1
|
Gorayb Pereira AL, Augusto Abreu Pereira C, Dias LM, Jorge JH, Pavarina AC. Zerumbone disrupts mixed biofilms of Candida albicans and Streptococcus mutans on acrylic resin. BIOFOULING 2024:1-16. [PMID: 39704392 DOI: 10.1080/08927014.2024.2441259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The efficacy of Zerumbone (ZER) against mixed biofilms of fluconazole-resistant Candida albicans (ATCC 96901) and Streptococcus mutans (UA159) was evaluated. Biofilms were cultivated on acrylic resin specimens for 48 h, with alternating supplementation of glucose and sucrose. ZER's ability to inhibit biofilm formation (pre-treatment) and eradicate mature biofilms (post-treatment) was assessed. Control groups were treated with Chlorhexidine (CHX), Nystatin (NYS), Penicillin (ATB), and distilled water. The efficacy was measured by colony forming units (CFU/mm2) counts, biomass and biofilm's matrix components quantification (water-soluble polysaccharides [WSP], alkali-soluble polysaccharides [ASPs], proteins, and extracellular DNA [eDNA]). Data were analyzed by one-way ANOVA with Tukey's or Gammes-Howell post-hoc test for normal data and Kruskal-Wallis test for data that did not meet the assumption of normality (α = 0,05). In the biofilm inhibition assay, ZER decreased total microbiota (C. albicans + S. mutans) (2.7 log10; p < 0.005), C. albicans (1.4 log10; p < 0.038) and S. mutans (1.9 log10; p < 0.048) counting (vs control group), and biofilm components [insoluble proteins: 37% (p < 0.001); WSP: 13% (p < 0.042); ASP: 46% (p < 0.001); eDNA: 11% (p < 0.048)]. Post-treatment with ZER reduced total microbiota (3.2 log10; p < 0.001), C. albicans (3 log10; p < 0.001) and S. mutans (2 log10; p < 0.001) counting (vs control group), and biofilm components [soluble proteins: 20% (p < 0.001); WSP: 20% (p < 0.001); ASP: 51% (p < 0.001); and eDNA: 33% (p < 0.001)]. The positive control groups demonstrated similar or lower efficacy than ZER under all experimental conditions. ZER demonstrates efficacy against mixed biofilms by reducing C. albicans and S. mutans counting and disrupting the extracellular matrix in both assays.
Collapse
Affiliation(s)
- Ana Luíza Gorayb Pereira
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | - César Augusto Abreu Pereira
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | - Luana Mendonça Dias
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | - Janaína Habib Jorge
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| |
Collapse
|
2
|
Hou J, Wu Q, Xiong R, Malakar PK, Zhu Y, Zhao Y, Zhang Z. A Standardized Mouse Model for Wound Infection with Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:11773. [PMID: 39519323 PMCID: PMC11546588 DOI: 10.3390/ijms252111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa is a highly drug-resistant pathogen known to impair wound healing and provoke inflammatory responses, potentially leading to immune dysregulation. This study aimed to systematically investigate the immune response mechanisms mediated by cytokines following P. aeruginosa infection through the development of a standardized wound model. Kunming mice were selected as experimental subjects and given 8 mm diameter lesions on their backs and inoculated with standard strains PAO1 and PA14. The key parameters assessed included changes in body weight, wound redness and swelling, bacterial dynamics, protein content in wound tissues, immune responses, and pathological alterations. The results demonstrated that pathogen invasion significantly inhibited wound healing, with healing rates in the infected groups (87.5 ± 6.3% and 77.1 ± 3.6%) being notably lower than those in the uninfected control group. P. aeruginosa persisted in the wounds for up to 12 days, with bacterial loads decreasing from 8 log to 2 log. Additionally, there was a marked reduction in the protein content of the wound tissue and an increase in the expression levels of inflammatory factors such as IL-1β and TNF-α. The thickness of granulation tissue and the number of neovessels were significantly lower compared to the uninfected control group. This study establishes a standardized paradigm for creating a mouse model of P. aeruginosa infection in wounds, emphasizing the importance of appropriate mouse strains, uniform wound preparation methods, and moderate inoculation doses for reliable and accurate experimental results. These elements will facilitate the assessment of changes across six key indicators post-infection, providing a foundational data set and technical support for future mechanistic investigations of P. aeruginosa infection and the development of targeted antimicrobial strategies.
Collapse
Affiliation(s)
- Jie Hou
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Rongrong Xiong
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (J.H.); (Q.W.); (R.X.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
3
|
Paschoal MAB, Gonçalves LM, Cavalcante SIA, Andrade-Maia G, Duarte S. Morphological changes and viability of Streptococcus mutans biofilm treated with erythrosine: A confocal laser scanning microscopy analysis. Microsc Res Tech 2024; 87:888-895. [PMID: 38129976 DOI: 10.1002/jemt.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Antimicrobial photodynamic therapy (a-PDT) is a modality that aims to induce microorganisms through visible light, a photosensitizer, and molecular oxygen. This therapy has shown promising results in controlling cariogenic biofilm in vitro and in vivo counterparts. This study investigated bacterial viability and morphological characterization of Streptococcus mutans mature biofilms after combination of erythrosine and a high potency dental curing light. Biofilms were formed on saliva-coated hydroxyapatite disks in batch culture. The samples were performed in triplicates. Fresh medium was replaced daily for five days and treated using 40 μM of E activated by HL 288 J/cm2 and total dose of 226 J at 1200 mW/cm2. Phosphate buffer saline and 0.12% of chlorhexidine were used as negative and positive control, respectively. After treatment, biofilms were assessed for microbial viability and morphological characterization by means of bio-volume and thickness. COMSTAT software was used for image analysis. Data were analyzed using two-way ANOVA followed by Tukey test with significance level 5%. The application of a-PDT and CHX treatments decreased S. mutans bacterial viability. The image analysis showed more red cells on biofilms when compared to other groups, demonstrating photobacterial killing. Erythrosine irradiated with a high potency curing light can potentially act as an antimicrobial tool in the treatment of cariogenic biofilms. The morphology and viability of microorganisms were impacted after treatment. Treatment with photodynamic therapy may be able to reduce the bio-volume and viability of bacteria present in biofilms. CLINICAL RELEVANCE AND RESEARCH HIGHLIGHTS: The use of the a-PDT technique has been applied in dentistry with satisfactory results. Some applications of this technique are in stomatology and endodontics. In the present study, we sought to understand the use of photodynamic therapy in the control of biofilm and the results found are compatible with the objective of microbiological control proposed by this technique, thus raising the alert for future studies in vivo using the combination of a-PDT with erythrosine, since they are easily accessible materials for the dental surgeon and can be applied in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Gabriele Andrade-Maia
- Department of Child and Adolescent Oral Health, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Simone Duarte
- Senior Director, Applied Research Department, American Dental Association Science and Research Institute, Chicago, Illinois, USA
| |
Collapse
|
4
|
Hadis MA, Shortall AC, Palin WM. The power of light - From dental materials processing to diagnostics and therapeutics. Biomater Investig Dent 2024; 11:40308. [PMID: 38645925 PMCID: PMC11022655 DOI: 10.2340/biid.v11.40308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 04/23/2024] Open
Abstract
Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4-6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390-405 nm; intermediate: 410-450 nm; and long: 450-480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.
Collapse
Affiliation(s)
- Mohammed A Hadis
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian C Shortall
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - William M Palin
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Camba C, Walter-Lakes B, Digal P, Taheri-Araghi S, Bezryadina A. Biofilm formation and manipulation with optical tweezers. BIOMEDICAL OPTICS EXPRESS 2024; 15:1181-1191. [PMID: 38404331 PMCID: PMC10890877 DOI: 10.1364/boe.510836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Some bacterial species form biofilms in suboptimal growth and environmental conditions. Biofilm structures allow the cells not only to optimize growth with nutrient availability but also to defend each other against external stress, such as antibiotics. Medical and bioengineering implications of biofilms have led to an increased interest in the regulation of bacterial biofilm formation. Prior research has primarily focused on mechanical and chemical approaches for stimulating and controlling biofilm formation, yet optical techniques are still largely unexplored. In this paper, we investigate the biofilm formation of Bacillus subtilis in a minimum biofilm-promoting medium (MSgg media) and explore the potential of optical trapping in regulating bacterial aggregation and biofilm development. Specifically, we determine the most advantageous stage of bacterial biofilm formation for optical manipulation and investigate the impact of optical trapping at different wavelengths on the aggregation of bacterial cells and the formation of biofilm. The investigation of optically regulated biofilm formation with optical tweezers presents innovative methodologies for the stimulation and suppression of biofilm growth through the application of lasers.
