1
|
Poojary G, Vasishta S, Thomas RH, Satyamoorthy K, Padmakumar R, Joshi MB, Babu AS. Exercise improves systemic metabolism in a monocrotaline model of pulmonary hypertension. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:37-47. [PMID: 39649790 PMCID: PMC11624410 DOI: 10.1016/j.smhs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 12/11/2024] Open
Abstract
Exercise training in pulmonary arterial hypertension (PAH) has been gaining popularity with guidelines now recommending it as an important adjunct to medical therapy. Despite improvements in function and quality of life, an understanding of metabolic changes and their mechanisms remain unexplored. The objective of this study was therefore to understand the metabolic basis of exercise in a monocrotaline model of PAH. 24 male Wistar rats (age: 8-12 weeks and mean body weight: [262.16 ± 24.49] gms) were assigned to one of the four groups (i.e., Control, PAH, Exercise and PAH + Exercise). The exercise groups participated in treadmill running at 13.3 m/min, five days a week for five weeks. Demographic and clinical characteristics were monitored regularly. Following the intervention, LC-MS based metabolomics were performed on blood samples from all groups at the end of five weeks. Metabolite profiling, peak identification, alignment and isotope annotation were also performed. Statistical inference was carried out using dimensionality reducing techniques and analysis of variance. Partial-least-squares discrimination analysis and variable importance in the projection scores showed that the model was reliable, and not over lifting. The analysis demonstrated significant perturbations to lipid and amino acid metabolism, arginine and homocysteine pathways, sphingolipid (p < 0.05), glycerophospholipid (p < 0.05) and nucleotide metabolism in PAH. Exercise, however, was seen to restore arginine (p < 0.05) and homocysteine(p < 0.000 1) levels which were independent effects, irrespective of PAH. Dysregulated arginine and homocysteine pathways are seen in PAH. Exercise restores these dysregulated pathways and could potentially impact severity and outcome in PAH.
Collapse
Affiliation(s)
- Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - R. Huban Thomas
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Ramachandran Padmakumar
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abraham Samuel Babu
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Arboleda-Mojica SL, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells 2024; 14:1. [PMID: 39791702 PMCID: PMC11720097 DOI: 10.3390/cells14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation can positively and negatively affect tumorigenesis based on the duration, scope, and sequence of related events through the regulation of signaling pathways. A transcriptomic analysis of five pulmonary arterial hypertension, twelve Crohn's disease, and twelve ulcerative colitis high throughput sequencing datasets using R language specialized libraries and gene enrichment analyses identified a regulatory network in each inflammatory disease. IRF9 and LINC01089 in pulmonary arterial hypertension are related to the regulation of signaling pathways like MAPK, NOTCH, human papillomavirus, and hepatitis c infection. ZNF91 and TP53TG1 in Crohn's disease are related to the regulation of PPAR, MAPK, and metabolic signaling pathways. ZNF91, VDR, DLEU1, SATB2-AS1, and TP53TG1 in ulcerative colitis are related to the regulation of PPAR, AMPK, and metabolic signaling pathways. The activation of the transcriptomic network and signaling pathways might be related to the interaction of the characteristic microbiota of the inflammatory disease, with the lung and gut cell receptors present in membrane rafts and complexes. The transcriptomic analysis highlights the impact of several coding and non-coding RNAs, suggesting their relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during lung and gut cell adaptation to inflammatory phenotypes.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Natalia Belén Pedroza-Aconcha
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
3
|
Yang C, Liu YH, Zheng HK. Identification of TFRC as a biomarker for pulmonary arterial hypertension based on bioinformatics and experimental verification. Respir Res 2024; 25:296. [PMID: 39097701 PMCID: PMC11298087 DOI: 10.1186/s12931-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, there is a paucity of studies that reflect the available biomarkers from separate gene expression profiles in PAH. METHODS The GSE131793 and GSE113439 datasets were combined for subsequent analyses, and batch effects were removed. Bioinformatic analysis was then performed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and a protein-protein interaction (PPI) network analysis were then used to further filter the hub genes. Functional enrichment analysis of the intersection genes was performed using Gene Ontology (GO), Disease Ontology (DO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA). The expression level and diagnostic value of hub gene expression in pulmonary arterial hypertension (PAH) patients were also analyzed in the validation datasets GSE53408 and GSE22356. In addition, target gene expression