background The intestinal microbiota contributes to the colonization resistance of the gut towards bacterial pathogens. Antibiotic treatment often negatively affects the microbiome composition, rendering the host more susceptible for infections. However, a correct interpretation of such a perturbation requires quantitative microbiome profiling to reflect accurately the direction and magnitude of compositional changes within a microbiota. Standard 16S rRNA gene amplicon sequencing of microbiota samples offers compositional data in relative, but not absolute abundancies, and the presence of multiple copies of 16S rRNA genes in bacterial genomes introduces bias into compositional data. We explored whether improved sequencing data analysis influences the significance of the effect exerted by antibiotics on the faecal microbiota of young pigs using two veterinary antibiotics. Calculation of absolute abundances, either by flow cytometry-based bacterial cell counts or by spike-in of synthetic 16S rRNA genes, was employed and 16S rRNA gene copy numbers (GCN) were corrected. Results Cell number determination exhibited large interindividual variability in two pig studies, using either tylosin or tulathromycin. Following tylosin application, flow cytometry-based cell counting revealed decreased absolute abundances of five families and ten genera. These results were not detectable by standard 16S analysis based on relative abundances. Here, GCN correction additionally uncovered significant decreases of Lactobacillus and Faecalibacterium. In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. In contrast, analysis of relative abundances only showed a decrease of Faecalibacterium and Rikenellaceae RC9 gut group and, thus, a much less detailed antibiotic effect. Conclusion Flow cytometry is a laborious method, but identified a higher number of significant microbiome changes in comparison to common compositional data analysis and even revealed to be superior to a spike-in method. Calculation of absolute abundances and GCN correction are valuable methods that should be standards in microbiome analyses in veterinary as well as human medicine.
Collapse
Affiliation(s)
- Stefanie Wagner
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Lena-Sophie Paul
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | | | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Thilo M. Fuchs
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
3
|
Hasegawa-Ishii S, Komaki S, Asano H, Imai R, Osaki T. Chronic nasal inflammation early in life induces transient and long-term dysbiosis of gut microbiota in mice. Brain Behav Immun Health 2024; 41:100848. [PMID: 39280089 PMCID: PMC11402449 DOI: 10.1016/j.bbih.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiota begins to colonize the host body following birth, develops during the suckling period and changes to the adult type after weaning. The early gut microbiota during the suckling period is thought to have profound effects on the host physiology throughout life but it is still unclear whether early dysbiosis is retained lifelong. Our previous study indicated that chronic nasal inflammation induces dysbiosis of gut microbiota in adult mice. In the present study, we addressed the question as to whether early exposure to chronic nasal inflammation induces dysbiosis, and if so, whether the dysbiosis is retained until adulthood and the sex differences in this effect. Male and female mice received repeated intranasal administration of lipopolysaccharide (LPS) or saline twice a week from P7 to P24 and were weaned at P24. The cecal contents were obtained for 16S rRNA analysis at 2 time points: at 4 weeks (wks), just after weaning, and at maturation to adulthood at 10 wks. The body weight did not differ between saline- and LPS-treated mice till around weaning, suggesting that the mothers' milk was given similarly to all mice. At 4 wks, the beta diversity was significantly different between saline- and LPS-treated male and female mice and the composition of the gut microbiota changed in LPS-treated mice. The abundance of phylum Bacteroidota tended to decrease and that of Firmicutes increased in LPS-treated male mice, while the abundance of Deferribacterota increased in LPS-treated female mice. At 10 wks, the beta diversity was not different between saline- and LPS-treated mice, but the abundance of family Lachnospiraceae significantly decreased in LPS-treated male and female mice by LEfSe analysis. Together, chronic nasal inflammation early in life caused transient and long-term dysbiosis of gut microbiota, which may contribute to the onset and progress of metabolic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Suzuho Komaki
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Hinami Asano
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Ryuichi Imai
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
4
|
Acharya B, Tofthagen M, Maciej-Hulme ML, Suissa MR, Karlsson NG. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J 2024; 41:323-342. [PMID: 39287885 PMCID: PMC11522178 DOI: 10.1007/s10719-024-10165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The intestinal barrier is a selective interface between the body´s external and the internal environment. Its layer of epithelial cells is joined together by tight junction proteins. In intestinal permeability (IP), the barrier is compromised, leading to increased translocation of luminal contents such as large molecules, toxins and even microorganisms. Numerous diseases including Inflammatory Bowel Disease (IBD), Coeliac disease (CD), autoimmune disorders, and diabetes are believed to be associated with IP. Dietary interventions, such as prebiotics, may improve the intestinal barrier. Prebiotics are non-digestible food compounds, that promote the growth and activity of beneficial bacteria in the gut. This systematic review assesses the connection between prebiotic usage and IP. PubMed and Trip were used to identify relevant studies conducted between 2010-2023. Only six studies were found, which all varied in the characteristics of the population, study design, and types of prebiotics interventions. Only one study showed a statistically significant effect of prebiotics on IP. Alteration of intestinal barrier function was measured by lactulose/mannitol, chromium-labelled Ethylenediaminetetraacetic acid (51Cr-EDTA), lactulose/rhamnose, and sucralose/erythritol excretion as well as zonulin and glucagon-like peptide 2 levels. Three studies also conducted gut microbiota assessment, and one of them showed statistically significant improvement of the gut microbiome. This study also reported a decrease in zonulin level. The main conclusion from this review is that there is a lack of human studies in this important field. Futhermore, large population studies and using standardized protocols, would be required to properly assess the impact of prebiotic intervention and improvement on IP.
Collapse
Affiliation(s)
- Binayak Acharya
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marthe Tofthagen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marissa L Maciej-Hulme
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Michal Rachel Suissa
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway.
| |
Collapse
|
5
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
6
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kontou A, Agakidou E, Chatziioannidis I, Chotas W, Thomaidou E, Sarafidis K. Antibiotics, Analgesic Sedatives, and Antiseizure Medications Frequently Used in Critically Ill Neonates: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:871. [PMID: 39062320 PMCID: PMC11275925 DOI: 10.3390/children11070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Antibiotic, analgesic sedative, and antiseizure medications are among the most commonly used medications in preterm/sick neonates, who are at high risk of nosocomial infections, central nervous system complications, and are exposed to numerous painful/stressful procedures. These severe and potentially life-threatening complications may have serious short- and long-term consequences and should be prevented and/or promptly treated. The reported variability in the medications used in neonates indicates the lack of adequate neonatal studies regarding their effectiveness and safety. Important obstacles contributing to inadequate studies in preterm/sick infants include difficulties in obtaining parental consent, physicians' unwillingness to recruit preterm infants, the off-label use of many medications in neonates, and other scientific and ethical concerns. This review is an update on the use of antimicrobials (antifungals), analgesics (sedatives), and antiseizure medications in neonates, focusing on current evidence or knowledge gaps regarding their pharmacokinetics, indications, safety, dosage, and evidence-based guidelines for their optimal use in neonates. We also address the effects of early antibiotic use on the intestinal microbiome and its association with long-term immune-related diseases, obesity, and neurodevelopment (ND). Recommendations for empirical treatment and the emergence of pathogen resistance to antimicrobials and antifungals are also presented. Finally, future perspectives on the prevention, modification, or reversal of antibiotic resistance are discussed.