Collapse
Affiliation(s)
- Czarlyn Camba
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Brooke Walter-Lakes
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Phillip Digal
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Anna Bezryadina
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| |
Collapse
|
6
|
Liu Y, Long S, Wang H, Wang Y. Biofilm therapy for chronic wounds. Int Wound J 2024; 21:e14667. [PMID: 38339793 PMCID: PMC10858329 DOI: 10.1111/iwj.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
Chronic wounds have been a major factor of serious harm to global public health. At present, it is known that almost all chronic wounds contain biofilms, which seriously hinder the healing process. Removal of biofilms can effectively promote the healing of chronic wounds. As the study of wound biofilms deepens, many new treatment methods have emerged, thus bringing revolutionary means for the treatment of chronic wound biofilm. This review summarizes various methods for the treatment of chronic wound biofilm worldwide to provide a theoretical summary and practical basis for the selection of suitable wound biofilm treatment methods in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Shengyong Long
- Department of TraumatologyTongren People's HospitalTongrenChina
| | - Hanfeng Wang
- Plastic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Yan Wang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
- Medical Research Center, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| |
Collapse
|
7
|
Ngokwe ZB, Wolfoviz-Zilberman A, Sharon E, Zabrovsky A, Beyth N, Houri-Haddad Y, Kesler-Shvero D. Trans-Cinnamaldehyde-Fighting Streptococcus mutans Using Nature. Pharmaceutics 2024; 16:113. [PMID: 38258123 PMCID: PMC10818508 DOI: 10.3390/pharmaceutics16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Streptococcus mutans (S. mutans) is the main cariogenic bacterium with acidophilic properties, in part due to its acid-producing and -resistant properties. As a result of this activity, hard tooth structures may demineralize and form caries. Trans-cinnamaldehyde (TC) is a phytochemical from the cinnamon plant that has established antibacterial properties for Gram-positive and -negative bacteria. This research sought to assess the antibacterial and antibiofilm effects of trans-cinnamaldehyde on S. mutans. TC was diluted to a concentration range of 156.25-5000 μg/mL in dimethyl sulfoxide (DMSO) 0.03-1%, an organic solvent. Antibacterial activity was monitored by testing the range of TC concentrations on 24 h planktonic growth compared with untreated S. mutans. The subminimal bactericidal concentrations (MBCs) were used to evaluate the bacterial distribution and morphology in the biofilms. Our in vitro data established a TC MBC of 2500 μg/mL against planktonic S. mutans using a microplate spectrophotometer. Furthermore, the DMSO-only controls showed no antibacterial effect against planktonic S. mutans. Next, the sub-MBC doses exhibited antibiofilm action at TC doses of ≥625 μg/mL on hydroxyapatite discs, as demonstrated through biofilm analysis using spinning-disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). Our findings show that TC possesses potent antibacterial and antibiofilm properties against S. mutans. Our data insinuate that the most effective sub-MBC of TC to bestow these activities is 625 μg/mL.
Collapse
Affiliation(s)
- Zilefac Brian Ngokwe
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Amit Wolfoviz-Zilberman
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Esi Sharon
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Asher Zabrovsky
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Dana Kesler-Shvero
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| |
Collapse
|
8
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
9
|
Oh YJ, Kim YS, Kim JW, Kim DW. Antibacterial and Antiviral Properties of Pinus densiflora Essential Oil. Foods 2023; 12:4279. [PMID: 38231728 DOI: 10.3390/foods12234279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
The Korean mountains are home to the Korean red pine (Pinus densiflora). Pine needle oil has been used as a food additive and a traditional herbal medicine; however, any health-related properties of its trunk oil remain unknown. Herein, we assessed antibacterial and antiviral properties of essential oil extracted from the trunk of P. densiflora. Th extracted oil was hydrodistilled using a Clevenger apparatus and analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of the oil was tested using the microbroth dilution technique against 10 bacterial species (6 g-positive and 4 g-negative) and fungi. The extract exerted strong antimicrobial activity against Vibrio parahaemolyticus, Bacillus cereus, Listeria monocytogenes, Propionibacterium acnes, and Malassezia furfur (minimum inhibitory concentration = 10 mL/L). Additionally, it exhibited dose-dependent activity against influenza virus A and feline coronavirus. Furthermore, among 20 identified constituents accounting for 98.7% of the oil contents, the major components included 3-cyclohexene-1-methanol (10.12%), 2-(4-methylcyclohexyl)-2-propanol (9.09%), fenchone (8.14%), O-isopropyltoluene (6.35%), and isothymol methyl ether (6.14%). The P. densiflora trunk essential oil showed antibacterial and antiviral activities that depended on its chemical composition and the microbial strains tested herein. The essential oil can be used as an antimicrobial agent and disinfectant.
Collapse
Affiliation(s)
- Yu Jin Oh
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Yeong-Su Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Jae Woo Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Dae Wook Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| |
Collapse
|
10
|
Manphibool C, Matangkasombut O, Chantarangsu S, Chantarawaratit PO. Effects of blue-light LED toothbrush on reducing dental plaque and gingival inflammation in orthodontic patients with fixed appliances: a crossover randomized controlled trial. BMC Oral Health 2023; 23:293. [PMID: 37189136 DOI: 10.1186/s12903-023-02977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Patients with fixed orthodontic appliances have higher plaque accumulation and gingival inflammation. Our aim was to compare the effectiveness of a light emitting diode (LED) toothbrush with a manual toothbrush in reducing dental plaque and gingival inflammation in orthodontic patients with fixed appliances, and to investigate the effect of the LED toothbrush on Streptococcus mutans (S. mutans) biofilm in vitro. METHODS Twenty-four orthodontic patients were recruited and randomly assigned into 2 groups: (1) started with manual and (2) started with LED toothbrushes. After a 28-day usage and 28-day wash-out period, the patients switched to the other intervention. The plaque and gingival indices were determined at baseline and 28 days after each intervention. The patients' compliance and satisfaction scores were collected using questionnaires. For the in vitro experiments, S. mutans biofilm was divided into 5 groups (n = 6) with 15-, 30-, 60-, or 120-sec LED exposure, and without LED exposure as a control group. RESULTS There was no significant difference in the gingival index between the manual and LED toothbrush groups. The manual toothbrush was significantly more effective in reducing the plaque index in the proximal area on the bracket side (P = 0.031). However, no significant difference was found between the two groups in other areas around the brackets or on the non-bracket side. After LED exposure in vitro, the percentages of bacterial viability after LED exposure for 15-120 s were significantly lower compared with the control (P = 0.006). CONCLUSION Clinically, the LED toothbrush was not more effective in reducing dental plaque or gingival inflammation than the manual toothbrush in orthodontic patients with fixed appliances. However, the blue light from the LED toothbrush significantly reduced the number of S. mutans in biofilm when it was exposed to the light for at least 15 s in vitro. CLINICAL TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20210510004). Registered 10/05/2021.
