1
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025; 62:7242-7267. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Yamaguchi T, Hamano T, Sada K, Asano R, Kanaan NM, Sasaki H, Yen SH, Kitazaki Y, Endo Y, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Fujita Y, Aoki K, Naiki H, Morishima M, Saito Y, Murayama S, Nakamoto Y. Syk inhibitors reduce tau protein phosphorylation and oligomerization. Neurobiol Dis 2024; 201:106656. [PMID: 39233131 DOI: 10.1016/j.nbd.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
Spleen tyrosine kinase (Syk), a non-receptor-type tyrosine kinase, has a wide range of physiological functions. A possible role of Syk in Alzheimer's disease (AD) has been proposed. We evaluated the localization of Syk in the brains of patients with AD and control participants. Human neuroblastoma M1C cells harboring wild-type tau (4R0N) were used with the tetracycline off (TetOff) induction system. In this model of neuronal tauopathy, the effects of the Syk inhibitors-BAY 61-3606 and R406-on tau phosphorylation and oligomerization were explored using several phosphorylated tau-specific antibodies and an oligomeric tau antibody, and the effects of these Syk inhibitors on autophagy were examined using western blot analyses. Moreover, the effects of the Syk inhibitor R406 were evaluated in vivo using wild-type mice. In AD brains, Syk and phosphorylated tau colocalized in the cytosol. In M1C cells, Syk protein (72 kDa) was detected using western blot analysis. Syk inhibitors decreased the expression levels of several tau phosphoepitopes including PHF-1, CP13, AT180, and AT270. Syk inhibitors also decreased the levels of caspase-cleaved tau (TauC3), a pathological tau form. Syk inhibitors increased inactivated glycogen synthase kinase 3β expression and decreased active p38 mitogen-activated protein kinase expression and demethylated protein phosphatase 2 A levels, indicating that Syk inhibitors inactivate tau kinases and activate tau phosphatases. Syk inhibitors also activated autophagy, as indicated by increased LC3II and decreased p62 levels. In vivo, the Syk inhibitor R406 decreased phosphorylated tau levels in wild-type mice. These findings suggest that Syk inhibitors offer novel therapeutic strategies for tauopathies, including AD.
Collapse
Affiliation(s)
- Tomohisa Yamaguchi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Rei Asano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, MI, USA
| | - Hirohito Sasaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Yuki Kitazaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Endo
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Soichi Enomoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Youshi Fujita
- Department of Neurology, Fujita Neurological Hospital, Fukui, Japan
| | - Koji Aoki
- Department of Pharmacology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maho Morishima
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
3
|
Alsina R, Riba M, Pérez-Millan A, Borrego-Écija S, Aldecoa I, Romera C, Balasa M, Antonell A, Lladó A, Compta Y, Del Valle J, Sánchez-Valle R, Pelegrí C, Molina-Porcel L, Vilaplana J. Increase in wasteosomes (corpora amylacea) in frontotemporal lobar degeneration with specific detection of tau, TDP-43 and FUS pathology. Acta Neuropathol Commun 2024; 12:97. [PMID: 38879502 PMCID: PMC11179228 DOI: 10.1186/s40478-024-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/19/2024] Open
Abstract
Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.
Collapse
Affiliation(s)
- Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Agnès Pérez-Millan
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
- Department of Pathology, Biomedical Diagnostic Center (CBD), Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, European Reference Network On Rare Neurological Diseases (ERN-RND), Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR), Barcelona, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
5
|
Thompson J, Yang Y, Duval K, Griego M, Chen H, SantaCruz K, Deng H, Perez C, Maez S, Hobson S, Li T, Akter H, Torbey M, Yang Y. Progressive Disruption of Sphingosine-1-Phosphate Receptor 1 Correlates with Blood-Brain Barrier Leakage in A Rat Model of Chronic Hypoxic Hypoperfusion. Aging Dis 2024; 16:1099-1119. [PMID: 38916732 PMCID: PMC11964439 DOI: 10.14336/ad.