Collapse
Affiliation(s)
- Angeliki Kontou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Eleni Agakidou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Ilias Chatziioannidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - William Chotas
- Department of Neonatology, University of Vermont, Burlington, VT 05405, USA
| | - Evanthia Thomaidou
- Department of Anesthesia and Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Kosmas Sarafidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| |
Collapse
|
8
|
Ott LC, Mellata M. Short-chain fatty acids inhibit bacterial plasmid transfer through conjugation in vitro and in ex vivo chicken tissue explants. Front Microbiol 2024; 15:1414401. [PMID: 38903782 PMCID: PMC11187007 DOI: 10.3389/fmicb.2024.1414401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The animal gut acts as a potent reservoir for spreading and maintaining conjugative plasmids that confer antimicrobial resistance (AMR), fitness, and virulence attributes. Interventions that inhibit the continued emergence and expansion of AMR and virulent strains in agricultural and clinical environments are greatly desired. This study aims to determine the presence and efficacy of short-chain fatty acids (SCFA) inhibitory effects on the conjugal transfer of AMR plasmids. In vitro broth conjugations were conducted between donor Escherichia coli strains carrying AMP plasmids and the plasmid-less Escherichia coli HS-4 recipient strain. Conjugations were supplemented with ddH2O or SCFAs at 1, 0.1, 0.01, or 0.001 molar final concentration. The addition of SCFAs completely inhibited plasmid transfer at 1 and 0.1 molar and significantly (p < 0.05) reduced transfer at 0.01 molar, regardless of SCFA tested. In explant models for the chicken ceca, either ddH2O or a final concentration of 0.025 M SCFAs were supplemented to the explants infected with donor and recipient E. coli. In every SCFA tested, significant decreases in transconjugant populations compared to ddH2O-treated control samples were observed with minimal effects on donor and recipient populations. Finally, significant reductions in transconjugants for plasmids of each incompatibility type (IncP1ε, IncFIβ, and IncI1) tested were detected. This study demonstrates for the first time the broad inhibition ability of SCFAs on bacterial plasmid transfer and eliminates AMR with minimal effect on bacteria. Implementing interventions that increase the concentrations of SCFAs in the gut may be a viable method to reduce the risk, incidence, and rate of AMR emergence in agricultural and human environments.
Collapse
Affiliation(s)
- Logan C. Ott
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
10
|
Delaroque C, Chassaing B. Dietary emulsifier consumption accelerates type 1 diabetes development in NOD mice. NPJ Biofilms Microbiomes 2024; 10:1. [PMID: 38182615 PMCID: PMC10770373 DOI: 10.1038/s41522-023-00475-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The rapidly increasing prevalence of type 1 diabetes (T1D) underscores the role of environmental (i.e. non-genetic) determinants of T1D development. Such factors include industrialized diets as well as the intestinal microbiota with which they interact. One component of industrialized diets that deleteriously impact gut microbiota is dietary emulsifiers, which perturb intestinal microbiota to encroach upon their host promoting chronic low-grade intestinal inflammation and metabolic syndrome. Hence, we investigated whether 2 dietary emulsifiers, carboxymethylcellulose (CMC) and polysorbate-80 (P80), might influence the development of T1D in NOD mice, which spontaneously develop this disorder. We observed that chronic emulsifier exposure accelerated T1D development in NOD mice, which was associated with increased insulin autoantibody levels. Such accelerated T1D development was accompanied by compositional and functional alterations of the intestinal microbiota as well as low-grade intestinal inflammation. Moreover, machine learning found that the severity of emulsifier-induced microbiota disruption had partial power to predict subsequent disease development, suggesting that complex interactions occur between the host, dietary factors, and the intestinal microbiota. Thus, perturbation of host-microbiota homeostasis by dietary emulsifiers may have contributed to the post-mid-20th-century increase in T1D.
Collapse
Affiliation(s)
- Clara Delaroque
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Conte M, Varraso R, Fournier A, Rothwell JA, Baglietto L, Fornili M, Sbidian E, Severi G. A prospective study of the association between living in a rural environment during childhood and risk of psoriasis. ENVIRONMENTAL RESEARCH 2023; 237:117062. [PMID: 37660877 DOI: 10.1016/j.envres.2023.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Psoriasis is one of the most common immune-mediated inflammatory diseases (IMIDs). Living in a rural environment during childhood is associated with a decreased risk of certain IMIDs, like asthma, in adulthood. However, its role in other IMIDs, such as psoriasis is still unclear. To evaluate the relationships between different factors related to the environment during childhood and the risk of psoriasis in adulthood we conducted a study in E3N, a French prospective cohort composed of 98 995 women. During the 1990-2018 follow-up of 72 154 study participants, we identified 1 967 incident cases of psoriasis from self-reports in self-administered structured questionnaires. During the 2004-2018 follow-up of 67 917 study participants, 188 moderate-to-severe cases of psoriasis were identified through self-reports and from data from a drug reimbursement database. We fitted Cox proportional hazards regression models with age as the time scale from which we estimated hazard ratios adjusted for putative confounders (aHRs). We found inverse associations with risk of psoriasis for rural birthplace [aHR: 0.89 (95%CI: 0.79-0.96)] and for having farming parents [aHR: 0.84 (95%CI: 0.72-0.97)]. For moderate-to-severe psoriasis we found a nominally similar inverse association with rural birthplace but not with having farming parents. Our results suggest that an exposure to a rural environment during childhood may be associated with a reduced risk of psoriasis. These findings may help to improve our understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Marco Conte
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Inserm, Integrative Respiratory Epidemiology Team, CESP, Villejuif, 94807, France
| | - Agnès Fournier
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Joseph A Rothwell
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Emilie Sbidian
- Hôpital Henri Mondor, Department of Dermatology, Créteil, 94010, France; Université Paris Est Créteil (UPEC), Epidemiology in Dermatology and Evaluation of Therapeutics (Epi-DermE), Créteil, 94010, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France; Department of Statistics, Computer Science and Applications « G. Parenti », University of Florence, Florence, 50134, Italy.