Collapse
Affiliation(s)
- Chavirakarn Manphibool
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Milbrandt NB, Tsai YH, Cui K, Ngompe Massado CS, Jung H, Visperas A, Klika A, Piuzzi N, Higuera-Rueda CA, Samia ACS. Combination d-Amino Acid and Photothermal Hydrogel for the Treatment of Prosthetic Joint Infections. ACS APPLIED BIO MATERIALS 2023; 6:1231-1241. [PMID: 36867723 DOI: 10.1021/acsabm.2c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication requiring surgical intervention and prolonged antimicrobial treatment. The prevalence of PJI is on the rise, with an average incidence of 60,000 cases per year and a projected annual cost of $1.85 billion in the US. The underlying pathogenesis of PJI involves the formation of bacterial biofilms that protect the pathogen from the host immune response and antibiotics, making it difficult to eradicate such infections. Biofilms on implants are also resistant to mechanical brushing/scrubbing methods of removal. Since the removal of biofilms is currently only achievable by the replacement of the prosthesis, therapies aimed at eradicating biofilms while enabling retention of implants will revolutionize the management of PJIs. To address severe complications associated with biofilm-related infections on implants, we have developed a combination treatment that is based on a hydrogel nanocomposite system, containing d-amino acids (d-AAs) and gold nanorods, which can be delivered and transforms from a solution to a gel state at physiological temperature for sustained release of d-AAs and light-activated thermal treatment of infected sites. Using this two-step approach to utilize a near-infrared light-activated hydrogel nanocomposite system for thermal treatment, following initial disruption with d-AAs, we were able to successfully demonstrate in vitro the total eradication of mature Staphylococcus aureus biofilms grown on three-dimensional printed Ti-6Al-4V alloy implants. Using a combination of cell assays, computer-aided scanning electron microscopy analyses, and confocal microscopy imaging of the biofilm matrix, we could show 100% eradication of the biofilms using our combination treatment. In contrast, we were only able to see 25% eradication of the biofilms using the debridement, antibiotics, and implant retention method. Moreover, our hydrogel nanocomposite-based treatment approach is adaptable in the clinical setting and capable of combating chronic infections brought about by biofilms on medical implants.
Collapse
Affiliation(s)
- Nathalie B Milbrandt
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Kaixi Cui
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Cindy Serena Ngompe Massado
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Habin Jung
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Alison Klika
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Nicolas Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Carlos A Higuera-Rueda
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, 2950 Cleveland Clinic Blvd., Weston, Florida 33331, United States
| | - Anna Cristina S Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Ong J, Godfrey R, Nazarian A, Tam J, Drake L, Isaacson B, Pasquina P, Williams D. Antimicrobial blue light as a biofilm management therapy at the skin-implant interface in an ex vivo percutaneous osseointegrated implant model. J Orthop Res 2023. [PMID: 36815575 DOI: 10.1002/jor.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, Maryland, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Prado TP, Zanchetta FC, Barbieri B, Aparecido C, Melo Lima MH, Araujo EP. Photobiomodulation with Blue Light on Wound Healing: A Scoping Review. Life (Basel) 2023; 13:575. [PMID: 36836932 PMCID: PMC9959862 DOI: 10.3390/life13020575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Photobiomodulation consists of inducing healing by irradiating light. This scoping review investigates the effect of blue light on the healing process. METHODS The MEDLINE, Web of Science, Scopus, and CINAHL databases were searched. Two reviewers independently examined the search results and extracted data from the included studies. A descriptive analysis was performed. RESULTS Twenty-two articles were included. Studies were categorized as in vitro/mixed, preclinical, and clinical. The power density used was 10-680 mW/cm2 in most of the in vitro/preclinical studies, the irradiation time ranged from 5 s to 10 min, and different wavelengths and energy densities were used. In clinical studies, the wavelength ranged from 405 to 470 nm, and the energy density varied from 1.5 to 30 J/cm2. CONCLUSIONS A low energy density (<20 J/cm2) was able to stimulate the different cell types and proteins involved in healing, while a high energy density, 20.6-50 J/cm2, significantly reduced cell proliferation, migration, and metabolism. There is a great variety of device parameters among studies, and this makes it difficult to conclude what the best technical specifications are. Thus, further studies should be performed in order to define the appropriate parameters of light to be used.
Collapse
Affiliation(s)
- Thais P. Prado
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Flávia Cristina Zanchetta
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Beatriz Barbieri
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Caroline Aparecido
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Eliana P. Araujo
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| |
Collapse
|
14
|
Pakarinen S, Saarela RKT, Välimaa H, Heikkinen AM, Kankuri E, Noponen M, Alapulli H, Tervahartiala T, Räisänen IT, Sorsa T, Pätilä T. Home-Applied Dual-Light Photodynamic Therapy in the Treatment of Stable Chronic Periodontitis (HOPE-CP)-Three-Month Interim Results. Dent J (Basel) 2022; 10:206. [PMID: 36354651 PMCID: PMC9689653 DOI: 10.3390/dj10110206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
A single-site, randomized clinical trial was designed to determine the efficacy of regular home use of Lumoral® dual-light antibacterial aPDT in periodontitis patients. For the study, 200 patients were randomized to receive non-surgical periodontal treatment (NSPT), including standardized hygiene instructions and electric toothbrush, scaling and root planing, or NSPT with adjunctive Lumoral® treatment. A complete clinical intraoral examination was conducted in the beginning, at three months, and at six months. This report presents the three-month results of the first 59 consecutive randomized subjects. At three months, bleeding on probing (BOP) was lower in the NSPT + Lumoral®-group than in the NSPT group (p = 0.045), and more patients in the NSPT + Lumoral®-group had their BOP below 10% (54% vs. 22%, respectively, p = 0.008). In addition, patients in the NSPT + Lumoral®-group improved their oral hygiene by visible-plaque-index (p = 0.0003), while the NSPT group showed no statistical improvement compared to the baseline. Both groups significantly reduced the number of deep periodontal pockets, but more patients with a reduction in their deep pocket number were found in the NSPT + Lumoral® group (92% vs. 63%, p = 0.02). Patients whose number of deep pockets was reduced by 50% or more were also more frequent in the NSPT + Lumoral®-group (71% vs. 33%, p = 0.01). Patients with initially less than ten deep pockets had fewer deep pockets at the three-month follow-up in the Lumoral® group (p = 0.01). In conclusion, adjunctive use of Lumoral® in NSPT results in improved treatment outcomes at three months post-therapy.
Collapse
Affiliation(s)
- Saila Pakarinen
- Degree Program of Oral Hygiene, Metropolia University of Applied Sciences, 00920 Helsinki, Finland
| | | | - Hannamari Välimaa
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Anna Maria Heikkinen
- Faculty of Medicine and Health Technology, University of Tampere, 33520 Tampere, Finland
| | - Esko Kankuri
- Department of Pharmacology, Helsinki University, 00100 Helsinki, Finland
| | - Marja Noponen
- Department of Oral Health, Health and Social Services, 00530 Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Heikki Alapulli
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Pediatric Dentistry, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Tommi Pätilä
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
15
|
Lähteenmäki H, Pätilä T, Räisänen IT, Kankuri E, Tervahartiala T, Sorsa T. Repeated Home-Applied Dual-Light Antibacterial Photodynamic Therapy Can Reduce Plaque Burden, Inflammation, and aMMP-8 in Peri-Implant Disease—A Pilot Study. Curr Issues Mol Biol 2022; 44:1273-1283. [PMID: 35723308 PMCID: PMC8947626 DOI: 10.3390/cimb44030085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Until now, in clinical dentistry, antibacterial photodynamic therapy (aPDT) has been restricted to in-office treatments, which hampers repeated applications. This pilot study tested the benefit of a commercially available Lumoral® device designed for regular periodontal dual-light aPDT treatment at home. Seven patients with peri-implant disease applied dual-light aPDT daily in addition to their normal dental hygiene for four weeks. A single Lumoral® treatment includes an indocyanine green mouth rinse followed by 40 J/cm2 radiant exposure to a combination of 810 nm and 405 nm light. A point-of-care analysis of active-matrix metalloproteinase (aMMP-8), visible plaque index (VPI), bleeding on probing (BOP), and peri-implant pocket depth (PPD) measurements was performed on day 0, day 15, and day 30. Reductions in aMMP-8 (p = 0.047), VPI (p = 0.03), and BOP (p = 0.03) were observed, and PPD was measured as being 1 mm lower in the implant (p = ns). These results suggest a benefit of regular application of dual-light aPDT in peri-implantitis. Frequently repeated application can be a promising approach to diminishing the microbial burden and to lowering the tissue destructive proteolytic and inflammatory load around dental implants. Further studies in larger populations are warranted to show the long-term benefits.
Collapse
Affiliation(s)
- Hanna Lähteenmäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00280 Helsinki, Finland; (I.T.R.); (T.T.); (T.S.)