was validated in the lungs of a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model and in the serum of PAH patients. RESULTS A total of 914 differentially expressed genes (DEGs) were identified, with 722 upregulated and 192 downregulated genes. The key module relevant to PAH was selected using WGCNA. By combining the DEGs and the key module of WGCNA, 807 genes were selected. Furthermore, protein-protein interaction (PPI) network analysis identified HSP90AA1, CD8A, HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 as hub genes. The GSE53408 and GSE22356 datasets were used to evaluate the expression of TFRC, which also showed robust diagnostic value. According to GSEA enrichment analysis, PAH-relevant biological functions and pathways were enriched in patients with high TFRC levels. Furthermore, TFRC expression was found to be upregulated in the lung tissues of our experimental PH rat model compared to those of the controls, and the same conclusion was reached in the serum of the PAH patients. CONCLUSIONS According to our bioinformatics analysis, the observed increase of TFRC in the lung tissue of human PAH patients, as indicated by transcriptomic data, is consistent with the alterations observed in PAH patients and rodent models. These data suggest that TFRC may serve as a potential biomarker for PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Yi-Hang Liu
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Choudhury P, Dasgupta S, Bhattacharyya P, Roychowdhury S, Chaudhury K. Understanding pulmonary hypertension: the need for an integrative metabolomics and transcriptomics approach. Mol Omics 2024; 20:366-389. [PMID: 38853716 DOI: 10.1039/d3mo00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary hypertension (PH), characterised by mean pulmonary arterial pressure (mPAP) >20 mm Hg at rest, is a complex pathophysiological disorder associated with multiple clinical conditions. The high prevalence of the disease along with increased mortality and morbidity makes it a global health burden. Despite major advances in understanding the disease pathophysiology, much of the underlying complex molecular mechanism remains to be elucidated. Lack of a robust diagnostic test and specific therapeutic targets also poses major challenges. This review provides a comprehensive update on the dysregulated pathways and promising candidate markers identified in PH patients using the transcriptomics and metabolomics approach. The review also highlights the need of using an integrative multi-omics approach for obtaining insight into the disease at a molecular level. The integrative multi-omics/pan-omics approach envisaged to help in bridging the gap from genotype to phenotype is outlined. Finally, the challenges commonly encountered while conducting omics-driven studies are also discussed.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
5
|
García-Lunar I, Jorge I, Sáiz J, Solanes N, Dantas AP, Rodríguez-Arias JJ, Ascaso M, Galán-Arriola C, Jiménez FR, Sandoval E, Nuche J, Moran-Garrido M, Camafeita E, Rigol M, Sánchez-Gonzalez J, Fuster V, Vázquez J, Barbas C, Ibáñez B, Pereda D, García-Álvarez A. Metabolic changes contribute to maladaptive right ventricular hypertrophy in pulmonary hypertension beyond pressure overload: an integrative imaging and omics investigation. Basic Res Cardiol 2024; 119:419-433. [PMID: 38536505 PMCID: PMC11143050 DOI: 10.1007/s00395-024-01041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 06/01/2024]
Abstract
Right ventricular (RV) failure remains the strongest determinant of survival in pulmonary hypertension (PH). We aimed to identify relevant mechanisms, beyond pressure overload, associated with maladaptive RV hypertrophy in PH. To separate the effect of pressure overload from other potential mechanisms, we developed in pigs two experimental models of PH (M1, by pulmonary vein banding and M2, by aorto-pulmonary shunting) and compared them with a model of pure pressure overload (M3, pulmonary artery banding) and a sham-operated group. Animals were assessed at 1 and 8 months by right heart catheterization, cardiac magnetic resonance and blood sampling, and myocardial tissue was analyzed. Plasma unbiased proteomic and metabolomic data were compared among groups and integrated by an interaction network analysis. A total of 33 pigs completed follow-up (M1, n = 8; M2, n = 6; M3, n = 10; and M0, n = 9). M1 and M2 animals developed PH and reduced RV systolic function, whereas animals in M3 showed increased RV systolic pressure but maintained normal function. Significant plasma arginine and histidine deficiency and complement system activation were observed in both PH models (M1&M2), with additional alterations to taurine and purine pathways in M2. Changes in lipid metabolism were very remarkable, particularly the elevation of free fatty acids in M2. In the integrative analysis, arginine-histidine-purines deficiency, complement activation, and fatty acid accumulation were significantly associated with maladaptive RV hypertrophy. Our study integrating imaging and omics in large-animal experimental models demonstrates that, beyond pressure overload, metabolic alterations play a relevant role in RV dysfunction in PH.