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Endothelial dysfunction and blood-brain barrier (BBB) leakage have been suggested as a fundamental role in the development of cerebral small vessel disease (SVD) pathology. However, the molecular and cellular mechanisms that link cerebral hypoxic hypoperfusion and BBB disruption remain elusive. Sphingosine-1-phosphate (S1P) regulates the BBB integrity by binding to its receptor isoform 1 (S1PR1) on endothelial cells. This study tested the hypothesis that hypoxic hypoperfusion triggers capillary endothelial S1PR1 disruption, which compromises BBB integrity and leads to SVD-related neuropathological changes, using a chronic hypoxic hypoperfusion model with BBB dysfunction. Spontaneously hypertensive rat stroke-prone underwent unilateral carotid artery occlusion (UCAO) followed by a Japanese permissive diet (JPD) for up to 9 weeks. Selective S1PR1 agonist SEW2871 was used to activate S1PR1. Significant progressive reduction of S1PR1 was detected in rat brains from 4 to 9 weeks following UCAO/JPD onset, which was also detected in cerebral vasculature in human SVD. S1PR1 activation by SEW2871 significantly reduced lesions in both white and grey matter and ameliorated cerebral blood flow. SEW2871 reversed the loss of endothelial S1PR1 and tight junction proteins, and significantly attenuated UCAO/JPD induced accumulation of neuronal phosphorylated tau. This protective role of SEW2871 is associated with promotion of Akt phosphorylation and inhibition of S1PR2/Erk1/2 activation. Our data suggest S1PR1 signalling as a potential molecular mechanistic basis that links hypoxic hypoperfusion with BBB damage in the neuropathological cascades in SVD. The reversal of BBB disruption through pharmacological intervention of S1PR1 signalling likely reveals a novel therapeutic target for SVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Karen SantaCruz
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87111, USA
| | | | | | | | - Sasha Hobson
- Department of Neurology,
- Memory and Aging Center,
| | | | | | | | | |
Collapse
|
6
|
Opland CK, Bryan MR, Harris B, McGillion-Moore J, Tian X, Chen Y, Itano MS, Diering GH, Meeker RB, Cohen TJ. Activity-dependent tau cleavage by caspase-3 promotes neuronal dysfunction and synaptotoxicity. iScience 2023; 26:106905. [PMID: 37305696 PMCID: PMC10251131 DOI: 10.1016/j.isci.2023.106905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Tau-mediated toxicity is associated with cognitive decline and Alzheimer's disease (AD) progression. In particular, tau post-translational modifications (PTMs) are thought to generate aberrant tau species resulting in neuronal dysfunction. Despite being well characterized in postmortem AD brain, it is unclear how caspase-mediated C-terminal tau cleavage promotes neurodegeneration, as few studies have developed the models to dissect this pathogenic mechanism. Here, we show that proteasome impairment results in cleaved tau accumulation at the post-synaptic density (PSD), a process that is modulated by neuronal activity. Cleaved tau (at residue D421) impairs neuronal firing and causes inefficient initiation of network bursts, consistent with reduced excitatory drive. We propose that reduced neuronal activity, or silencing, is coupled to proteasome dysfunction, which drives cleaved tau accumulation at the PSD and subsequent synaptotoxicity. Our study connects three common themes in the progression of AD: impaired proteostasis, caspase-mediated tau cleavage, and synapse degeneration.
Collapse
Affiliation(s)
- Carli K. Opland
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Miles R. Bryan
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Braxton Harris
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jake McGillion-Moore
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xu Tian
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Youjun Chen
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle S. Itano
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Graham H. Diering
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd J. Cohen
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
7
|
Conze C, Rierola M, Trushina NI, Peters M, Janning D, Holzer M, Heinisch JJ, Arendt T, Bakota L, Brandt R. Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Mol Psychiatry 2022; 27:3010-3023. [PMID: 35393558 PMCID: PMC9205779 DOI: 10.1038/s41380-022-01538-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator. Here we report that the proportion of tau that is proteolytically cleaved at the caspase-3 site (TauC3) doubles in the hippocampus of senescent mice. TauC3 is also elevated in AD patients. Through quantitative live-cell imaging, we show that TauC3 has a drastically reduced dynamics of its microtubule interaction. Single-molecule tracking of tau confirmed that TauC3 has a longer residence time on axonal microtubules. The reduced dynamics of the TauC3-microtubule interaction correlated with a decreased transport of mitochondria, a reduced processivity of APP-vesicle transport and an induction of region-specific dendritic atrophy in CA1 neurons of the hippocampus. The microtubule-targeting drug Epothilone D normalized the interaction of TauC3 with microtubules and modulated the transport of APP-vesicles dependent on the presence of overexpressed human tau. The results indicate a novel toxic gain of function, in which a post-translational modification of tau changes the dynamics of the tau-microtubule interaction and thus leads to axonal transport defects and neuronal degeneration. The data also introduce microtubule-targeting drugs as pharmacological modifiers of the tau-microtubule interaction with the potential to restore the physiological interaction of pathologically altered tau with microtubules.