| |
Collapse
|
12
|
Gupta U, Dey P. Rise of the guardians: Gut microbial maneuvers in bacterial infections. Life Sci 2023; 330:121993. [PMID: 37536616 DOI: 10.1016/j.lfs.2023.121993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
AIMS Bacterial infections are one of the major causes of mortality globally. The gut microbiota, primarily comprised of the commensals, performs an important role in maintaining intestinal immunometabolic homeostasis. The current review aims to provide a comprehensive understanding of how modulation of the gut microbiota influences opportunistic bacterial infections. MATERIALS AND METHODS Primarily centered around mechanisms related to colonization resistance, nutrient, and metabolite-associated factors, mucosal immune response, and commensal-pathogen reciprocal interactions, we discuss how gut microbiota can promote or prevent bacterial infections. KEY FINDINGS Opportunistic infections can occur directly due to obligate pathogens or indirectly due to the overgrowth of opportunistic pathobionts. Gut microbiota-centered mechanisms of altered intestinal immunometabolic and metabolomic homeostasis play a significant role in infection promotion and prevention. Depletion in the population of commensals, increased abundance of pathobionts, and overall decrease in gut microbial diversity and richness caused due to prolonged antibiotic use are risk factors of opportunistic bacterial infections, including infections from multidrug-resistant spp. Gut commensals can limit opportunistic infections by mechanisms including the production of antimicrobials, short-chain fatty acids, bile acid metabolism, promoting mucin formation, and maintaining immunological balance at the mucosa. Gut microbiota-centered strategies, including the administration of probiotics and fecal microbiota transplantation, could help attenuate opportunistic bacterial infections. SIGNIFICANCE The current review discussed the gut microbial population and function-specific aspects contributing to bacterial infection susceptibility and prophylaxis. Collectively, this review provides a comprehensive understanding of the mechanisms related to the dual role of gut microbiota in bacterial infections.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
13
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
15
|
Beckers KF, Schulz CJ, Liu CC, Barras ED, Childers GW, Stout RW, Sones JL. Effects of fenbendazole on fecal microbiome in BPH/5 mice, a model of hypertension and obesity, a brief report. PLoS One 2023; 18:e0287145. [PMID: 37294797 PMCID: PMC10256194 DOI: 10.1371/journal.pone.0287145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023] Open
Abstract
Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christopher J. Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Elise D. Barras
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gary W. Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Rhett W. Stout
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
16
|
Heeley AM, Brodbelt DC, O'Neill DG, Church DB, Davison LJ. Assessment of glucocorticoid and antibiotic exposure as risk factors for diabetes mellitus in selected dog breeds attending UK primary-care clinics. Vet Rec 2023; 192:e2785. [PMID: 37004211 PMCID: PMC10952602 DOI: 10.1002/vetr.2785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is an important endocrine disorder in dogs. This study explored prior exposure to glucocorticoids or antibiotic treatment as risk factors for developing DM in dogs attending primary-care VetCompass clinics in the UK. METHODS A breed frequency matched case-control study nested in a cohort of dogs (n = 480,469) aged 3 years or over was used to explore associations between glucocorticoid and antibiotic exposure and the odds of developing DM. RESULTS A total of 565 cases and 2179 controls were included. Dogs with DM had over four times the odds of exposure to glucocorticoids within 6 weeks prior to diagnosis (odds ratio [OR] 4.07, 95% confidence interval [CI] 2.41-6.89, p < 0.001) compared to controls within 6 weeks prior to a randomly selected quasi-date of diagnosis. Dogs that had only one unique documented antibiotic course had a decreased odds of developing DM (OR 0.65, 95% CI 0.46-0.91, p = 0.012) compared to dogs that had no documented courses of antibiotics. LIMITATIONS This study only included selected breeds, so the results may not be generalisable to all dog breeds. CONCLUSIONS Exposure to glucocorticoids is associated with a substantial increase in the risk of developing DM for the dog breeds included in this analysis.
Collapse
Affiliation(s)
- Angela M. Heeley
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dave C. Brodbelt
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dan G. O'Neill
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - David B. Church
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| | - Lucy J. Davison
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| |
Collapse
|
17
|
Bagyánszki M, Bódi N. Key elements determining the intestinal region-specific environment of enteric neurons in type 1 diabetes. World J Gastroenterol 2023; 29:2704-2716. [PMID: 37274063 PMCID: PMC10237112 DOI: 10.3748/wjg.v29.i18.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes, as a metabolic disorder, is accompanied with several gastrointestinal (GI) symptoms, like abdominal pain, gastroparesis, diarrhoea or constipation. Serious and complex enteric nervous system damage is confirmed in the background of these diabetic motility complaints. The anatomical length of the GI tract, as well as genetic, developmental, structural and functional differences between its segments contribute to the distinct, intestinal region-specific effects of hyperglycemia. These observations support and highlight the importance of a regional approach in diabetes-related enteric neuropathy. Intestinal large and microvessels are essential for the blood supply of enteric ganglia. Bidirectional morpho-functional linkage exists between enteric neurons and enteroglia, however, there is also a reciprocal communication between enteric neurons and immune cells on which intestinal microbial composition has crucial influence. From this point of view, it is more appropriate to say that enteric neurons partake in multidirectional communication and interact with these key players of the intestinal wall. These interplays may differ from segment to segment, thus, the microenvironment of enteric neurons could be considered strictly regional. The goal of this review is to summarize the main tissue components and molecular factors, such as enteric glia cells, interstitial cells of Cajal, gut vasculature, intestinal epithelium, gut microbiota, immune cells, enteroendocrine cells, pro-oxidants, antioxidant molecules and extracellular matrix, which create and determine a gut region-dependent neuronal environment in diabetes.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
18
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
19
|