- Correspondence: ; Tel.: +358-50-3248433
| | - Tommi Pätilä
- Department of Pediatric Heart Surgery and Organ Transplantation, New Children’s Hospital, Helsinki University, 00100 Helsinki, Finland;
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00280 Helsinki, Finland; (I.T.R.); (T.T.); (T.S.)
| | - Esko Kankuri
- Department of Pharmacology, Helsinki University, 00100 Helsinki, Finland;
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00280 Helsinki, Finland; (I.T.R.); (T.T.); (T.S.)
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00280 Helsinki, Finland; (I.T.R.); (T.T.); (T.S.)
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
16
|
Abreu-Pereira CA, Klein MI, Vitorino Lobo CI, Gorayb Pereira AL, Jordão CC, Pavarina AC. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms. Oral Dis 2022; 29:1855-1867. [PMID: 35133698 DOI: 10.1111/odi.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study evaluated the effectiveness of DNase I combined with antimicrobial photodynamic therapy, mediated by Photodithazine® and light-emitting diode light, against biofilms formed by a fluconazole-resistant Candida albicans strain (ATCC 96901) and two clinical isolates (R14 and R70). MATERIALS AND METHODS Biofilms were grown for 48 h and exposed to DNase for 5 min, followed by application of a photosensitizer (P) and light (L), either singly or combined (P+L+, P-L+, P+L-, P-L-, P-L-DNase, P+L+DNase, P+L-DNase, and P-L+DNase; n = 12). Biofilm analysis included quantification of extracellular matrix components (water-soluble and insoluble proteins and polysaccharides, and extracellular DNA), and biomass (total and insoluble), as well as enumeration of colony-forming units. The data were analyzed using three-way analysis of variance with Bonferroni's post-hoc test. RESULTS The DNase treatment combined with aPDT showed a reduction of 1.92, 1.65, and 1.29 log10 of cell viability compared with untreated controls for ATCC 96901, R14, and R70 strains, respectively. It also reduced extracellular matrix contents of water-soluble polysaccharides (36.3%) and extracellular DNA (72.3%), as well as insoluble biomass content (43.3%). CONCLUSION The three strains showed similar behavior when treated with DNase, and the extracellular matrix components were affected, improving the effectiveness of antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- César Augusto Abreu-Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carmélia Isabel Vitorino Lobo
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Luiza Gorayb Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| |
Collapse
|
17
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
18
|
Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms 2021; 9:microorganisms9102031. [PMID: 34683353 PMCID: PMC8539625 DOI: 10.3390/microorganisms9102031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022] Open
Abstract
Streptococcus mutans is a common cariogenic bacterium in the oral cavity involved in plaque formation. Previous studies showed that Cannabigerol (CBG) has bacteriostatic and bacteriocidic activity against S. mutans. The aim of the present study was to study its effect on S. mutans biofilm formation and dispersion. S. mutans was cultivated in the presence of CBG, and the resulting biofilms were examined by CV staining, MTT assay, qPCR, biofilm tracer, optical profilometry, and SEM. Gene expression was determined by real-time qPCR, extracellular polysaccharide (EPS) production was determined by Congo Red, and reactive oxygen species (ROS) were determined using DCFH-DA. CBG prevented the biofilm formation of S. mutans shown by reduced biofilm biomass, decreased biofilm thickness, less EPS production, reduced DNA content, diminished metabolic activity, and increased ROS levels. CBG altered the biofilm roughness profile, resulting in a smoother biofilm surface. When treating preformed biofilms, CBG reduced the metabolic activity of S. mutans with a transient effect on the biomass. CBG reduced the expression of various genes involved in essential metabolic pathways related to the cariogenic properties of S. mutans biofilms. Our data show that CBG has anti-biofilm activities against S. mutans and might be a potential drug for preventive treatment of dental caries.
Collapse
|
19
|
Panariello BHD, Cavichioli EAM, Sochacki SF, Gandini Junior LG, Duarte S. Blue light & chlorhexidine therapies on Streptococcus mutans biofilm and its regrowth on an in vitro orthodontic model. Am J Orthod Dentofacial Orthop 2021; 161:103-114. [PMID: 34452788 DOI: 10.1016/j.ajodo.2020.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Fixed orthodontic appliances create areas of stagnation for dental biofilms and make it difficult to clean the teeth; therefore, there is a risk of developing incipient caries lesions during the orthodontic treatment. The objective of this study is to determine if the combination of 2 different therapies, phototherapy by blue light (BL) and the antimicrobial 0.12% chlorhexidine (CHX) on enamel, orthodontic brackets, and elastics, would reduce or inhibit mature Streptococcus mutans biofilms and their regrowth on these substrates 24 hours after the application of the treatment; and if this treatment would interfere with bracket adhesion to the enamel. METHODS Biofilms of S. mutans UA159 were formed for 5-days over samples composed of a bovine enamel, orthodontic bracket, and orthodontic elastic. Then, the specimens were treated with 0.89% NaCl for 1 minute, BL for 12 minutes (72 J/cm2), 0.12% CHX for 1 minute, and BL for 12 minutes, followed by 0.12% CHX for 1 minute (BL+CHX). Biofilm was evaluated by colonies forming units and dry weight immediately after treatments and 24 hours after treatments (regrowth). The pH of the spent media was measured on the fifth and sixth days. Biofilm formation on the samples after the treatments and regrowth was visually evaluated by confocal laser scanning microscopy. Shear bond strength (SBS) between bracket and enamel was evaluated using a universal testing machine at a crosshead speed of 1 mm/min. After bonding, specimens were thermocycled (500× at 5-55°C), treated, and thermocycled again. RESULTS After 5 days of biofilm formation, BL+CHX significantly reduced the bacterial viability on enamel compared with NaCl (P = 0.004) and BL (P = 0.014). For bracket and elastic, all the treatments resulted in similar bacterial viability (P ≥0.081). In the regrowth, CHX and BL+CHX significantly reduced the bacterial viability in the enamel compared with the NaCl (P ≤0.015) and BL (P ≤0.013). For bracket, BL+CHX significantly reduced the bacterial viability compared with NaCl (P = 0.008) and BL (P = 0.009). For the elastic, BL+CHX eliminated the biofilms from the substrate. CHX and BL+CHX significantly reduced the bacterial viability 24 hours after treatment for all substrates (P ≤0.05). The media pH significantly increased when samples were treated with CHX and BL+CHX (P ≤0.001). Confocal laser scanning microscopy images visually showed an abundant quantity of red cells in the samples treated with BL+CHX. There was no difference in the SBS between the treatments (P ≥0.932). CONCLUSIONS The association between BL and CHX reduced S. mutans biofilm and its regrowth on an in vitro orthodontic model and did not influence the bonding strength between bracket and enamel.
Collapse
Affiliation(s)
- Beatriz H D Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Ind
| | - Eder A M Cavichioli
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP São Paulo State University, Araraquara, São Paulo, Brazil
| | - Sabrina Feitosa Sochacki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, Ind
| | - Luiz Gonzaga Gandini Junior
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP São Paulo State University, Araraquara, São Paulo, Brazil
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Ind.
| |
Collapse
|
20
|
Aqawi M, Sionov RV, Gallily R, Friedman M, Steinberg D. Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans. Front Microbiol 2021; 12:656471. [PMID: 33967995 PMCID: PMC8100047 DOI: 10.3389/fmicb.2021.656471] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Streptococcus mutans (S. mutans) is a gram-positive facultatively anaerobic bacterium and the most common pathogen associated with tooth caries. The organism is acid tolerant and can undergo physiological adaptation to function effectively in acid environments such as carious dental plaque. Some cannabinoids have been found to have potent anti-microbial activity against gram-positive bacteria. One of these is the non-psychoactive, minor phytocannabinoid Cannabigerol (CBG). Here we show that CBG exhibits anti-bacterial activities against S. mutans. CBG halts the proliferation of planktonic growing S. mutans, which is affected by the initial cell density. High-resolution scanning electron microscopy showed that the CBG-treated bacteria become swollen with altered membrane structures. Transmission electron microscopy provided data showing that CBG treatment leads to intracellular accumulation of membrane structures. Nile red, DiOC2(3) and laurdan staining demonstrated that CBG alters the membrane properties, induces membrane hyperpolarization, and decreases the membrane fluidity. CBG-treated bacteria showed increased propidium iodide uptake and reduced calcein AM staining, suggesting that CBG increases the membrane permeability and reduces the metabolic activity. Furthermore, CBG prevented the drop in pH caused by the bacteria. In summary, we present here data showing the mechanisms by which CBG exerts its anti-bacterial effect against S. mutans.