Collapse
Affiliation(s)
- Christian Conze
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Marina Rierola
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Nataliya I. Trushina
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Michael Peters
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Dennis Janning
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany ,grid.10854.380000 0001 0672 4366Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Max Holzer
- grid.9647.c0000 0004 7669 9786Center for Neuropathology and Brain Research, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Jürgen J. Heinisch
- grid.10854.380000 0001 0672 4366Department of Genetics, Osnabrück University, Osnabrück, Germany
| | - Thomas Arendt
- grid.9647.c0000 0004 7669 9786Center for Neuropathology and Brain Research, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Lidia Bakota
- grid.10854.380000 0001 0672 4366Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany. .,Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany. .,Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
8
|
Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front Aging Neurosci 2021; 13:772278. [PMID: 34867298 PMCID: PMC8635164 DOI: 10.3389/fnagi.2021.772278] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The Neurovascular Unit (NVU) is an important multicellular structure of the central nervous system (CNS), which participates in the regulation of cerebral blood flow (CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two pathologies with extensive NVU dysfunction. The cell types of the NVU change in both structure and function following an ischemic insult and during the development of AD pathology. Stroke and AD share common risk factors such as cardiovascular disease, and also share similarities at a molecular level. In both diseases, disruption of metabolic support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading to cell death and neurodegeneration. Improved therapeutic strategies for both AD and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other diseases and are being recently investigated for their function in the development of cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal fluid, regulation of CBF, and other physiological functions. Humans express 15 CA isoforms with different distribution patterns. Recent studies provide evidence that CA inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors; however, specific CA isoforms are likely to modulate the NVU function. This review will summarize the literature regarding the use of pan-CA and specific CA inhibitors along with genetic manipulation of specific CA isoforms in stroke and AD models, to bring light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy of CA inhibition and reduce side effects. More studies to further determine specific CA isoforms functions and changes in disease states are essential to the development of novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
Collapse
Affiliation(s)
- Nicole Lemon
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elisa Canepa
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marc A. Ilies
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Silvia Fossati,
| |
Collapse
|
9
|
Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast 2021; 2021:8834645. [PMID: 33854544 PMCID: PMC8021472 DOI: 10.1155/2021/8834645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neural plasticity-the ability to alter a neuronal response to environmental stimuli-is an important factor in learning and memory. Short-term synaptic plasticity and long-term synaptic plasticity, including long-term potentiation and long-term depression, are the most-characterized models of learning and memory at the molecular and cellular level. These processes are often disrupted by neurodegeneration-induced dementias. Alzheimer's disease (AD) accounts for 50% of cases of dementia. Vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) constitute much of the remaining cases. While vascular lesions are the principal cause of VaD, neurodegenerative processes have been established as etiological agents of many dementia diseases. Chief among such processes is the deposition of pathological protein aggregates in vivo including β-amyloid deposition in AD, the formation of neurofibrillary tangles in AD and FTD, and the accumulation of Lewy bodies composed of α-synuclein aggregates in DLB and PDD. The main symptoms of dementia are cognitive decline and memory and learning impairment. Nonetheless, accurate diagnoses of neurodegenerative diseases can be difficult due to overlapping clinical symptoms and the diverse locations of cortical lesions. Still, new neuroimaging and molecular biomarkers have improved clinicians' diagnostic capabilities in the context of dementia and may lead to the development of more effective treatments. Both genetic and environmental factors may lead to the aggregation of pathological proteins and altered levels of cytokines, such that can trigger the formation of proinflammatory immunological phenotypes. This cascade of pathological changes provides fertile ground for the development of neural plasticity disorders and dementias. Available pharmacotherapy and disease-modifying therapies currently in clinical trials may modulate synaptic plasticity to mitigate the effects neuropathological changes have on cognitive function, memory, and learning. In this article, we review the neural plasticity changes seen in common neurodegenerative diseases from pathophysiological and clinical points of view and highlight potential molecular targets of disease-modifying therapies.
Collapse
|
10
|
Memantine ameliorates cognitive impairment induced by exposure to chronic hypoxia environment at high altitude by inhibiting excitotoxicity. Life Sci 2021; 270:119012. [PMID: 33422543 DOI: 10.1016/j.lfs.2020.119012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 01/23/2023]
Abstract
AIMS Memantine is a non-competitive antagonist of glutamatergic NMDA receptor that is mainly used in the treatment of Alzheimer's disease. The excitatory toxicity mediated by glutamate via glutamatergic receptor signals is considered to be one of the mechanisms mediating neuronal injury and cognitive impairment after exposure to a hypoxic environment at a high altitude. Therefore, in this study, we hypothesized that inhibiting glutamate signaling using memantine could alleviate neuronal injury and cognitive impairment in rats exposed to chronic hypoxia. MAIN METHODS we made animal models in the natural environment of the Qinghai-Tibet Plateau at an altitude of 4300 m, and used animal behavior, morphology, molecular biology and other methods to evaluate the impact of chronic hypoxia exposure on cognitive function and the neuroprotective effect of Memantine. KEY FINDINGS Our results showed that the expression of NMDA receptors increased, while the expression of AMPA receptors decreased, after 4 weeks of chronic hypoxia exposure. Concomitantly, apoptotic neuronal cell death in the hippocampus and frontal cortex was significantly increased, along with levels of oxidative stress, whereas innate ability to inhibit free radicals decreased. Moreover, after 8 weeks of hypoxia exposure, learning, memory, and space exploration abilities were significantly decreased. Notably, after treatment with memantine, apoptotic neuronal cell death, oxidative stress, and free radical levels decreased, and the cognitive function of the animals improved. SIGNIFICANCE Present study shows that chronic hypoxia can produce the excitatory toxicity leading to neural injury and cognitive impairment that can be suppressed with memantine treatment by inhibiting excitatory toxicity.