Saksida T, Paunović V, Koprivica I, Mićanović D, Jevtić B, Jonić N, Stojanović I, Pejnović N. Development of Type 1 Diabetes in Mice Is Associated with a Decrease in IL-2-Producing ILC3 and FoxP3 + Treg in the Small Intestine. Molecules 2023; 28:molecules28083366. [PMID: 37110604 PMCID: PMC10141349 DOI: 10.3390/molecules28083366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Recent data indicate the link between the number and function of T regulatory cells (Treg) in the gut immune tissue and initiation and development of autoimmunity associated with type 1 diabetes (T1D). Since type 3 innate lymphoid cells (ILC3) in the small intestine are essential for maintaining FoxP3+ Treg and there are no data about the possible role of ILC3 in T1D pathogenesis, the aim of this study was to explore ILC3-Treg link during the development of T1D. Mature diabetic NOD mice had lower frequencies of IL-2-producing ILC3 and Treg in small intestine lamina propria (SILP) compared to prediabetic NOD mice. Similarly, in multiple low doses of streptozotocin (MLDS)-induced T1D in C57BL/6 mice, hyperglycemic mice exhibited lower numbers of ILC3, IL-2+ ILC3 and Treg in SILP compared to healthy controls. To boost T1D severity, mice were treated with broad-spectrum antibiotics (ABX) for 14 days prior to T1D induction by MLDS. The higher incidence of T1D in ABX-treated mice was associated with significantly lower frequencies of IL-2+ ILC3 and FoxP3+ Treg in SILP compared with mice without ABX treatment. The obtained findings show that the lower proportions of IL-2-expressing ILC3 and FoxP3+ Treg in SILP coincided with diabetes progression and severity.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dragica Mićanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
20
|
Yang X, Wang Z, Niu J, Zhai R, Xue X, Wu G, Fang Y, Meng G, Yuan H, Zhao L, Zhang C. Pathobionts from chemically disrupted gut microbiota induce insulin-dependent diabetes in mice. MICROBIOME 2023; 11:62. [PMID: 36978130 PMCID: PMC10052834 DOI: 10.1186/s40168-023-01507-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Dysbiotic gut microbiome, genetically predisposed or chemically disrupted, has been linked with insulin-dependent diabetes (IDD) including autoimmune type 1 diabetes (T1D) in both humans and animal models. However, specific IDD-inducing gut bacteria remain to be identified and their casual role in disease development demonstrated via experiments that can fulfill Koch's postulates. RESULTS Here, we show that novel gut pathobionts in the Muribaculaceae family, enriched by a low-dose dextran sulfate sodium (DSS) treatment, translocated to the pancreas and caused local inflammation, beta cell destruction and IDD in C57BL/6 mice. Antibiotic removal and transplantation of gut microbiota showed that this low DSS disrupted gut microbiota was both necessary and sufficient to induce IDD. Reduced butyrate content in the gut and decreased gene expression levels of an antimicrobial peptide in the pancreas allowed for the enrichment of selective members in the Muribaculaceae family in the gut and their translocation to the pancreas. Pure isolate of one such members induced IDD in wildtype germ-free mice on normal diet either alone or in combination with normal gut microbiome after gavaged into stomach and translocated to pancreas. Potential human relevance of this finding was shown by the induction of pancreatic inflammation, beta cell destruction and IDD development in antibiotic-treated wildtype mice via transplantation of gut microbiome from patients with IDD including autoimmune T1D. CONCLUSION The pathobionts that are chemically enriched in dysbiotic gut microbiota are sufficient to induce insulin-dependent diabetes after translocation to the pancreas. This indicates that IDD can be mainly a microbiome-dependent disease, inspiring the need to search for novel pathobionts for IDD development in humans. Video Abstract.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyi Wang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junling Niu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhai
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhe Xue
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yuanyuan Fang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
21
|
Rastegar K, Kelley ST, Thackray VG. Metagenome-Assembled Genomes from Murine Fecal Microbiomes Dominated by Uncharacterized Bacteria. Microbiol Resour Announc 2023; 12:e0116222. [PMID: 36779794 PMCID: PMC10019230 DOI: 10.1128/mra.01162-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/14/2023] Open
Abstract
The laboratory mouse gut microbiome has been extensively studied, but our understanding of its diversity remains incomplete. We report the assembly of 51 draft metagenome-assembled genomes (MAGs) from murine fecal samples dominated by uncharacterized bacteria. These MAGs add to our understanding of gut microbial diversity in this critical model organism.
Collapse
Affiliation(s)
- Kiarash Rastegar
- Bioinformatics and Medical Informatics Program, San Diego State University, San Diego, California, USA
| | - Scott T. Kelley
- Bioinformatics and Medical Informatics Program, San Diego State University, San Diego, California, USA
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Varykina G. Thackray
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2023; 20:81-100. [PMID: 36258032 PMCID: PMC9898198 DOI: 10.1038/s41575-022-00685-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic use is increasing worldwide. However, the use of antibiotics is clearly associated with changes in gut microbiome composition and function, and perturbations have been identified as potential environmental risk factors for chronic inflammatory disorders of the gastrointestinal tract. In this Review, we examine the association between the use of antibiotics and the onset and development of both type 1 and type 2 diabetes, inflammatory bowel disease, including ulcerative colitis and Crohn's disease, as well as coeliac disease and eosinophilic oesophagitis. We discuss the key findings of epidemiological studies, provide mechanistic insights into the pathways by which the gut microbiota might contribute to these diseases, and assess clinical trials investigating the effects of antibiotics. Such studies indicate that antibiotic exposures, varying in type, timing and dosage, could explain differences in disease risk. There seems to be a critical window in early life in which perturbation of the microbiome has a substantial effect on disease development. Identifying the antibiotic-perturbed gut microbiota as a factor that contributes to the pathophysiology of these inflammatory disorders might stimulate new approaches to prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Weidner
- Department of Paediatrics, Rutgers University, New Brunswick, NJ, USA
| | - Lea Ann Chen
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J Blaser
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
23
|
Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:479-494. [PMID: 36568836 PMCID: PMC9765331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.
Collapse
Affiliation(s)
- Rafail Matzaras
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece
| | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou
General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Protonotariou
- Department of Microbiology, AHEPA University Hospital,
Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece,To whom all correspondence should be addressed:
Eirini Christaki, University General Hospital of Ioannina, St. Niarchou,
Ioannina, Greece; ; ORCID:
https://www.orcid.org/0000-0002-8152-6367
| |
Collapse
|
24
|
Maternal Mycobiome, but Not Antibiotics, Alters Fungal Community Structure in Neonatal Piglets. Appl Environ Microbiol 2022; 88:e0159322. [PMID: 36448784 PMCID: PMC9765005 DOI: 10.1128/aem.01593-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or β-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.