Collapse
Affiliation(s)
- Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Sáiz
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Núria Solanes
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Ana Paula Dantas
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Juan José Rodríguez-Arias
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - María Ascaso
- Department of Cardiovascular Surgery, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Rafael Jiménez
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Elena Sandoval
- Department of Cardiovascular Surgery, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jorge Nuche
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital 12 de Octubre, Madrid, Spain
| | - Maria Moran-Garrido
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Montserrat Rigol
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Mount Sinai Fuster Heart Hospital, Mount Sinai Hospital, New York, NY, USA
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Diaz University Hospital, Madrid, Spain
| | - Daniel Pereda
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiovascular Surgery, Hospital Clínic Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Department of Cardiology, Hospital Clínic Barcelona-IDIBAPS, Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Liu B, Azfar M, Legchenko E, West JA, Martin S, Van den Haute C, Baekelandt V, Wharton J, Howard L, Wilkins MR, Vangheluwe P, Morrell NW, Upton PD. ATP13A3 variants promote pulmonary arterial hypertension by disrupting polyamine transport. Cardiovasc Res 2024; 120:756-768. [PMID: 38626311 PMCID: PMC11135649 DOI: 10.1093/cvr/cvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/18/2024] Open
Abstract
AIMS Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.
Collapse
Affiliation(s)
- Bin Liu
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Mujahid Azfar
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Ekaterina Legchenko
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, Hills Road, Cambridge CB2 0QQ, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - John Wharton
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Luke Howard
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Martin R Wilkins
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Peter Vangheluwe
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicholas W Morrell
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Paul D Upton
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| |
Collapse
|
7
|
Ba H, Guo Y, Jiang Y, Li Y, Dai X, Liu Y, Li X. Unveiling the metabolic landscape of pulmonary hypertension: insights from metabolomics. Respir Res 2024; 25:221. [PMID: 38807129 PMCID: PMC11131231 DOI: 10.1186/s12931-024-02775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 05/30/2024] Open
Abstract
Pulmonary hypertension (PH) is regarded as cardiovascular disease with an extremely poor prognosis, primarily due to irreversible vascular remodeling. Despite decades of research progress, the absence of definitive curative therapies remains a critical challenge, leading to high mortality rates. Recent studies have shown that serious metabolic disorders generally exist in PH animal models and patients of PH, which may be the cause or results of the disease. It is imperative for future research to identify critical biomarkers of metabolic dysfunction in PH pathophysiology and to uncover metabolic targets that could enhance diagnostic and therapeutic strategies. Metabolomics offers a powerful tool for the comprehensive qualitative and quantitative analysis of metabolites within specific organisms or cells. On the basis of the findings of the metabolomics research on PH, this review summarizes the latest research progress on metabolic pathways involved in processes such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in the context of PH.