Collapse
Affiliation(s)
- Muna Aqawi
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Gallily
- The Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Friedman
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Lusche I, Dirk C, Frentzen M, Meister J. Cavity Disinfection With a 445 nm Diode Laser Within the Scope of Restorative Therapy - A Pilot Study. J Lasers Med Sci 2021; 11:417-426. [PMID: 33425292 DOI: 10.34172/jlms.2020.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cavity disinfection is necessary to prevent a progressive infection of the crown dentin and pulp. Increasing intolerance and resistance to antiseptics and antibiotics as well as the controversy over the effects of those on the dental hard tissue and composite have prompted the investigation of alternative treatment options. The objective of this pilot study is to evaluate the antibacterial potential of a diode laser with a wavelength of 445 nm in the cavity preparation using the bacterium Streptococcus salivarius associated with caries in conjunction with the characteristics and influences of dentin on light transmission. Methods: The bactericidal effect of the laser irradiation was determined in culture experiments by using caries-free human dentin samples on bacteria-inoculated agar. For this, dentin discs (horizontally cut coronal dentin) of 500 µm and 1000 µm thicknesses were produced and irradiated with the laser with irradiation parameters of 0.7-1 W in a cw-mode and exposure times of between 5-30 s. Based on the different sample thicknesses, the penetration depth effect of the irradiation was ascertained after the subsequent incubation of the bacteria-inoculated agar. Additional influential parameters on the irradiation transmission were investigated, including surface moisture, tooth color as well as the presence of a smear layer on the dentin surface. Results: The optical transmission values of the laser radiation for dentin were significantly dependent on the sample thickness (P = 0.006) as well as its moisture content (P = 0.013) and were independent of the presence of a smear layer. There was a 40% reduction in bacteria after the radiography of the 500-µm-thick dentin samples, which was shown as the lowest laser dose (443 J/cm2). Conclusion: These findings indicate that the diode laser with light emission at a wavelength of 445 nm is interesting for the supportive cavity disinfection within the scope of caries therapy and show potential for clinical applications.
Collapse
Affiliation(s)
- Inés Lusche
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Cornelius Dirk
- Oral Technology, Bonn University, Wilhelmsplatz 5, 53111 Bonn, Germany
| | - Matthias Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Jörg Meister
- Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Li S, Yang Z, Hu D, Cao L, He Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2020; 15:65. [PMID: 33145119 PMCID: PMC7596174 DOI: 10.1007/s11783-020-1357-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Zhiyao Yang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
23
|
Nikinmaa S, Alapulli H, Auvinen P, Vaara M, Rantala J, Kankuri E, Sorsa T, Meurman J, Pätilä T. Dual-light photodynamic therapy administered daily provides a sustained antibacterial effect on biofilm and prevents Streptococcus mutans adaptation. PLoS One 2020; 15:e0232775. [PMID: 32374766 PMCID: PMC7202659 DOI: 10.1371/journal.pone.0232775] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Antibacterial photodynamic therapy (aPDT) and antibacterial blue light (aBL) are emerging treatment methods auxiliary to mechanical debridement for periodontitis. APDT provided with near-infrared (NIR) light in conjunction with an indocyanine green (ICG) photosensitizer has shown efficacy in several dental in-office-treatment protocols. In this study, we tested Streptococcus mutans biofilm sensitivity to either aPDT, aBL or their combination dual-light aPDT (simultaneous aPDT and aBL) exposure. Biofilm was cultured by pipetting diluted Streptococcus mutans suspension with growth medium on the bottom of well plates. Either aPDT (810 nm) or aBL (405 nm) or a dual-light aPDT (simultaneous 810 nm aPDT and 405 nm aBL) was applied with an ICG photosensitizer in cases of aPDT or dual-light, while keeping the total given radiant exposure constant at 100 J/cm2. Single-dose light exposures were given after one-day or four-day biofilm incubations. Also, a model of daily treatment was provided by repeating the same light dose daily on four-day and fourteen-day biofilm incubations. Finally, the antibacterial action of the dual-light aPDT with different energy ratios of 810 nm and 405 nm of light were examined on the single-day and four-day biofilm protocols. At the end of each experiment the bacterial viability was assessed by colony-forming unit method. Separate samples were prepared for confocal 3D biofilm imaging. On a one-day biofilm, the dual-light aPDT was significantly more efficient than aBL or aPDT, although all modalities were bactericidal. On a four-day biofilm, a single exposure of aPDT or dual-light aPDT was more efficient than aBL, resulting in a four logarithmic scale reduction in bacterial counts. Surprisingly, when the same amount of aPDT was repeated daily on a four-day or a fourteen-day biofilm, bacterial viability improved significantly. A similar improvement in bacterial viability was observed after repetitive aBL application. This viability improvement was eliminated when dual-light aPDT was applied. By changing the 405 nm to 810 nm radiant exposure ratio in dual-light aPDT, the increase in aBL improved the antibacterial action when the biofilm was older. In conclusion, when aPDT is administered repeatedly to S. mutans biofilm, a single wavelength-based aBL or aPDT leads to a significant biofilm adaptation and increased S. mutans viability. The combined use of aBL light in synchrony with aPDT arrests the adaptation and provides significantly improved and sustained antibacterial efficacy.
Collapse
Affiliation(s)
- Sakari Nikinmaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Koite Health Oy, Espoo, Finland
| | - Heikki Alapulli
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Martti Vaara
- Northern Antibiotics, Espoo, Finland
- Department of Bacteriology and Immunology, University of Helsinki, Medical School, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institute, Huddinge, Sweden
| | - Jukka Meurman
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tommi Pätilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Koite Health Oy, Espoo, Finland
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
24
|
Esteban Florez FL, Hiers RD, Zhao Y, Merritt J, Rondinone AJ, Khajotia SS. Optimization of a real-time high-throughput assay for assessment of Streptococcus mutans metabolism and screening of antibacterial dental adhesives. Dent Mater 2020; 36:353-365. [PMID: 31952798 PMCID: PMC7042092 DOI: 10.1016/j.dental.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The present work shows the optimization of a high-throughput bioluminescence assay to assess the metabolism of intact Streptococcus mutans biofilms and its utility as a screening method for nanofilled antibacterial dental materials. METHODS The assay was optimized by monitoring changes in bioluminescence mediated by variation of the experimental parameters investigated (growth media and sucrose concentration, inoculum:D-Luciferin ratio, dilution factor, inoculum volume, luminescence wavelength, replicate and luciferase metabolic activity). Confocal microscopy was then used to demonstrate the impact of biofilm growth conditions on the 3-D distribution of extracellular polymeric substance (EPS) within Streptococcus mutans biofilms and its implications as confounding factors in high-throughput studies (HTS). RESULTS Relative Luminescence Unit (RLU) values from the HTS optimization were analyzed by multivariate ANOVA (α = 0.05) and coefficients of variation, whereas data from 3-D structural parameters and RLU values of biofilms grown on experimental antibacterial dental adhesive resins were analyzed using General Linear Models and Student-Newman-Keuls post hoc tests (α = 0.05). Confocal microscopy demonstrated that biofilm growth conditions significantly influenced the quantity and distribution of EPS within the 3-D structures of the biofilms. An optimized HTS bioluminescence assay was developed and its applicability as a screening method in dentistry was demonstrated using nanofilled experimental antibacterial dental adhesive resins. SIGNIFICANCE The present study is anticipated to positively impact the direction of future biofilm research in dentistry, because it offers fundamental information for the design of metabolic-based assays, increases the current levels of standardization and reproducibility while offering a tool to decrease intra-study variability.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Rochelle Denise Hiers
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Yan Zhao
- The University of Oklahoma Health Sciences Center, Department of Biostatistics and Epidemiology, College of Public Health, 801 NE 13th Street, Oklahoma City, OK, 73126, USA.