Collapse
|
25
|
Amiri P, Arefhosseini S, Bakhshimoghaddam F, Jamshidi Gurvan H, Hosseini SA. Mechanistic insights into the pleiotropic effects of butyrate as a potential therapeutic agent on NAFLD management: A systematic review. Front Nutr 2022; 9:1037696. [PMID: 36532559 PMCID: PMC9755748 DOI: 10.3389/fnut.2022.1037696] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 08/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases worldwide. As a multifaceted disease, NAFLD's pathogenesis is not entirely understood, but recent evidence reveals that gut microbiota plays a significant role in its progression. Butyrate, a gut microbiota metabolite, has been reported to have hepato-protective effects in NAFLD animal models. The purpose of this systematic review is to determine how butyrate affects the risk factors for NAFLD. Searches were conducted using relevant keywords in electronic databases up to March 2022. According to the evidence presented in this study, butyrate contributes to a wide variety of biological processes in the gut-liver axis. Its beneficial properties include improving intestinal homeostasis and liver health as well as anti-inflammatory, metabolism regulatory and anti-oxidative effects. These effects may be attributed to butyrate's ability to regulate gene expression as an epigenetic modulator and trigger cellular responses as a signalling molecule. However, the exact underlying mechanisms remain unclear. Human trials have not been performed on the effect of butyrate on NAFLD, so there are concerns about whether the results of animal studies can be translated to humans. This review summarises the current knowledge about the properties of butyrate, particularly its potential effects and mechanisms on liver health and NAFLD management.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hannah Jamshidi Gurvan
- National Medical Emergency Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Chen HJ, Bischoff A, Galley JD, Peck L, Bailey MT, Gur TL. Discrete role for maternal stress and gut microbes in shaping maternal and offspring immunity. Neurobiol Stress 2022; 21:100480. [PMID: 36532381 PMCID: PMC9755033 DOI: 10.1016/j.ynstr.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychosocial stress is prevalent during pregnancy, and is associated with immune dysfunction, both for the mother and the child. The gut microbiome has been implicated as a potential mechanism by which stress during pregnancy can impact both maternal and offspring immune function; however, the complex interplay between the gut microbiome and the immune system is not well-understood. Here, we leverage a model of antimicrobial-mediated gut microbiome reduction, in combination with a well-established model of maternal restraint stress, to investigate the independent effects of and interaction between maternal stress and the gut microbiome in shaping maternal and offspring immunity. First, we confirmed that the antimicrobial treatment reduced maternal gut bacterial load and altered fecal alpha and beta diversity, with a reduction in commensal microbes and an increase in the relative abundance of rare taxa. Prenatal stress also disrupted the gut microbiome, according to measures of both alpha and beta diversity. Furthermore, prenatal stress and antimicrobials independently induced systemic and gastrointestinal immune suppression in the dam with a concomitant increase in circulating corticosterone. While stress increased neutrophils in the maternal circulation, lymphoid cells and monocytes were not impacted by either stress or antimicrobial treatment. Although the fetal immune compartment was largely spared, stress increased circulating neutrophils and CD8 T cells, and antibiotics increased neutrophils and reduced T cells in the adult offspring. Altogether, these data indicate similar, but discrete, roles for maternal stress and gut microbes in influencing maternal and offspring immune function.
Collapse
Affiliation(s)
- Helen J. Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Allison Bischoff
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lauren Peck
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,The Ohio State University College of Medicine, Columbus, OH, USA
| | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA,Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Tamar L. Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA,Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Corresponding author. 120A Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Chen YL, Huang KC, Wu JH, Liu T, Chen JW, Xie JY, Chen MY, Wu LW, Tung CL. Microbiome dysbiosis inhibits carcinogen-induced murine oral tumorigenesis. J Cancer 2022; 13:3051-3060. [PMID: 36046649 PMCID: PMC9414028 DOI: 10.7150/jca.75947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Oral cancer is one of the most common cancers worldwide and ranks fourth for the mortality rate of cancers in males in Taiwan. The oral microbiota is the microbial community in the oral cavity, which is essential for maintaining oral health, but the relationship between oral tumorigenesis and the oral microbiota remains to be clarified. This study evaluated the effect of microbiome dysbiosis on oral carcinogenesis in mice, and the impact of the microbiome and its metabolic pathways on regulating oral carcinogenesis. We found that antibiotics treatment decreases carcinogen-induced oral epithelial malignant transformation. Microbiome analysis based on 16S rRNA gene sequencing revealed that the species richness of fecal specimens was significantly reduced in antibiotic-treated mice, while that in the salivary specimens was not decreased accordingly. Differences in bacterial composition, including Lactobacillus animalis abundance, in the salivary samples of cancer-bearing mice was dramatically decreased. L. animalis was the bacterial species that increased the most in the saliva of antibiotic-treated mice, suggesting that L. animalis may be negatively associated with oral carcinogenesis. In functional analysis, the microbiome in the saliva of the tumor-bearing group showed greater potential for polyamine biosynthesis. Immunochemical staining proved that spermine oxidase, an effective polyamine oxidase, was upregulated in mouse oral cancer lesions. In conclusion, oral microbiome dysbiosis may alter polyamine metabolic pathways and reduce carcinogen-induced malignant transformation of the oral epithelium.
Collapse
Affiliation(s)
- Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chih Huang
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Yan Xie
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Yen Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Liang Tung
- Department of Oral Maxillo-Facial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60080, Taiwan
| |
Collapse
|
28
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
29
|
Ott LC, Mellata M. Models for Gut-Mediated Horizontal Gene Transfer by Bacterial Plasmid Conjugation. Front Microbiol 2022; 13:891548. [PMID: 35847067 PMCID: PMC9280185 DOI: 10.3389/fmicb.2022.891548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of new antimicrobial resistant and virulent bacterial strains may pose a threat to human and animal health. Bacterial plasmid conjugation is a significant contributor to rapid microbial evolutions that results in the emergence and spread of antimicrobial resistance (AR). The gut of animals is believed to be a potent reservoir for the spread of AR and virulence genes through the horizontal exchange of mobile genetic elements such as plasmids. The study of the plasmid transfer process in the complex gut environment is limited due to the confounding factors that affect colonization, persistence, and plasmid conjugation. Furthermore, study of plasmid transfer in the gut of humans is limited to observational studies, leading to the need to identify alternate models that provide insight into the factors regulating conjugation in the gut. This review discusses key studies on the current models for in silico, in vitro, and in vivo modeling of bacterial conjugation, and their ability to reflect the gut of animals. We particularly emphasize the use of computational and in vitro models that may approximate aspects of the gut, as well as animal models that represent in vivo conditions to a greater extent. Directions on future research studies in the field are provided.
Collapse
Affiliation(s)
- Logan C. Ott
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Lee D, Choi S, Chang J, Park YJ, Kim JH, Park SM. Association of antibiotics exposure within the first 2 years after birth with subsequent childhood type 1 diabetes. Endocrine 2022; 77:21-29. [PMID: 35552980 DOI: 10.1007/s12020-022-03042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Antibiotics prescription in early life can cause dysbiosis, an imbalance of gut microbiota. We aimed to reveal the relationship between antibiotics exposure during the first 2 years after birth and type 1 diabetes risk in children under 8 years of age using a nationally representative data from South Korea. METHODS The final study population consisted of 63,434 children from the National Health Insurance Service (NHIS) database from 2008 to 2015. The primary exposure of interest was antibiotics prescription in first 2 years after birth. The analysis was conducted with cumulative defined daily dose (cDDD; 0-29, 30-59, ≥ 60 cDDD), the number of antibiotics classes (0-3, 4, ≥5 classes), and age at first antibiotics prescription (0-119, 120-239, ≥ 240 days). Age, sex, household income, and overweight were considered as potential confounding covariates. RESULTS Compared to those within the less than 30 cDDD, other groups that were prescribed more antibiotics did not have a significant difference in diabetes risk (aHR 0.86, 95% CI 0.37-2.02 in ≥ 60 cDDD). The number of antibiotics classes and age at first antibiotics prescriptions were also not associated with the risk of type 1 diabetes. The development of diabetes was not related to the cDDD, the number of antibiotics classes, and age at first antibiotics prescription according to subgroup analysis which was stratified by overweight. CONCLUSIONS Antibiotics exposure within the first 2 years of life was not associated with subsequent diabetes risk. Future studies using a larger number of long-term follow-up data are needed.