Collapse
Affiliation(s)
- Huixue Ba
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejing Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China.
| |
Collapse
|
8
|
Chen YJ, Li HF, Zhao FR, Yu M, Pan SY, Sun WZ, Yin YY, Zhu TT. Spermidine attenuates monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting purine metabolism and polyamine synthesis-associated vascular remodeling. Int Immunopharmacol 2024; 132:111946. [PMID: 38552292 DOI: 10.1016/j.intimp.2024.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 μM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.
Collapse
Affiliation(s)
- Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Wen-Ze Sun
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Yan-Yan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 453003, China.
| |
Collapse
|
9
|
Sun H, Du Z, Zhang X, Gao S, Ji Z, Luo G, Pan S. Neutrophil extracellular traps promote proliferation of pulmonary smooth muscle cells mediated by CCDC25 in pulmonary arterial hypertension. Respir Res 2024; 25:183. [PMID: 38664728 PMCID: PMC11046914 DOI: 10.1186/s12931-024-02813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/β-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.
Collapse
Affiliation(s)
- Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xu Zhang
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Shuai Gao
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhixian Ji
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Gang Luo
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Simpson CE, Ambade AS, Harlan R, Roux A, Aja S, Graham D, Shah AA, Hummers LK, Hemnes AR, Leopold JA, Horn EM, Berman-Rosenzweig ES, Grunig G, Aldred MA, Barnard J, Comhair SAA, Tang WHW, Griffiths M, Rischard F, Frantz RP, Erzurum SC, Beck GJ, Hill NS, Mathai SC, Hassoun PM, Damico RL. Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L617-L627. [PMID: 37786941 PMCID: PMC11068393 DOI: 10.1152/ajplung.00177.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023] Open
Abstract
Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.
Collapse
Affiliation(s)
- Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Robert Harlan
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Aurelie Roux
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Susan Aja
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - David Graham
- Johns Hopkins All Children's Molecular Determinants Core, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Ami A Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Laura K Hummers
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Evelyn M Horn
- Division of Cardiology, Department of Medicine, Cornell University Medical Center, New York, New York, United States
| | - Erika S Berman-Rosenzweig
- Division of Pediatric Cardiology, Columbia University Medical Center/NewYork-Presbyterian Hospital, New York, New York, United States
| | - Gabriele Grunig
- Divisions of Environmental and Pulmonary Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - John Barnard
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - W H Wilson Tang
- Division of Heart Failure and Transplant Medicine, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, United States
| | - Megan Griffiths
- Division of Pediatric Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Franz Rischard
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Robert P Frantz
- Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Gerald J Beck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Nicholas S Hill
- Pulmonary, Critical Care and Sleep Division, Tufts University, Boston, Massachusetts, United States
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Gao S, Zhao J, Liu X, Liu L, Chen R. Metabolomics reveals serum metabolic signatures in H-type hypertension based on mass spectrometry multi-platform. Eur J Clin Invest 2023; 53:e14063. [PMID: 37458276 DOI: 10.1111/eci.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND H-type hypertension (HHT) is a disease combined with hyperhomocysteinaemia and hypertension (HT). This study aims to find specific metabolic changes and reveal the pathophysiological mechanism of HHT, which provide the theoretical basis for the early prevention and treatment of HHT. METHODS Serum samples from three groups including 53 HHT patients, 36 HT patients and 46 healthy controls (HC) were collected. The targeted and untargeted metabolomics analyses were performed to determine the metabolic changes. Based on multivariate statistical analysis, the serum potential metabolites were screened and different metabolic pathways were explored. RESULTS Our results demonstrated that there were 28 important potential metabolites for distinguishing HT from HHT patients. Metabolic pathway analysis showed that the different metabolic pathways between HHT and HC group were arginine biosynthesis, arginine and proline metabolism, and tyrosine metabolism. The changed metabolic pathway of HT and HC group included linoleic acid metabolism. The specific metabolic pathways of HT-HHT comparison group had phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; glycine, serine and threonine metabolism. CONCLUSIONS Metabolomics analysis by mass spectrometry multi-platform revealed the differences of metabolic profiles between HHT and HT subjects. This work laid the groundwork for understanding the aetiology of HHT, and these findings may provide the useful information for explaining the HHT metabolic alterations and try to prevent HHT.