Collapse
|
11
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Elsonbaty SM, Ismail AFM. Nicotine encourages oxidative stress and impairment of rats' brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation. Arch Biochem Biophys 2020; 689:108382. [PMID: 32343976 DOI: 10.1016/j.abb.2020.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
Nicotine is a psychoactive alkaloid of tobacco, which is ingested during cigarettes or electronic cigarette smoking. Extensive consumption of nicotine induced oxidative stress. Accordingly, it is implicated in many pathophysiology brain disorders and triggers neurodegeneration. In this study, we investigated the protective role of Spirulina platensis-lipopolysaccharides (S.LPS) and the low dose-ionizing radiation (LD-IR) against the induced neurotoxicity in the rats' brain due to the prolonged administration of high nicotine levels. Rats treated with nicotine for two months showed alterations in the oxidative stress markers (malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG)), antioxidant enzymes (superoxide dismutase (SOD), catalase (Cat), glutathione enzymes (GPx and GST)) as well as several pro-inflammatory markers (Tumor Necrosis Factor-alpha (TNF-α), Interleukin-17 (IL-17), and Nuclear Factor-kappa B (NF-κB)), and induced apoptosis through Caspase-3 activity. Nicotine also upregulated the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1), Cyclin-dependent kinase 5 (CDK5), Toll-Like Receptor 4 (TLR4), and phospho-Tau (p-Tau) protein expression. Besides, it downregulated the alpha-7 nicotinic receptor (α7nAChR) mRNA gene expression accompanied by a decline in the calcium (Ca2+) level. S.LPS exhibited antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities, which counteracting the detrimental effects of chronic nicotine administration. LD-IR demonstrated comparable effects to S.LPS. Exposure of rats to LD-IR enhanced the neuroprotective effects of S.LPS against nicotine toxicity. The light microscopic examination of the brain tissues was in agreement with the biochemical investigations. These findings display that S.LPS and LD-IR mitigated the oxidative stress and the impairment of rats' brain induced by nicotine, due to regulation of the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1) and the signaling pathway of Tau protein phosphorylation.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt.
| |
Collapse
|
13
|
Bathini P, Mottas A, Jaquet M, Brai E, Alberi L. Progressive signaling changes in the olfactory nerve of patients with Alzheimer's disease. Neurobiol Aging 2019; 76:80-95. [DOI: 10.1016/j.neurobiolaging.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/08/2023]
|
14
|
Exploring the elusive composition of corpora amylacea of human brain. Sci Rep 2018; 8:13525. [PMID: 30202002 PMCID: PMC6131176 DOI: 10.1038/s41598-018-31766-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022] Open
Abstract
Corpora amylacea (CA) are polyglucosan bodies that accumulate in the human brain during ageing and are also present in large numbers in neurodegenerative conditions. Theories regarding the function of CA are regularly updated as new components are described. In previous work, we revealed the presence of some neo-epitopes in CA and the existence of some natural IgM antibodies directed against these neo-epitopes. We also noted that these neo-epitopes and IgMs were the cause of false staining in CA immunohistochemical studies, and disproved the proposed presence of β-amyloid peptides and tau protein in them. Here we extend the list of components erroneously attributed to CA. We show that, contrary to previous descriptions, CA do not contain GFAP, S100, AQP4, NeuN or class III β-tubulin, and we question the presence of other components. Nonetheless, we observe that CA contains ubiquitin and p62, both of them associated with processes of elimination of waste substances, and also glycogen synthase, an indispensable enzyme for polyglucosan formation. In summary, this study shows that it is imperative to continue reviewing previous studies about CA but, more importantly, it shows that the vision of CA as structures involved in protective or cleaning mechanisms remains the most consistent theory.
Collapse
|
15
|
Augé E, Pelegrí C, Manich G, Cabezón I, Guinovart JJ, Duran J, Vilaplana J. Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 2018; 66:2094-2107. [PMID: 30152044 DOI: 10.1002/glia.23463] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTGOE ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.
Collapse
Affiliation(s)
- Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gemma Manich
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Itsaso Cabezón
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Pisa D, Alonso R, Marina AI, Rábano A, Carrasco L. Human and Microbial Proteins From Corpora Amylacea of Alzheimer's Disease. Sci Rep 2018; 8:9880. [PMID: 29959356 PMCID: PMC6026157 DOI: 10.1038/s41598-018-28231-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Corpora amylacea (CA) are spherical bodies mainly composed of polyglucans and, to a lesser extent, proteins. They are abundant in brains from patients with neurodegenerative diseases, particularly Alzheimer’s disease. Although CA were discovered many years ago, their precise origin and function remain obscure. CA from the insular cortex of two Alzheimer’s patients were purified and the protein composition was assessed by proteomic analysis. A number of microbial proteins were identified and fungal DNA was detected by nested PCR.A wide variety of human proteins form part of CA. In addition, we unequivocally demonstrated several fungal and bacterial proteins in purified CA. In addition to a variety of human proteins, CA also contain fungal and bacterial polypeptides.In conclusion, this paper suggests that the function of CA is to scavenge cellular debris provoked by microbial infections.