Collapse
Affiliation(s)
- Dahye Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Young Jun Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jae Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
31
|
Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nat Commun 2022; 13:2296. [PMID: 35484157 PMCID: PMC9051133 DOI: 10.1038/s41467-022-29919-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan. Antimicrobial resistance represents an ongoing silent pandemic. Here, de Nies et al. show that a single antibiotic treatment leads to resistance in bacteria such as Akkermansia muciniphila and that integrons play a key role in mediating this resistance.
Collapse
|
32
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| |
Collapse
|
33
|
Feng HY, Chan CH, Chu YC, Qu XM, Wang YH, Wei JCC. Patients with ankylosing spondylitis have high risk of irritable bowel syndrome: a long-term nationwide population-based cohort study. Postgrad Med 2022; 134:290-296. [PMID: 35139724 DOI: 10.1080/00325481.2022.2041338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a chronic inflammatory disease, might carry a high risk of irritable bowel syndrome (IBS) due to abnormal gut microbiota or inflammatory reaction. METHODS We conducted a 14-year retrospective cohort study based on Taiwan's National Health Insurance Research Database (NHIRD). A total of 4007 patients with newly diagnosed AS (outpatient visits≧3 times, or hospitalization≧1 time) and 988,084 non-AS comparisons were enrolled during 2000-2012. To ensure baseline comparability, the propensity score was matched by age, gender, comorbidities, and other possible confounders. The outcome was the incidence of IBS, followed up to the end of 2013. Cox proportional hazard model calculated adjusted hazard ratio (aHR) and the cumulative incidence of both groups was analyzed by the Kaplan-Meier method. RESULT After propensity score matching, baseline demographic characteristics were comparable between AS patients and the comparison group. The crude HR for IBS in the AS group was significantly higher 2.41 (95%C.I. = 1.84-3.16) than comparison group. After adjusting for possible confounders, adjusted HR was 2.50 (95%C.I. = 1.91-3.29). The cumulative incidence of IBS in AS was significantly higher than non-AS comparisons during the 14-year follow-up (P < 0.001). CONCLUSION This nationwide population-based cohort study showed that patients with AS have higher risks of IBS than those of the non-AS comparison group.
Collapse
Affiliation(s)
- Hao-Yuan Feng
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Chu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Xin-Man Qu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Capin I, Hinds A, Vomero B, Roth P, Blau J. Are Early-Onset Sepsis Evaluations and Empiric Antibiotics Mandatory for All Neonates Admitted with Respiratory Distress? Am J Perinatol 2022; 39:444-448. [PMID: 32947642 DOI: 10.1055/s-0040-1717070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the success and safety of an antimicrobial stewardship protocol for neonates admitted with respiratory distress at birth. STUDY DESIGN A retrospective cohort analysis of all infants admitted to the neonatal intensive care unit (NICU) with respiratory distress from January 2013 to February 2018 was conducted. In April 2016, an antimicrobial stewardship protocol was implemented, dividing neonates into two groups: maternal indications for delivery (no infectious risk factors for early-onset sepsis [EOS]) and fetal indications (risk factors present) for delivery. Neonates with risk factors for EOS were started on empiric antibiotics, those who lacked risk factors were observed. Paired sample t-test and descriptive statistics were used to compare the pre- and postprotocol implementation. RESULTS There were no missed cases of EOS in our study. Management with empiric antibiotics decreased from 95 to 41% of neonates with respiratory distress after initiation of the protocol. Newborns with a lower mean (±standard errors of the mean [SEM]) gestational age were more likely to receive empiric antibiotics (35.1 ± 0.4 [range: 23-42 weeks] vs. 37.7 ± 0.2 weeks [range: 24-42 weeks]; p < 0.05). Similar findings were seen for neonates with lower mean birth weights (2,627 ± 77 [range: 390-5,440 g] vs. 3,078 ± 51 g [range: 620-6,260 g]; p < 0.05). CONCLUSION The antibiotic stewardship protocol safely reduces the administration of empiric antibiotics to symptomatic neonates without missing any cases of sepsis. KEY POINTS · Newborns born with respiratory distress often receive broad-spectrum antibiotics upon NICU admission.. · An antibiotic stewardship program was created for this population and considered perinatal risk factors for sepsis when determining whether antibiotics were indicated.. · This antibiotic stewardship program was safe and effective, significantly reducing antibiotic use without missing any cases of sepsis..
Collapse
Affiliation(s)
- Ivana Capin
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York
| | - Autumn Hinds
- SUNY Downstate College of Medicine, Brooklyn, New York
| | - Bridgit Vomero
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York
| | - Philip Roth
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Jonathan Blau
- Department of Pediatrics, Division of Neonatology, Staten Island University Hospital, Northwell Health, Staten Island, New York.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
35
|
Abstract
We present this protocol using a mouse model to assess the impact of early-life antibiotic exposure on mammalian lifespan and the composition of the gut microbiota over time. We describe longitudinal fecal sampling and health monitoring following early-life antibiotic exposure. We detail DNA extraction and 16S rRNA gene sequencing to longitudinally profile the composition of the fecal microbiota. Finally, we discuss how to address potential confounders such as the stochastic recolonization of the gut microbiota following antibiotic exposure. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2021). We describe a mouse model of early-life antibiotic exposure Bacterial load rapidly depleted following antibiotic exposure but recovers quickly Low diversity, highly variable microbiota colonizes after antibiotic exposure We describe criteria for health monitoring as the mice age
Collapse
|
36
|
Jeffery IB, Cotter PD, Scanlan PD. Collateral Damage in the Human Gut Microbiome - Blastocystis Is Significantly Less Prevalent in an Antibiotic-Treated Adult Population Compared to Non-Antibiotic Treated Controls. Front Cell Infect Microbiol 2022; 12:822475. [PMID: 35281435 PMCID: PMC8913940 DOI: 10.3389/fcimb.2022.822475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotics can drive the rapid loss of non-target, phylogenetically diverse microorganisms that inhabit the human gut. This so-called “collateral damage” has myriad consequences for host health and antibiotic mediated changes to the gut microbiota have been implicated in the aetiology of many chronic diseases. To date, studies have largely focused on how antibiotics affect the bacterial fraction of the gut microbiome and their impact on non-bacterial members, including prevalent eukaryal species, such as Blastocystis, remains largely unknown. Here we assessed the prevalence and diversity of Blastocystis in an elderly adult group that were in receipt of antibiotics (n = 86) and an equivalent non-antibiotic treated group (n = 88) using a PCR-based approach. This analysis revealed that although similar subtypes were present in both groups, Blastocystis was significantly less prevalent in the antibiotic-treated group (16%) compared to non-antibiotic treated controls (55%); Fisher’s Exact test, p < 0.0001). Given that antibiotics target structures and molecules of prokaryotic cells to kill or inhibit bacterial populations, the most likely explanation for differences in prevalence between both groups is due to secondary extinctions owing to the potential dependence of Blastocystis on bacteria present in the gut microbiome that were negatively affected by antibiotic treatment. Although further work is required to explore this hypothesis in greater detail, these data clearly show that Blastocystis prevalence in human populations is negatively associated with antibiotic treatment. This finding may be relevant to explaining patterns of variation for this microorganism in different human populations and cohorts of interest.