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
12
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|
13
|
Lian G, You J, Lin W, Gao G, Xu C, Wang H, Luo L. Bioinformatics analysis of the immune cell infiltration characteristics and correlation with crucial diagnostic markers in pulmonary arterial hypertension. BMC Pulm Med 2023; 23:300. [PMID: 37582718 PMCID: PMC10428559 DOI: 10.1186/s12890-023-02584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome, characterized by pulmonary vascular remodeling. Immunity and inflammation are progressively recognized properties of PAH, which are crucial for the initiation and maintenance of pulmonary vascular remodeling. This study explored immune cell infiltration characteristics and potential biomarkers of PAH using comprehensive bioinformatics analysis. METHODS Microarray data of GSE117261, GSE113439 and GSE53408 datasets were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified in GSE117261 dataset. The proportions of infiltrated immune cells were evaluated by CIBERSORT algorithm. Feature genes of PAH were selected by least absolute shrinkage and selection operator (LASSO) regression analysis and validated by fivefold cross-validation, random forest and logistic regression. The GSE113439 and GSE53408 datasets were used as validation sets and logistic regression and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prediction value of PAH. The PAH-associated module was identified by weighted gene association network analysis (WGCNA). The intersection of genes in the modules screened and DEGs was used to construct protein-protein interaction (PPI) network and the core genes were selected. After the intersection of feature genes and core genes, the hub genes were identified. The correlation between hub genes and immune cell infiltration was analyzed by Pearson correlation analysis. The expression level of LTBP1 in the lungs of monocrotaline-induced PAH rats was determined by Western blotting. The localization of LTBP1 and CD4 in lungs of PAH was assayed by immunofluorescence. RESULTS A total of 419 DEGs were identified, including 223 upregulated genes and 196 downregulated genes. Functional enrichment analysis revealed that a significant enrichment in inflammation, immune response, and transforming growth factor β (TGFβ) signaling pathway. CIBERSORT analysis showed that ten significantly different types of immune cells were identified between PAH and control. Resting memory CD4+ T cells, CD8+ T cells, γδ T cells, M1 macrophages, and resting mast cells in the lungs of PAH patients were significantly higher than control. Seventeen feature genes were identified by LASSO regression for PAH prediction. WGCNA identified 15 co-expression modules. PPI network was constructed and 100 core genes were obtained. Complement C3b/C4b receptor 1 (CR1), thioredoxin reductase 1 (TXNRD1), latent TGFβ binding protein 1 (LTBP1), and toll-like receptor 1 (TLR1) were identified as hub genes and LTBP1 has the highest diagnostic efficacy for PAH (AUC = 0.968). Pearson correlation analysis showed that LTBP1 was positively correlated with resting memory CD4+ T cells, but negatively correlated with monocytes and neutrophils. Western blotting showed that the protein level of LTBP1 was increased in the lungs of monocrotaline-induced PAH rats. Immunofluorescence of lung tissues from rats with PAH showed increased expression of LTBP1 in pulmonary arteries as compared to control and LTBP1 was partly colocalized with CD4+ cells in the lungs. CONCLUSION LTBP1 was correlated with immune cell infiltration and identified as the critical diagnostic maker for PAH.
Collapse
Affiliation(s)
- Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Jingxian You
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Weijun Lin
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Changsheng Xu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Huajun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, People's Republic of China.
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian Province, Fuzhou, 350005, People's Republic of China.