Collapse
Affiliation(s)
- Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco., 28049, Madrid, Spain
| | - Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco., 28049, Madrid, Spain
| | - Ana Isabel Marina
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco., 28049, Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco., 28049, Madrid, Spain.
| |
Collapse
|
17
|
Effects of CREB1 gene silencing on cognitive dysfunction by mediating PKA-CREB signaling pathway in mice with vascular dementia. Mol Med 2018; 24:18. [PMID: 30134805 PMCID: PMC6016877 DOI: 10.1186/s10020-018-0020-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background As a form of dementia primarily affecting the elderly, vascular dementia (VD) is characterized by changes in the supply of blood to the brain, resulting in cognitive impairment. The aim of the present study was to explore the effects involved with cyclic adenosine monophosphate (cAMP) response element-binding (CREB)1 gene silencing on cognitive dysfunction through meditation of the protein kinase A (PKA)-CREB signaling pathway in mice with VD. Methods Both the Morris water maze test and the step down test were applied to assess the cognitive function of the mice with VD. Immunohistochemical and TUNEL staining techniques were employed to evaluate the positive expression rates of the protein CREB1 and Cleaved Caspase-3, as well as neuronal apoptosis among hippocampal tissues in a respective manner. Flow cytometry was applied to determine the proliferation index and apoptosis rate of the hippocampal cells among each group. Reverse transcription quantitative polymerase chain reaction and Western blot analysis methods were applied to detect the expressions of cAMP, PKA and CREB in hippocampal cells. Results Compared with the normal group, all the other groups exhibited impaired cognitive function, reduced cell numbers in the CAI area, positive expressions of CREB1 as well as positive optical density (OD) values. Furthermore, increased Cleaved Caspase-3 positive expression, OD value, proliferation index, apoptosis rate of hippocampal cells and neurons, were observed in the other groups when compared with the normal group, as well as lower expressions of cAMP, PKA and CREB1 and p-CREB1 (the shCREB1–1, H89 and shCREB1–1 + H89 groups < the VD group). Conclusion The key findings of the present study demonstrated that CREB1 gene silencing results in aggravated VD that occurs as a result of inhibiting the PKA-CREB signaling pathway, thus exasperating cognitive dysfunction.
Collapse
|
18
|
Khan S, Yuldasheva NY, Batten TFC, Pickles AR, Kellett KAB, Saha S. Tau pathology and neurochemical changes associated with memory dysfunction in an optimised murine model of global cerebral ischaemia - A potential model for vascular dementia? Neurochem Int 2018; 118:134-144. [PMID: 29649504 DOI: 10.1016/j.neuint.2018.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Cerebral ischemia is known to be a major cause of death and the later development of Alzheimer's disease and vascular dementia. However, ischemia induced cellular damage that initiates these diseases remain poorly understood. This is primarily due to lack of clinically relevant models that are highly reproducible. Here, we have optimised a murine model of global cerebral ischaemia with multiple markers to determine brain pathology, neurochemistry and correlated memory deficits in these animals. Cerebral ischaemia in mice was induced by bilateral common carotid artery occlusion. Following reperfusion, the mice were either fixed with 4% paraformaldehyde or decapitated under anaesthesia. Brains were processed for Western blotting or immunohistochemistry for glial (GLT1) and vesicular (VGLUT1, VGLUT2) glutamate transporters and paired helical filament (PHF1) tau. The PHF1 tau is the main component of neurofibrillary tangle, which is the pathological hallmark of Alzheimer's disease and vascular dementia. The novel object recognition behavioural assay was used to investigate the functional cognitive consequences in these mice. The results show consistent and selective neuronal and glial cell changes in the hippocampus and the cortex together with significant reductions in GLT1 (***P < 0.001), VGLUT1 (**P < 0.01) and VGLUT2 (***P < 0.001) expressions in the hippocampus in occluded mice as compared to sham-operated animals. These changes are associated with increased PHF1 (***P < 0.0001) protein and a significant impairment of performance (*p < 0.0006, N = 6/group) in the novel object recognition test. This model represents a useful tool for investigating cellular, biochemical and molecular mechanisms of global cerebral ischaemia and may be an ideal preclinical model for vascular dementia.
Collapse
Affiliation(s)
- Sabah Khan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nadira Y Yuldasheva
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Trevor F C Batten
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK; Leeds Trinity University, Brownberrie Lane, Horsforth, Leeds, LS18 5HD, UK
| | | | - Katherine A B Kellett
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sikha Saha
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Quinn JP, Corbett NJ, Kellett KAB, Hooper NM. Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. J Alzheimers Dis 2018; 63:13-33. [PMID: 29630551 PMCID: PMC5900574 DOI: 10.3233/jad-170959] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
With predictions showing that 131.5 million people worldwide will be living with dementia by 2050, an understanding of the molecular mechanisms underpinning disease is crucial in the hunt for novel therapeutics and for biomarkers to detect disease early and/or monitor disease progression. The metabolism of the microtubule-associated protein tau is altered in different dementias, the so-called tauopathies. Tau detaches from microtubules, aggregates into oligomers and neurofibrillary tangles, which can be secreted from neurons, and spreads through the brain during disease progression. Post-translational modifications exacerbate the production of both oligomeric and soluble forms of tau, with proteolysis by a range of different proteases being a crucial driver. However, the impact of tau proteolysis on disease progression has been overlooked until recently. Studies have highlighted that proteolytic fragments of tau can drive neurodegeneration in a fragment-dependent manner as a result of aggregation and/or transcellular propagation. Proteolytic fragments of tau have been found in the cerebrospinal fluid and plasma of patients with different tauopathies, providing an opportunity to develop these fragments as novel disease progression biomarkers. A range of therapeutic strategies have been proposed to halt the toxicity associated with proteolysis, including reducing protease expression and/or activity, selectively inhibiting protease-substrate interactions, and blocking the action of the resulting fragments. This review highlights the importance of tau proteolysis in the pathogenesis of tauopathies, identifies putative sites during tau fragment-mediated neurodegeneration that could be targeted therapeutically, and discusses the potential use of proteolytic fragments of tau as biomarkers for different tauopathies.