Collapse
Affiliation(s)
- Ian B. Jeffery
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Pauline D. Scanlan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- *Correspondence: Pauline D. Scanlan,
| |
Collapse
|
37
|
Martins Garcia T, van Roest M, Vermeulen JLM, Meisner S, Koster J, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Altered Gut Structure and Anti-Bacterial Defense in Adult Mice Treated with Antibiotics during Early Life. Antibiotics (Basel) 2022; 11:antibiotics11020267. [PMID: 35203869 PMCID: PMC8868095 DOI: 10.3390/antibiotics11020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jacqueline L. M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
- Correspondence:
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
38
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of MicrobiologyUniversity College CorkCorkIreland
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| | | | - Eugene Dempsey
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Reynolds Paul Ross
- School of MicrobiologyUniversity College CorkCorkIreland
- APC MicrobiomeCorkIreland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| |
Collapse
|
39
|
Marietta E, Horwath I, Meyer S, Khaleghi-Rostamkolaei S, Norman E, Luckey D, Balakrishnan B, Mangalam A, Choung RS, Taneja V, Murray JA. Administration of Human Derived Upper gut Commensal Prevotella histicola delays the onset of type 1 diabetes in NOD mice. BMC Microbiol 2022; 22:8. [PMID: 34983374 PMCID: PMC8729070 DOI: 10.1186/s12866-021-02406-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease that is increasing in prevalence worldwide. One of the contributing factors to the pathogenesis of T1D is the composition of the intestinal microbiota, as has been demonstrated. in T1D patients, with some studies demonstrating a deficiency in their levels of Prevotella. We have isolated a strain of Prevotella histicola from a duodenal biopsy that has anti-inflammatory properties, and in addition, alters the development of autoimmune diseases in mouse models. Therefore, our hypothesis is that the oral administration of P. histicola might delay the development of T1D in the non-obese diabetic (NOD) mice. To assess this, we used the following materials and methods. Female NOD mice (ages 5-8 weeks) were administered every other day P. histicola that was cultured in-house. Blood glucose levels were measured every other week. Mice were sacrificed at various time points for histopathological analysis of the pancreas. Modulation of immune response by the commensal was tested by analyzing regulatory T-cells and NKp46+ cells using flow cytometry and intestinal cytokine mRNA transcript levels using quantitative RT-PCR. For microbial composition, 16 s rRNA gene analysis was conducted on stool samples collected at various time points. RESULTS Administration of P. histicola in NOD mice delayed the onset of T1D. Beta diversity in the fecal microbiomes demonstrated that the microbial composition of the mice administered P. histicola was different from those that were not treated. Treatment with P. histicola led to a significant increase in regulatory T cells with a concomitant decrease in NKp46+ cells in the pancreatic lymph nodes as compared to the untreated group after 5 weeks of treatment. CONCLUSIONS These observations suggest that P. histicola treatment delayed onset of diabetes by increasing the levels of regulatory T cells in the pancreatic lymph nodes. This preliminary work supports the rationale that enteral exposure to a non pathogenic commensal P. histicola be tested as a future therapy for T1D.
Collapse
Affiliation(s)
- Eric Marietta
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Dermatology, Mayo Clinic, Rochester, MN USA
| | - Irina Horwath
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Stephanie Meyer
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Shahryar Khaleghi-Rostamkolaei
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Eric Norman
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - David Luckey
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Baskar Balakrishnan
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Ashutosh Mangalam
- grid.214572.70000 0004 1936 8294Department of Immunology, University of Iowa, Iowa City, Iowa USA
| | - Rok Seon Choung
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Veena Taneja
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Joseph A. Murray
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
40
|
Ota T, Ishikawa T, Sakakida T, Endo Y, Matsumura S, Yoshida J, Hirai Y, Mizushima K, Oka K, Doi T, Okayama T, Inoue K, Kamada K, Uchiyama K, Takagi T, Konishi H, Naito Y, Itoh Y. Treatment with broad-spectrum antibiotics upregulates Sglt1 and induces small intestinal villous hyperplasia in mice. J Clin Biochem Nutr 2022; 70:21-27. [PMID: 35068677 PMCID: PMC8764108 DOI: 10.3164/jcbn.21-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Although extensive evidence indicates that the gut microbiota plays a crucial role in regulating glucose homeostasis, the exact regulatory mechanism remains unclear. This study aimed to investigate the effect of broad-spectrum antibiotics on the expression of glucose transporters, histomorphology of the small intestine, and glucose metabolism in mice. C57BL/6 mice were administered drinking water with or without a broad-spectrum antibiotic combination for 4 weeks. Thereafter, an oral glucose tolerance test was performed. Body weight, small intestine histopathology, mRNA levels of glucose transporters (SGLT1 and GLUT2) and intestinal transcription factors (CDX1 and CDX2) were evaluated. SGLT1 and CDX1 were upregulated in the small intestine upon antibiotic administration compared with that in the control group. The height and surface area of the jejunal villi were significantly higher upon antibiotic administration than in the control group. Fasting glucose levels were significantly higher upon antibiotic administration than in the control group. The present results indicate that treatment with broad-spectrum antibiotics upregulates SGLT1 and CDX1 and induces hyperplasia in the small intestine, thus increasing fasting blood glucose levels. Our results further the current understanding of the effects of broad-spectrum antibiotics on the gut microbiota and glucose homeostasis that may have future clinical implications.