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China.
| |
Collapse
|
14
|
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol 2023; 6:826. [PMID: 37558836 PMCID: PMC10412637 DOI: 10.1038/s42003-023-05193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jean M Elwing
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francis X McCormack
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Simpson CE, Ambade AS, Harlan R, Roux A, Graham D, Klauer N, Tuhy T, Kolb TM, Suresh K, Hassoun PM, Damico RL. Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension. Pulm Circ 2023; 13:e12260. [PMID: 37404901 PMCID: PMC10315560 DOI: 10.1002/pul2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Robert Harlan
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Aurelie Roux
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - David Graham
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Neal Klauer
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Tijana Tuhy
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Todd M. Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| |
Collapse
|
16
|
Jiang C, Jiang W. Lasso algorithm and support vector machine strategy to screen pulmonary arterial hypertension gene diagnostic markers. Scott Med J 2023; 68:21-31. [PMID: 36253715 DOI: 10.1177/00369330221132158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND This study employs machine learning strategy algorithms to screen the optimal gene signature of pulmonary arterial hypertension (PAH) under big data in the medical field. METHODS The public database Gene Expression Omnibus (GEO) was used to analyze datasets of 32 normal controls and 37 PAH disease samples. The enrichment analysis was performed after selecting the differentially expressed genes. Two machine learning methods, the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM), were used to identify the candidate genes. The external validation data set further tests the expression level and diagnostic value of candidate diagnostic genes. The diagnostic effectiveness was evaluated by obtaining the receiver operating characteristic curve (ROC). The convolution tool CIBERSORT was used to estimate the composition pattern of the immune cell subtypes and to perform correlation analysis based on the combined training dataset. RESULTS A total of 564 differentially expressed genes (DEGs) were screened in normal control and pulmonary hypertension samples. The enrichment analysis results were found to be closely related to cardiovascular diseases, inflammatory diseases, and immune-related pathways. The LASSO and SVM algorithms in machine learning used 5 × cross-validation to identify 9 and 7 characteristic genes. The two machine learning algorithms shared Caldesmon 1 (CALD1) and Solute Carrier Family 7 Member 11 (SLC7A11) as genetic signals highly correlated with PAH. The results showed that the area under ROC (AUC) of the specific characteristic diagnostic genes were CALD1 (AUC = 0.924) and SLC7A11 (AUC = 0.962), indicating that the two diagnostic genes have high diagnostic value. CONCLUSION CALD1 and SLC7A11 can be used as diagnostic markers of PAH to obtain new insights for the further study of the immune mechanism involved in PAH.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China.,The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Weidong Jiang
- Department of Cardiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
17
|
Abstract
Pulmonary arterial hypertension forms the first and most severe of the 5 categories of pulmonary hypertension. Disease pathogenesis is driven by progressive remodeling of peripheral pulmonary arteries, caused by the excessive proliferation of vascular wall cells, including endothelial cells, smooth muscle cells and fibroblasts, and perivascular inflammation. Compelling evidence from animal models suggests endothelial cell dysfunction is a key initial trigger of pulmonary vascular remodeling, which is characterised by hyperproliferation and early apoptosis followed by enrichment of apoptosis-resistant populations. Dysfunctional pulmonary arterial endothelial cells lose their ability to produce vasodilatory mediators, together leading to augmented pulmonary arterial smooth muscle cell responses, increased pulmonary vascular pressures and right ventricular afterload, and progressive right ventricular hypertrophy and heart failure. It is recognized that a range of abnormal cellular molecular signatures underpin the pathophysiology of pulmonary arterial hypertension and are enhanced by loss-of-function mutations in the BMPR2 gene, the most common genetic cause of pulmonary arterial