Collapse
Affiliation(s)
- James P. Quinn
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola J. Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Katherine A. B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
20
|
Glushakova OY, Glushakov AO, Borlongan CV, Valadka AB, Hayes RL, Glushakov AV. Role of Caspase-3-Mediated Apoptosis in Chronic Caspase-3-Cleaved Tau Accumulation and Blood–Brain Barrier Damage in the Corpus Callosum after Traumatic Brain Injury in Rats. J Neurotrauma 2018. [DOI: 10.1089/neu.2017.4999] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Olena Y. Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andriy O. Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, Florida
| | - Cesar V. Borlongan
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, Florida
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Ronald L. Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
- Banyan Biomarkers, Inc., Alachua, Florida
| | | |
Collapse
|
21
|
Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M, Busceti CL, Bonuccelli U, Fornai F. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease. Front Neuroanat 2017; 11:80. [PMID: 28974926 PMCID: PMC5610679 DOI: 10.3389/fnana.2017.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Ubaldo Bonuccelli
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,I.R.C.C.S. I.N.M. NeuromedPozzilli, Italy
| |
Collapse
|
22
|
Effects of task-specific rehabilitation training on tau modification in rat with photothrombotic cortical ischemic damage. Neurochem Int 2017; 108:309-317. [PMID: 28499951 DOI: 10.1016/j.neuint.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
Although stroke elicits progressive cognitive decline and is a leading cause of dementia, molecular interplay between stroke and Alzheimer's disease (AD) pathology has not been fully elucidated. Furthermore, studies on the effects of post-stroke rehabilitation on AD pathology are limited. We evaluated the acute effect of stroke on tau modification, and the molecular effects of task-specific training (TST) on tau modification using a model of photochemically-induced thrombosis (PIT)-induced cortical infarction. Following PIT in the dominant side of sensorimotor cortex, the rehabilitation group received 4-weeks of TST rehabilitation once daily by single pellet reaching training, whereas the sedentary control group did not received any type of training. Cortical expression levels of proteins related to tau modification were evaluated on post-stroke day 1 (PSD1) and 28; functional tests were also evaluated performed every week. The expression levels of acetyl-tau, phosphorylated-tau (p-tau), cyclooxygenase-2 and Akt-mTORC1-p70S6K pathway in infarcted cortices on PSD1 were significantly greater, whereas the expression levels of p-AMPK were significantly lower than in the paired contralateral sides. TST rehabilitation for 4 weeks greatly improved functional motor performance but not memory, which concurred with the down-regulations of ipsilateral p-AMPK, cyclooxygenase-2, Akt-mTORC1-p70S6K pathway, and p-tau in rehabilitation group. PIT-induced cortical infarction was found to induce cortical tau modification through the Akt-mTORC1-p70S6K activation, and to suppress the expression of AMPK-related proteins. TST rehabilitation greatly improved motor function, but not memory, and suppressed p-tau expression and neuroinflammation. Nevertheless, the role of TST-mediated regulation of tau hyperphosphorylation required further clarification.
Collapse
|
23
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 630] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
24
|
Love JE, Day RJ, Gause JW, Brown RJ, Pu X, Theis DI, Caraway CA, Poon WW, Rahman AA, Morrison BE, Rohn TT. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer's disease brain. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:40-57. [PMID: 28533891 PMCID: PMC5435672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
Although harboring the apolipoprotein E4 (APOE4) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.