Collapse
Affiliation(s)
- Takayuki Ota
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tomoki Sakakida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yuki Endo
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Shinya Matsumura
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Juichirou Yoshida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yasuko Hirai
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kaname Oka
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
| |
Collapse
|
41
|
Houeiss P, Luce S, Boitard C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front Endocrinol (Lausanne) 2022; 13:933965. [PMID: 35937815 PMCID: PMC9353023 DOI: 10.3389/fendo.2022.933965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic islet β cells are destroyed by immune cells, ultimately leading to overt diabetes. The progressive increase in T1D incidence over the years points to the role of environmental factors in triggering or accelerating the disease process which develops on a highly multigenic susceptibility background. Evidence that environmental factors induce T1D has mostly been obtained in animal models. In the human, associations between viruses, dietary habits or changes in the microbiota and the development of islet cell autoantibodies or overt diabetes have been reported. So far, prediction of T1D development is mostly based on autoantibody detection. Future work should focus on identifying a causality between the different environmental risk factors and T1D development to improve prediction scores. This should allow developing preventive strategies to limit the T1D burden in the future.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
- *Correspondence: Christian Boitard,
| |
Collapse
|
42
|
Short- and long-term effects of amoxicillin/clavulanic acid or doxycycline on the gastrointestinal microbiome of growing cats. PLoS One 2021; 16:e0253031. [PMID: 34910719 PMCID: PMC8673677 DOI: 10.1371/journal.pone.0253031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.
Collapse
|
43
|
Swaminathan G, Citron M, Xiao J, Norton JE, Reens AL, Topçuoğlu BD, Maritz JM, Lee KJ, Freed DC, Weber TM, White CH, Kadam M, Spofford E, Bryant-Hall E, Salituro G, Kommineni S, Liang X, Danilchanka O, Fontenot JA, Woelk CH, Gutierrez DA, Hazuda DJ, Hannigan GD. Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome. Vaccines (Basel) 2021; 9:vaccines9111340. [PMID: 34835271 PMCID: PMC8619314 DOI: 10.3390/vaccines9111340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence demonstrates a connection between microbiome composition and suboptimal response to vaccines (vaccine hyporesponse). Harnessing the interaction between microbes and the immune system could provide novel therapeutic strategies for improving vaccine response. Currently we do not fully understand the mechanisms and dynamics by which the microbiome influences vaccine response. Using both mouse and non-human primate models, we report that short-term oral treatment with a single antibiotic (vancomycin) results in the disruption of the gut microbiome and this correlates with a decrease in systemic levels of antigen-specific IgG upon subsequent parenteral vaccination. We further show that recovery of microbial diversity before vaccination prevents antibiotic-induced vaccine hyporesponse, and that the antigen specific IgG response correlates with the recovery of microbiome diversity. RNA sequencing analysis of small intestine, spleen, whole blood, and secondary lymphoid organs from antibiotic treated mice revealed a dramatic impact on the immune system, and a muted inflammatory signature is correlated with loss of bacteria from Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. These results suggest that microbially modulated immune pathways may be leveraged to promote vaccine response and will inform future vaccine design and development strategies.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| | - Michael Citron
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Jianying Xiao
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Begüm D. Topçuoğlu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Julia M. Maritz
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Keun-Joong Lee
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Daniel C. Freed
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Teresa M. Weber
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Cory H. White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Mahika Kadam
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Erin Spofford
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Erin Bryant-Hall
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Gino Salituro
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Sushma Kommineni
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Olga Danilchanka
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Jane A. Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70503, USA;
| | - Christopher H. Woelk
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Dario A. Gutierrez
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Geoffrey D. Hannigan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| |
Collapse
|
44
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
45
|
Qu W, Liu L, Miao L. Exposure to antibiotics during pregnancy alters offspring outcomes. Expert Opin Drug Metab Toxicol 2021; 17:1165-1174. [PMID: 34435921 DOI: 10.1080/17425255.2021.1974000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The composition of microorganisms is closely related to human health. Antibiotic use during pregnancy may have adverse effects on the neonatal gut microbiome and subsequently affect infant health development, leading to childhood atopy and allergic diseases, intestinal, metabolic and brain disorders, and infection. AREAS COVERED This review includes the effect of maternal antibiotic use during pregnancy on potential diseases in animals and human offspring. EXPERT OPINION Exposure to antibiotics during pregnancy alters offspring outcomes. Alterations in the microbiome may potentially lower the risk of a range of problems and may also be a novel therapeutic target in children later in life.
Collapse
Affiliation(s)
- Wenhao Qu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Linsheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
46
|
Inverse association between use of broad spectrum penicllin with beta-lactamase inhibitors and prevalence of type 1 diabetes mellitus in Europe. Sci Rep 2021; 11:16768. [PMID: 34408224 PMCID: PMC8373876 DOI: 10.1038/s41598-021-96301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing incidence of type 1 diabetes is supposed to be induced by environmental factors. Microbiome modulated by antibiotics seems to serve as one of the environmental factors which could influence the development of T1DM. Mitochondria, as autochthonous environmental bacteria living in our cells, and other bacteria share many common enzymes including beta-lactamases and it is supported by evidence that some beta-lactamase inhibitors are able to interact with counterpart enzymes. Thus, antibiotics may utilize two different pathways influencing the development of T1DM; one through modulation of microbiome and a second one via the interaction of mitochondrial enzymes. Data of consumption of penicillin (both narrow and broad spectrum) and beta-lactamase inhibitors in 30 European countries were collected from the database of the European Centre for Disease Prevention and Control. These data were correlated with the prevalence reported by the International Diabetes Federation (2019) referring to type 1 diabetes in Europe. No correlation was found between total penicillin consumption or use of broad spectrum penicillin and the prevalence of type 1 diabetes. Nevertheless, broad spectrum penicillin, in combination with beta-lactamase inhibitor, was in inverse correlation with the prevalence of type 1 diabetes (r = − 0.573, p = 0.001). On the other hand, narrow spectrum penicillin was in positive correlation with type 1 diabetes (r = 0.523, p = 0.003). Prevalence of type 1 diabetes showed an inverse correlation with the use of beta-lactamase inhibitors and a positive one with that of narrow spectrum penicillin. Such a detailed analysis has not so far been provided referring to the penicillin group. In the background of this association either microbiomal or direct mitochondrial effects can be supposed.
Collapse
|
47
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
49
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Garcia TM, van Roest M, Vermeulen JLM, Meisner S, Smit WL, Silva J, Koelink PJ, Koster J, Faller WJ, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Early Life Antibiotics Influence In Vivo and In Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cell Mol Gastroenterol Hepatol 2021; 12:943-981. [PMID: 34102314 PMCID: PMC8346670 DOI: 10.1016/j.jcmgh.2021.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam, the Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|