hypertension and associated with worse disease prognosis. Widespread metabolic abnormalities are observed in the heart, pulmonary vasculature, and systemic tissues, and may underpin heterogeneity in responsivity to treatment. Metabolic abnormalities include hyperglycolytic reprogramming, mitochondrial dysfunction, aberrant polyamine and sphingosine metabolism, reduced insulin sensitivity, and defective iron handling. This review critically discusses published mechanisms linking metabolic abnormalities with dysfunctional BMPR2 (bone morphogenetic protein receptor 2) signaling; hypothesized mechanistic links requiring further validation; and their relevance to pulmonary arterial hypertension pathogenesis and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Iona Cuthbertson
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Paola Caruso
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| |
Collapse
|
18
|
Swinarew AS, Gabor J, Kusz B, Skoczyński S, Raif P, Skoczylas I, Jonas K, Grabka M, Mizia-Szubryt M, Bula K, Stanula A, Mika B, Tkacz E, Paluch J, Gąsior M, Kopeć G, Mizia-Stec K. Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification-The Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:503. [PMID: 36612835 PMCID: PMC9819134 DOI: 10.3390/ijerph20010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with a serious prognosis. The aim of this study was to identify biomarkers for PAH in the breath phase and to prepare an automatic classification method to determine the changing metabolome trends and molecular mapping. A group of 37 patients (F/M: 8/29 women, mean age 60.4 ± 10.9 years, BMI 27.6 ± 6.0 kg/m2) with diagnosed PAH were enrolled in the study. The breath phase of all the patients was collected on a highly porous septic material using a special patented holder PL230578, OHIM 002890789-0001. The collected air was then examined with gas chromatography coupled with mass spectrometry (GC/MS). The algorithms of Spectral Clustering, KMeans, DBSCAN, and hierarchical clustering methods were used to perform the cluster analysis. The identification of the changes in the ratio of the whole spectra of biomarkers allowed us to obtain a multidimensional pathway for PAH characteristics and showed the metabolome differences in the four subgroups divided by the cluster analysis. The use of GC/MS, supported with novel porous polymeric materials, for the breath phase analysis seems to be a useful tool in selecting bio-fingerprints in patients with PAH. The four metabolome classes which were obtained constitute novel data in the PAH population.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Błażej Kusz
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Szymon Skoczyński
- Department of Pneumonology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Raif
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ilona Skoczylas
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Kamil Jonas
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Marek Grabka
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Mizia-Szubryt
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Bula
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Arkadiusz Stanula
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Barbara Mika
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ewaryst Tkacz
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Jarosław Paluch
- Department of ENT, Faculty of Medical Sciences in Katowice, Medical University Silesia, 40-055 Katowice, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
19
|
Integrating epigenetics and metabolomics to advance treatments for pulmonary arterial hypertension. Biochem Pharmacol 2022; 204:115245. [PMID: 36096239 DOI: 10.1016/j.bcp.2022.115245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vascular disease with multiple etiologies. Emerging evidence supports a fundamental role for epigenetic machinery and metabolism in the initiation and progression of PAH. Here, we summarize emerging epigenetic mechanisms that have been identified as contributors to PAH evolution, specifically, DNA methylation, histone modifications, and microRNAs. Furthermore, the interplay between epigenetics with metabolism is explored while new crosstalk targets to be investigated in PAH are proposed that highlight multi-omics strategies including integrated epigenomics and metabolomics. Therapeutic opportunities and challenges associated with epigenetics and metabolomics in PAH are examined, highlighting the role that epigenetics and metabolomics have in facilitating early detection, personalized dietary plans, and advanced drug therapy for PAH.