| | - Justin Merritt
- Oregon Health & Science University, Department of Restorative Dentistry, School of Dentistry, MRB424, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Adam Justin Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA.
| | - Sharukh Soli Khajotia
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
25
|
Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:219-235. [PMID: 31308484 PMCID: PMC7100162 DOI: 10.1038/s41370-019-0157-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 05/06/2023]
Abstract
In the constructed habitat in which we spend up to 90% of our time, architectural design influences occupants' behavioral patterns, interactions with objects, surfaces, rituals, the outside environment, and each other. Within this built environment, human behavior and building design contribute to the accrual and dispersal of microorganisms; it is a collection of fomites that transfer microorganisms; reservoirs that collect biomass; structures that induce human or air movement patterns; and space types that encourage proximity or isolation between humans whose personal microbial clouds disperse cells into buildings. There have been recent calls to incorporate building microbiology into occupant health and exposure research and standards, yet the built environment is largely viewed as a repository for microorganisms which are to be eliminated, instead of a habitat which is inexorably linked to the microbial influences of building inhabitants. Health sectors have re-evaluated the role of microorganisms in health, incorporating microorganisms into prevention and treatment protocols, yet no paradigm shift has occurred with respect to microbiology of the built environment, despite calls to do so. Technological and logistical constraints often preclude our ability to link health outcomes to indoor microbiology, yet sufficient study exists to inform the theory and implementation of the next era of research and intervention in the built environment. This review presents built environment characteristics in relation to human health and disease, explores some of the current experimental strategies and interventions which explore health in the built environment, and discusses an emerging model for fostering indoor microbiology rather than fearing it.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Savanna Lloyd
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Georgia MacCrone
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
26
|
Felix Gomez GG, Lippert F, Ando M, Zandona AF, Eckert GJ, Gregory RL. Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light. Dent J (Basel) 2019; 7:dj7040113. [PMID: 31835833 PMCID: PMC6960986 DOI: 10.3390/dj7040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers.
Collapse
Affiliation(s)
- Grace Gomez Felix Gomez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Masatoshi Ando
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Andrea F. Zandona
- Department of Comprehensive Care, Tufts School of Dental Medicine, Boston, MA 02111, USA;
| | - George J. Eckert
- Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9949
| |
Collapse
|
27
|
Trans,trans-farnesol, an antimicrobial natural compound, improves glass ionomer cement properties. PLoS One 2019; 14:e0220718. [PMID: 31430298 PMCID: PMC6701760 DOI: 10.1371/journal.pone.0220718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
A series of experiments were conducted to characterize a novel restorative material. We explored the effect on biological, physical and chemical properties of glass ionomer cement (GIC) adding-the naturally occurring tt-farnesol (900 mM). Two groups were accomplished for all assays: GIC+tt-farnesol and GIC (control). Biological assays: 1) agar diffusion against some cariogenic bacteria; 2) S. mutans biofilm formation and confocal laser scanning microscopy-CLSM. 3) gtfB, gtfC, gtfD, gbpB, vicR, and covR expression; 4) MTT and microscopic morphology. Physical properties assays: 1) roughness; 2) hardness; 3) compressive strength and 4) diametral tensile strength. Chemical assay: Raman spectroscopy. The adding of tt-farnesol to GIC led to larger zones of inhibition (p<0.05), biofilms with a short-term reduction in bacterial viability but similar biomass (p>0.05). Polysaccharides levels increased over time, similarly over groups (p>0.05). Viable and non-viable S. mutans were seen on the specimens’ surface by CLSM but their virulence was not modulated by tt-farnesol. The tt-farnesol increased the HaCaT cell viability without impact on compressive and diametral tensile strength and roughness although the hardness was positively affected (p<0.05). Raman confirmed the presence of tt-farnesol. The incorporation of tt-farnesol into GIC inhibited the growth of cariogenic bacteria but had a little effect on the composition, structure and physiology of the biofilm matrices. Also, the tt-farnesol increased the hardness and the biocompatibility of the GIC, not influencing negatively other physical properties of the restorative material.
Collapse
|
28
|
Kadam S, Shai S, Shahane A, Kaushik KS. Recent Advances in Non-Conventional Antimicrobial Approaches for Chronic Wound Biofilms: Have We Found the 'Chink in the Armor'? Biomedicines 2019; 7:biomedicines7020035. [PMID: 31052335 PMCID: PMC6631124 DOI: 10.3390/biomedicines7020035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are a major healthcare burden, with huge public health and economic impact. Microbial infections are the single most important cause of chronic, non-healing wounds. Chronic wound infections typically form biofilms, which are notoriously recalcitrant to conventional antibiotics. This prompts the need for alternative or adjunct ‘anti-biofilm’ approaches, notably those that account for the unique chronic wound biofilm microenvironment. In this review, we discuss the recent advances in non-conventional antimicrobial approaches for chronic wound biofilms, looking beyond standard antibiotic therapies. These non-conventional strategies are discussed under three groups. The first group focuses on treatment approaches that directly kill or inhibit microbes in chronic wound biofilms, using mechanisms or delivery strategies distinct from antibiotics. The second group discusses antimicrobial approaches that modify the biological, chemical or biophysical parameters in the chronic wound microenvironment, which in turn enables the disruption and removal of biofilms. Finally, therapeutic approaches that affect both, biofilm bacteria and microenvironment factors, are discussed. Understanding the advantages and limitations of these recent approaches, their stage of development and role in biofilm management, could lead to new treatment paradigms for chronic wound infections. Towards this end, we discuss the possibility that non-conventional antimicrobial therapeutics and targets could expose the ‘chink in the armor’ of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management.
Collapse
Affiliation(s)
- Snehal Kadam
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| | - Saptarsi Shai
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Aditi Shahane
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Karishma S Kaushik
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| |
Collapse
|
29
|
Esteban Florez FL, Hiers RD, Larson P, Johnson M, O'Rear E, Rondinone AJ, Khajotia SS. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:931-943. [PMID: 30274130 DOI: 10.1016/j.msec.2018.08.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The development of dental adhesive resins with long-lasting antibacterial properties is a possible solution to overcome the problem of secondary caries in modern adhesive dentistry. OBJECTIVES (i) Synthesis and characterization of nitrogen-doped titanium dioxide nanoparticles (N_TiO2), (ii) topographical, compositional and wettability characterization of thin-films (unaltered and experimental) and, (iii) antibacterial efficacy of N_TiO2-containing dental adhesives against Streptococcus mutans biofilms. MATERIALS AND METHODS Nanoparticles were synthesized and characterized using different techniques. Specimens (diameter = 12 mm, thickness ≅ 15 μm) of OptiBond Solo Plus (Kerr Corp., USA) and experimental adhesives [50, 67 and 80% (v/v)] were fabricated, photopolymerized (1000 mW/cm2, 1 min) and UV-sterilized (254 nm, 800,000 μJ/cm2) for microscopy, spectroscopy, wettability and antibacterial testing. Wettability was assessed with a contact angle goniometer by dispensing water droplets (2 μL) onto four random locations of each specimen (16 drops/group). Drop profiles were recorded (1 min, 25 frames/s, 37 °C) and contact angles were calculated at time = 0 s (θINITIAL) and time = 59 s (θFINAL). Antibacterial testing was performed by growing S. mutans (UA159-ldh, JM10) biofilms for either 3 or 24 h (anaerobic conditions, 37 °C) with or without continuous light irradiation (410 ± 10 nm, 3 h = 38.75 J/cm2, 24 h = 310.07 J/cm2) against the surfaces of sterile specimens. RESULTS N_TiO2 was successfully prepared using solvothermal methods. Doped-nanoparticles displayed higher light absorption levels when compared to undoped titania. Experimental adhesives demonstrated superior antibacterial efficacy in dark conditions. CONCLUSIONS The findings presented herein suggest that N_TiO2 is a feasible antibacterial agent against cariogenic biofilms.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials College of Dentistry, 1201 North Stonewall Avenue, Room 146, Oklahoma City, OK 73117, USA.