Collapse
Affiliation(s)
- Julia E Love
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Ryan J Day
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Justin W Gause
- University of Washington, School of MedicineSeattle 98195, WA
| | - Raquel J Brown
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Xinzhu Pu
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Dustin I Theis
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Chad A Caraway
- Institute for Memory Impairments and Neurological Disorders UC IrvineIrvine 92697, CA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders UC IrvineIrvine 92697, CA
| | - Abir A Rahman
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Brad E Morrison
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| | - Troy T Rohn
- Department of Biological Sciences, Science/Nursing Building, Room 228, Boise State UniversityBoise 83725, Idaho
| |
Collapse
|
25
|
Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, Glushakov AV. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 2017; 3:87-108. [PMID: 30276309 PMCID: PMC6126261 DOI: 10.4103/bc.bc_27_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Andriy A Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Laboratory of Pharmacometabolomics and Companion Diagnostics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
- Banyan Biomarkers, Inc., Alachua, 32615, USA
| | | |
Collapse
|
26
|
Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep 2017; 7:42660. [PMID: 28205591 PMCID: PMC5311994 DOI: 10.1038/srep42660] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
The current study examined whether the steroid hormone, 17β-estradiol (E2) can exert long-lasting beneficial effects upon axonal health, synaptic plasticity, dementia-related amyloid-beta (Aβ) protein expression, and hippocampal-dependent cognitive function in an animal model of chronic cerebral hypoperfusion and vascular dementia (VaD). Chronic cerebral hypoperfusion and VaD was induced by bilateral common carotid artery occlusion (BCCAO) in adult male Sprague Dawley rats. Low dose E2 administered for the first 3-months after BCCAO exerted long-lasting beneficial effects, including significant neuroprotection of hippocampal CA1 neurons and preservation of hippocampal-dependent cognitive function when examined at 6-months after BCCAO. E2 treatment also prevented BCCAO-induced damage to hippocampal myelin sheaths and oligodendrocytes, enhanced expression of the synaptic proteins synaptophysin and PSD95 in the hippocampus, and prevented BCCAO-induced loss of total and mushroom dendritic spines in the hippocampal CA1 region. Furthermore, E2-treatment also reduced BCCAO induction of dementia-related proteins expression such as p-tau (PHF1), total ubiquitin, and Aβ1-42, when examined at 6 m after BCCAO. Taken as a whole, the results suggest that low-dose E2 replacement might be a potentially promising therapeutic modality to attenuate or block negative neurological consequences of chronic cerebral hypoperfusion and VaD.
Collapse
|
27
|
New perspectives on corpora amylacea in the human brain. Sci Rep 2017; 7:41807. [PMID: 28155917 PMCID: PMC5290524 DOI: 10.1038/srep41807] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Corpora amylacea are structures of unknown origin and function that appear with age in human brains and are profuse in selected brain areas in several neurodegenerative conditions. They are constituted of glucose polymers and may contain waste elements derived from different cell types. As we previously found on particular polyglucosan bodies in mouse brain, we report here that corpora amylacea present some neo-epitopes that can be recognized by natural antibodies, a certain kind of antibodies that are involved in tissue homeostasis. We hypothesize that corpora amylacea, and probably some other polyglucosan bodies, are waste containers in which deleterious or residual products are isolated to be later eliminated through the action of the innate immune system. In any case, the presence of neo-epitopes on these structures and the existence of natural antibodies directed against them could become a new focal point for the study of both age-related and degenerative brain processes.
Collapse
|
28
|
Wang X, Li GJ, Hu HX, Ma C, Ma DH, Liu XL, Jiang XM. Cerebral mTOR signal and pro-inflammatory cytokines in Alzheimer's disease rats. Transl Neurosci 2016; 7:151-157. [PMID: 28123835 PMCID: PMC5234524 DOI: 10.1515/tnsci-2016-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023] Open
Abstract
As a part of Alzheimer’s disease (AD) development the mammalian target of rapamycin
(mTOR) has been reported to play a crucial role in regulating cognition and can be used as a
neuronal marker. Neuro-inflammation is also a cause of the pathophysiological process in AD.
Thus, we examined the protein expression levels of mTOR and its downstream pathways as well as
pro-inflammatory cytokines (PICs) in the brain of AD rats. We further examined the effects of
blocking mTOR on PICs, namely IL-1β, IL-6 and TNF-α. Our results showed that the
protein expression of p-mTOR, mTOR-mediated phosphorylation of 4E-binding protein 4 (4E-BP1)
and p70 ribosomal S6 protein kinase 1 (S6K1) pathways were amplified in the hippocampus of AD
rats compared with controls. Blocking mTOR by using rapamycin selectively enhanced activities
of IL-6 and TNF-α signaling pathways, which was accompanied with an increase of
Caspase-3, indicating cellular apoptosis and worsened learning performance. In conclusion, our
data for the first time revealed specific signaling pathways engaged in the development of AD,
including a regulatory role by the activation of mTOR in PIC mechanisms. Stimulation of mTOR is
likely to play a beneficial role in modulating neurological deficits in AD.Targeting one or
more of these signaling molecules may present with new opportunities for treatment and clinical
management of AD
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| | - Hai-Xia Hu
- Department of Emergency Medicine, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| | - Chi Ma
- Department of Brain Tumor Surgery, The First Hospital of Jilin University Changchun, Jilin 130021, P.R. China
| | - Di-Hui Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| | - Xiao-Liang Liu
- Department of Emergency Medicine, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| | - Xiao-Ming Jiang