| | - Rochelle Denise Hiers
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials College of Dentistry, 1201 North Stonewall Avenue, Room 146, Oklahoma City, OK 73117, USA.
| | - Preston Larson
- The University of Oklahoma, Samuel Roberts Noble Microscopy Laboratory, 770 Van Vleet Oval, Norman, OK 73019, USA.
| | - Matthew Johnson
- The University of Oklahoma, Department of Physics and Astronomy, 440 West Brooks Street, Room 129, Norman, OK 73019, USA
| | - Edgar O'Rear
- The University of Oklahoma, School of Chemical, Biological and Materials Engineering, 100 East Boyd, T-301, Sarkeys Energy Center, Norman, OK 73019, USA.
| | - Adam J Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA.
| | - Sharukh Soli Khajotia
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials College of Dentistry, 1201 North Stonewall Avenue, Room 146, Oklahoma City, OK 73117, USA.
| |
Collapse
|
30
|
da Silveira PV, Panariello BHD, de Araújo Costa CAG, Maule SM, Maule SM, Janal MN, Zanin ICJ, Duarte S. Twice-daily red and blue light treatment for Candida albicans biofilm matrix development control. Lasers Med Sci 2018; 34:441-447. [PMID: 30097756 DOI: 10.1007/s10103-018-2610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/03/2018] [Indexed: 01/28/2023]
Abstract
Phototherapy has been proposed as a direct means of affecting local bacterial infections. However, the use of phototherapy to prevent fungal biofilm development has received comparatively less attention. This study aimed to determine the effects of red light treatment and blue light treatment, without a photosensitizer, on the development of Candida albicans biofilm. During the development of 48-h biofilms of C. albicans SN 425 (n = 10), the biofilms were exposed twice-daily to noncoherent blue and red light (LumaCare; 420 nm and 635 nm). The energy density applied was 72 J cm-2 for blue light and 43.8 J cm2, 87.6 J cm2, and 175.5 J cm2 for red light. Positive control (PC) and negative control (NC) groups were treated twice-daily for 1 min with 0.12% chlorhexidine (CHX) and 0.89% NaCl respectively. Biofilms were analyzed for colony forming units (CFU), dry-weight, and exopolysaccharides (EPS-soluble and EPS-insoluble). Data was analyzed by one-way ANOVA and Tukey post hoc test (α = 0.05). Dry-weight was lower than NC (p < 0.001) and approached PC levels with both red and blue light treatments. CFU were also lower in groups exposed to blue light and higher durations of red light (p < 0.05). EPS-soluble and EPS-insoluble measures were variably reduced by these light exposures. In conclusion, twice-daily exposure to both blue and red lights affect the biofilm development and physiology of polysaccharide production and are potential mechanisms for the control of C. albicans biofilm matrix development.
Collapse
Affiliation(s)
- Paula Ventura da Silveira
- Department of Restorative Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n. Rodolfo Teófilo, Fortaleza, Ceará, 60430-355, Brazil
| | - Beatriz Helena Dias Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University, Purdue University Indianapolis, School of Dentistry, Postal address: 1121 W Michigan St, # DS406, Indianapolis, IN, 46202, USA
| | | | - Shawn M Maule
- New York University College of Dentistry, 345 E. 24th Street, New York, NY, 10010, USA
| | - Shane M Maule
- New York University College of Dentistry, 345 E. 24th Street, New York, NY, 10010, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, 345 E. 24th Street, New York, NY, 10010, USA
| | - Iriana Carla Junqueira Zanin
- Department of Restorative Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n. Rodolfo Teófilo, Fortaleza, Ceará, 60430-355, Brazil
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University, Purdue University Indianapolis, School of Dentistry, Postal address: 1121 W Michigan St, # DS406, Indianapolis, IN, 46202, USA.
| |
Collapse
|
31
|
Pushalkar S, Ghosh G, Xu Q, Liu Y, Ghogare AA, Atem C, Greer A, Saxena D, Lyons AM. Superhydrophobic Photosensitizers: Airborne 1O 2 Killing of an in Vitro Oral Biofilm at the Plastron Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25819-25829. [PMID: 29972022 PMCID: PMC6698391 DOI: 10.1021/acsami.8b09439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Singlet oxygen is a potent agent for the selective killing of a wide range of harmful cells; however, current delivery methods pose significant obstacles to its widespread use as a treatment agent. Limitations include the need for photosensitizer proximity to tissue because of the short (3.5 μs) lifetime of singlet oxygen in contact with water; the strong optical absorption of the photosensitizer, which limits the penetration depth; and hypoxic environments that restrict the concentration of available oxygen. In this article, we describe a novel superhydrophobic singlet oxygen delivery device for the selective inactivation of bacterial biofilms. The device addresses the current limitations by: immobilizing photosensitizer molecules onto inert silica particles; embedding the photosensitizer-containing particles into the plastron (i.e. the fluid-free space within a superhydrophobic surface between the solid substrate and fluid layer); distributing the particles along an optically transparent substrate such that they can be uniformly illuminated; enabling the penetration of oxygen via the contiguous vapor space defined by the plastron; and stabilizing the superhydrophobic state while avoiding the direct contact of the sensitizer to biomaterials. In this way, singlet oxygen generated on the sensitizer-containing particles can diffuse across the plastron and kill bacteria even deep within the hypoxic periodontal pockets. For the first time, we demonstrate complete biofilm inactivation (>5 log killing) of Porphyromonas gingivalis, a bacterium implicated in periodontal disease using the superhydrophobic singlet oxygen delivery device. The biofilms were cultured on hydroxyapatite disks and exposed to active and control surfaces to assess the killing efficiency as monitored by colony counting and confocal microscopy. Two sensitizer particle types, a silicon phthalocyanine sol-gel and a chlorin e6 derivative covalently bound to fluorinated silica, were evaluated; the biofilm killing efficiency was found to correlate with the amount of singlet oxygen detected in separate trapping studies. Finally, we discuss the applications of such devices in the treatment of periodontitis.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - QianFeng Xu
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Yang Liu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ashwini A. Ghogare
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Cecilia Atem
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alan M. Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| |
Collapse
|
32
|
Effect of Violet-Blue Light on Streptococcus mutans-Induced Enamel Demineralization. Dent J (Basel) 2018; 6:dj6020006. [PMID: 29565266 PMCID: PMC6023538 DOI: 10.3390/dj6020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022] Open
Abstract
Background: This in vitro study determined the effectiveness of violet-blue light (405 nm) on inhibiting Streptococcus mutans-induced enamel demineralization. Materials and Methods: S. mutans UA159 biofilm was grown on human enamel specimens for 13 h in 5% CO2 at 37 °C with/without 1% sucrose. Wet biofilm was treated twice daily with violet-blue light for five minutes over five days. A six-hour reincubation was included daily between treatments excluding the final day. Biofilms were harvested and colony forming units (CFU) were quantitated. Lesion depth (L) and mineral loss (∆Z) were quantified using transverse microradiography (TMR). Quantitative light-induced fluorescence Biluminator (QLF-D) was used to determine mean fluorescence loss. Data were analyzed using one-way analysis of variance (ANOVA) to compare differences in means. Results: The results demonstrated a significant reduction in CFUs between treated and non-treated groups grown with/without 1% sucrose. ∆Z was significantly reduced for specimens exposed to biofilms grown without sucrose with violet-blue light. There was only a trend on reduction of ∆Z with sucrose and with L on both groups. There were no differences in fluorescence-derived parameters between the groups. Conclusions: Within the limitations of the study, the results indicate that violet-blue light can serve as an adjunct prophylactic treatment for reducing S. mutans biofilm formation and enamel mineral loss.