- Department of Emergency Medicine, The First Hospital of Jilin University Changchun, Jilin 130021, PR. China
| |
Collapse
|
29
|
Infante-Garcia C, Jose Ramos-Rodriguez J, Marin-Zambrana Y, Teresa Fernandez-Ponce M, Casas L, Mantell C, Garcia-Alloza M. Mango leaf extract improves central pathology and cognitive impairment in a type 2 diabetes mouse model. Brain Pathol 2016; 27:499-507. [PMID: 27537110 DOI: 10.1111/bpa.12433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies reveal that metabolic disorders, and specifically type 2 diabetes (T2D), are relevant risk factors to develop Alzheimer's disease (AD) and vascular dementia (VaD), the most common causes of dementia. AD patients are in a tremendous need of new therapeutic options because of the limited success of available treatments. Natural polyphenols, and concretely Mangifera indica Linn extract (MGF), have been reported to have antiinflammatory, antioxidant and antidiabetic activities. The role of MGF in central complications associated with T2D, after long-term treatment of db/db mice with MGF was analyzed. Metabolic parameters (body weight, glucose and insulin levels) as well as central complications including brain atrophy, inflammatory processes, spontaneous bleeding, tau phosphorylation and cognitive function in db/db mice treated with MGF for 22 weeks were assessed. MGF limits body weight gain in obese db/db mice. Insulin and C-peptide levels, indicative of pancreatic function, were longer maintained in MGF-treated animals. MGF reduced central inflammation by lowering microglia burden, both in the cortex and the hippocampus. Likewise, central spontaneous bleeding was significantly reduced in db/db mice. Cortical and hippocampal atrophy was reduced in db/db mice and tau hyperphosphorylation was lower after MGF treatment, resulting in partial recovery of learning and memory disabilities. Altogether, the data suggested that MGF treatment may provide a useful tool to target different aspects of AD and VaD pathology, and could lead to more effective clinical therapies for the prevention of metabolic related central complications associated with AD and VaD.
Collapse
Affiliation(s)
| | | | | | - Maria Teresa Fernandez-Ponce
- Department of Chemical Engineering, Food Technology and Environmental Technologies, Science Faculty, Campus de Excelencia International Agroalimentario ceiA3, Universidad de Cadiz, Puerto Real, Spain
| | - Lourdes Casas
- Department of Chemical Engineering, Food Technology and Environmental Technologies, Science Faculty, Campus de Excelencia International Agroalimentario ceiA3, Universidad de Cadiz, Puerto Real, Spain
| | - Casimiro Mantell
- Department of Chemical Engineering, Food Technology and Environmental Technologies, Science Faculty, Campus de Excelencia International Agroalimentario ceiA3, Universidad de Cadiz, Puerto Real, Spain
| | | |
Collapse
|
30
|
Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 2016; 94:1588-1603. [PMID: 27662637 DOI: 10.1002/jnr.23925] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - James Giordano
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Concetta De Pasquale
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Italy
| | - Gunter Eckert
- Institute of Nutrition Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts
| |
Collapse
|
31
|
Pisa D, Alonso R, Rábano A, Carrasco L. Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies. Front Neurosci 2016; 10:86. [PMID: 27013948 PMCID: PMC4781869 DOI: 10.3389/fnins.2016.00086] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
The origin and potential function of corpora amylacea (CA) remains largely unknown. Low numbers of CA are detected in the aging brain of normal individuals but they are abundant in the central nervous system of patients with neurodegenerative diseases. In the present study, we show that CA from patients diagnosed with Alzheimer's disease (AD) contain fungal proteins as detected by immunohistochemistry analyses. Accordingly, CA were labeled with different anti-fungal antibodies at the external surface, whereas the central portion composed of calcium salts contain less proteins. Detection of fungal proteins was achieved using a number of antibodies raised against different fungal species, which indicated cross-reactivity between the fungal proteins present in CA and the antibodies employed. Importantly, these antibodies do not immunoreact with cellular proteins. Additionally, CNS samples from patients diagnosed with amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) also contained CA that were immunoreactive with a range of antifungal antibodies. However, CA were less abundant in ALS or PD patients as compared to CNS samples from AD. By contrast, CA from brain tissue of control subjects were almost devoid of fungal immunoreactivity. These observations are consistent with the concept that CA associate with fungal infections and may contribute to the elucidation of the origin of CA.
Collapse
Affiliation(s)
- Diana Pisa
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación Centro de Investigación de Enfermedades Neurologicas, Instituto de Salud Carlos III Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
32
|
Abstract
The presence of corpora amylacea (CA) in the CNS is associated with both normal aging and neurodegenerative conditions including Alzheimer’s disease (AD) and vascular dementia (VaD). CA are spherical bodies ranging in diameter (10–50 μm) and whose origin has been documented to be derived from both neural and glial sources. CA are reported to be primarily composed of glucose polymers, but approximately 4% of the total weight of CA is consistently composed of protein. CA are typically localized in the subpial, periventricular and perivascular regions within the CNS. The presence of CA in VaD has recently been documented and of interest was the localization of CA within the hippocampus proper. Despite numerous efforts, the precise role of CA in normal aging or disease is not known. The purpose of this mini review is to highlight the potential function of CA in various neurodegenerative disorders with an emphasis on the potential role if any these structures may play in the etiology of these diseases.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Boise State University, Boise, USA
| |
Collapse
|