Collapse
|
33
|
Mao MY, Li M, Lei L, Yin JX, Yang YM, Hu T. The Regulator Gene rnc Is Closely Involved in Biofilm Formation in Streptococcus mutans. Caries Res 2018; 52:347-358. [PMID: 29510413 DOI: 10.1159/000486431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans is an important factor in the etiology and pathogenesis of dental caries, largely owing to its ability to form a stable biofilm. Previous animal studies have indicated that rnc could decrease the amount of sulcal caries, and that the downregulation of cariogenicity might be due to its capacity to disrupt biofilm formation. However, the biofunctions by which rnc is involved in biofilm formation remain to be elucidated. In this study, we further investigate the role of rnc based on the study of mature biofilm. Scanning electron microscopy and the crystal violet assay were used to detect the biofilm forming ability. The production and distribution of exopolysaccharides within biofilm was analyzed by exopolysaccharide staining. Gel permeation chromatography was used to perform molecular weight assessment. Its adhesion force was measured by atomic force microscopy. The expression of biofilm formation-associated genes was analyzed at the mRNA level by qPCR. Here, we found that rnc could occur and function in biofilm formation by assembling well-structured, exopolysaccharide-encased, stable biofilms in S. mutans. The weakened biofilm forming ability of rnc-deficient strains was associated with the reduction of exopolysaccharide production and bacterial adhesion. Over all, these data illustrate an interesting situation in which an unappreciated regulatory gene acquired for virulence, rnc, most likely has been coopted as a potential regulator of biofilm formation in S. mutans. Further characterization of rnc may lead to the identification of a possible pathogenic biofilm-specific treatment for dental caries.
Collapse
|
34
|
Gwynne PJ, Gallagher MP. Light as a Broad-Spectrum Antimicrobial. Front Microbiol 2018; 9:119. [PMID: 29456527 PMCID: PMC5801316 DOI: 10.3389/fmicb.2018.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistance is a significant and growing concern. To continue to treat even simple infections, there is a pressing need for new alternative and complementary approaches to antimicrobial therapy. One possible addition to the current range of treatments is the use of narrow-wavelength light as an antimicrobial, which has been shown to eliminate a range of common pathogens. Much progress has already been made with blue light but the potential of other regions of the electromagnetic spectrum is largely unexplored. In order that the approach can be fully and most effectively realized, further research is also required into the effects of energy dose, the harmful and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting microbial toxicity. These and other topics are discussed within this perspective.
Collapse
Affiliation(s)
- Peter J Gwynne
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
35
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem 2017; 9:1557-1574. [PMID: 28792235 DOI: 10.4155/fmc-2017-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Resistances to antibiotics employed for treatment of infectious diseases have increased to alarming numbers making it more and more difficult to treat diseases caused by microorganisms resistant to common antibiotics. Consequently, novel methods for successful inactivation of pathogens are required. In this instance, one alternative could be application of light for treatment of topical infections. Antimicrobial properties of UV light are well documented, but due to its DNA-damaging properties use for medical purposes is limited. In contrast, irradiation with visible light may be more promising. METHODS Literature was systematically screened for research concerning inactivation of main oral bacterial species by means of visible light. RESULTS Inactivation of bacterial species, especially pigmented ones, in planktonic state showed promising results. There is a lack of research examining the situation when organized as biofilms. CONCLUSION More research concerning situation in a biofilm state is required.
Collapse
|
37
|
Zhu H, Kochevar IE, Behlau I, Zhao J, Wang F, Wang Y, Sun X, Hamblin MR, Dai T. Antimicrobial Blue Light Therapy for Infectious Keratitis: Ex Vivo and In Vivo Studies. Invest Ophthalmol Vis Sci 2017; 58:586-593. [PMID: 28129422 PMCID: PMC5283079 DOI: 10.1167/iovs.16-20272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. Methods We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Results Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Conclusions Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.
Collapse
Affiliation(s)
- Hong Zhu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States 2Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Irene E Kochevar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Irmgard Behlau
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, United States 4School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Jie Zhao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States 5Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
38
|
Ito T, Ichinosawa T, Shimizu T. Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans. PLoS One 2017; 12:e0175483. [PMID: 28394940 PMCID: PMC5386287 DOI: 10.1371/journal.pone.0175483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/27/2017] [Indexed: 02/03/2023] Open
Abstract
Streptococcus mutans, the major causative agent of dental caries, adheres to tooth surfaces via the host salivary glycoprotein-340 (gp340). This adherence can be competitively inhibited by peptides derived from the SspA/B adhesins of Streptococcus gordonii, a human commensal microbe that competes for the same binding sites. Ssp(A4K-A11K), a double-lysine substituted SspA/B peptide analogue, has been shown to exhibit superior in vitro binding affinity for a gp340-derived peptide (SRCRP2), suggesting that Ssp(A4K-A11K) may be of clinical interest. In the present work, we tested the inhibitory effects of Ssp(A4K-A11K) on adherence and biofilm formation of S. mutans by reconstructing an artificial oral environment using saliva-coated polystyrene plates and hydroxyapatite disks. Bacterial adherence (adherence period: 1 h) was assessed by an enzyme-linked immunosorbent assay using biotinylated bacterial cells. Biofilm formation (periods: 8, 11, or 14 h) was assessed by staining and imaging of the sessile cells, or by recovering biofilm cells and plating for cell counts. The pH values of the culture media were measured as a biofilm acidogenicity indicator. Bactericidality was measured by loss of optical density during culturing in the presence of the peptide. We observed that 650 μM Ssp(A4K-A11K) significantly inhibited adherence of S. mutans to saliva-coated polystyrene; a similar effect was seen on bacterial affinity for SRCRP2. Ssp(A4K-A11K) had lesser effects on the adherence of commensal streptococci. Pretreatment of polystyrene and hydroxyapatite with 650 μM Ssp(A4K-A11K) significantly attenuated biofilm formation, whether tested with glucose- or sucrose-containing media. The SspA/B peptide’s activity did not reflect bactericidality. Strikingly, pH in Ssp-treated 8-h (6.8 ± 0.06) and 11-h (5.5 ± 0.06) biofilms showed higher values than the critical pH. Thus, Ssp(A4K-A11K) acts by inhibiting bacterial adherence and cariogrnic biofilm formation. We further consider these results in the context of the safety, specificity, and stability properties of the Ssp(A4K-A11K) peptide.
Collapse
Affiliation(s)
- Tatsuro Ito
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Nihon University Research Institute of Oral Science, Chiba, Japan
- * E-mail:
| | - Takahiro Ichinosawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takehiko Shimizu
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Nihon University Research Institute of Oral Science, Chiba, Japan
| |
Collapse
|
39
|
Cai JN, Jung JE, Dang MH, Kim MA, Yi HK, Jeon JG. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation. PLoS One 2016; 11:e0157184. [PMID: 27275603 PMCID: PMC4898727 DOI: 10.1371/journal.pone.0157184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship.
Collapse
Affiliation(s)
- Jian-Na Cai
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Eun Jung
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Minh-Huy Dang
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Mi-Ah Kim
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jae-Gyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Photodynamic Antimicrobial Chemotherapy for Root Canal System Asepsis: A Narrative Literature Review. Int J Dent 2015; 2015:269205. [PMID: 26783392 PMCID: PMC4689923 DOI: 10.1155/2015/269205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022] Open
Abstract
Aim. The aim of this comprehensive literature review was to address the question: Does photodynamic therapy (PDT) improve root canal disinfection through significant bacterial reduction in the root canal system? Methodology. A comprehensive narrative literature review was performed to compare PDT effect with sodium hypochlorite as the comparative classical irrigant. Two reviewers independently conducted literature searches using a combination of medical subject heading terms and key words to identify relevant studies comparing information found in 7 electronic databases from January 2000 to May 2015. A manual search was performed on bibliography of articles collected on electronic databases. Authors were contacted to ask for references of more research not detected on the prior electronic and manual searches. Results. The literature search provided 62 titles and abstracts, from which 29 studies were related directly to the search theme. Considering all publications, 14 (48%) showed PDT to be more efficient in antimicrobial outcome than NaOCl (0.5-6% concentration) used alone and 2 (7%) revealed similar effects between them. Toluidine blue and methylene blue are the most used photosensitizers and most commonly laser has 660 nm of wavelength with a 400 nm diameter of intracanal fiber. Conclusions. PDT has been used without a well-defined protocol and still remains at an experimental stage waiting for further optimization. The level of evidence available in clinical studies to answer this question is low and at high risk of bias.
Collapse
|