Collapse
|
20
|
Sommer N, Theine FF, Pak O, Tello K, Richter M, Gall H, Wilhelm J, Savai R, Weissmann N, Seeger W, Ghofrani HA, Hecker M. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J Clin Med 2022; 11:jcm11144132. [PMID: 35887896 PMCID: PMC9319555 DOI: 10.3390/jcm11144132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial and immune cell dysfunction contributes to the development of pulmonary arterial hypertension (PAH). We thus aimed to investigate mitochondrial respiration and mitochondrial gene expression patterns in the peripheral blood mononuclear cells (PBMC) of patients with idiopathic and hereditary PAH and their correlation to disease parameters. Mitochondrial respiration determined using high-resolution respirometry was not significantly different in PBMC when comparing an outpatient cohort of PAH patients with healthy controls. However, when directly comparing mitochondrial respiration to the hemodynamic parameters of an inpatient PAH cohort, mitochondrial respiration negatively correlated with pulmonary vascular resistance (PVR) and positively correlated with the cardiac index (CI). Furthermore, microarray analysis shows upregulation of mitochondrial erythroid-specific 5-aminolevulinate synthase 2 (ALAS2), as well as the regulation of genes involved in iron and heme metabolism, in the PBMC of patients with PAH, with ALAS2 upregulation in PAH patients being confirmed on the protein level. Multiple regression analysis with age and gender as confounders showed that both PVR and hemoglobin content negatively correlated with maximal respiration. Therefore, we conclude that mitochondrial function in the PBMC of PAH patients is affected by disease severity. However, further studies to investigate cell-type-specific alterations and functional consequences are necessary.
Collapse
Affiliation(s)
- Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Correspondence:
| | - Finn Fabian Theine
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Oleg Pak
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Khodr Tello
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Manuel Richter
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hossein A. Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias Hecker
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| |
Collapse
|
21
|
Rhodes CJ, Sweatt AJ, Maron BA. Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension. Circ Res 2022; 130:1423-1444. [PMID: 35482840 PMCID: PMC9070103 DOI: 10.1161/circresaha.121.319969] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pulmonary hypertension is a complex disease with multiple causes, corresponding to phenotypic heterogeneity and variable therapeutic responses. Advancing understanding of pulmonary hypertension pathogenesis is likely to hinge on integrated methods that leverage data from health records, imaging, novel molecular -omics profiling, and other modalities. In this review, we summarize key data sets generated thus far in the field and describe analytical methods that hold promise for deciphering the molecular mechanisms that underpin pulmonary vascular remodeling, including machine learning, network medicine, and functional genetics. We also detail how genetic and subphenotyping approaches enable earlier diagnosis, refined prognostication, and optimized treatment prediction. We propose strategies that identify functionally important molecular pathways, bolstered by findings across multi-omics platforms, which are well-positioned to individualize drug therapy selection and advance precision medicine in this highly morbid disease.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Andrew J Sweatt
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.A.M.).,Division of Cardiology, VA Boston Healthcare System, West Roxbury, MA (B.A.M.)
| |
Collapse
|
22
|
Liu D, Qin S, Su D, Wang K, Huang Y, Huang Y, Pang Y. Metabolic Reprogramming of the Right Ventricle and Pulmonary Arteries in a Flow-Associated Pulmonary Arterial Hypertension Rat Model. ACS OMEGA 2022; 7:1273-1287. [PMID: 35036789 PMCID: PMC8757344 DOI: 10.1021/acsomega.1c05895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex devastating disease relevant to remarkable metabolic dysregulation. Although various research studies on PAH from a metabolic perspective have been emerging, pathogenesis of PAH varies in different categories. Research on metabolic reprogramming in flow-associated PAH remains insufficient. An untargeted metabolomic profiling platform was used to evaluate the metabolic profile of pulmonary arteries (PAs) as well as the right ventricle (RV) in a flow-associated PAH rat model in the present work. A total of 79 PAs and 128 RV metabolites were significantly altered in PAH rats, among which 39 metabolites were assessed as shared dysregulated metabolites in PAs and the RV. Pathway analysis elucidated that, in PAs of PAH rats, pathways of phenylalanine, tyrosine, and tryptophan biosynthesis and linoleic acid metabolism were significantly altered, while in the RV, arginine biosynthesis and linoleic acid metabolism were altered dramatically. Further integrated analysis of shared dysregulated PA and RV metabolites demonstrated that the linoleic acid metabolism and the arachidonic acid (AA) metabolism were the key pathways involved in the pathogenesis of flow-associated PAH. Results obtained from the present work indicate that the PAH pathogenesis could be mediated by widespread metabolic reprogramming. In particular, the dysregulation of AA metabolism may considerably contribute to the development of high blood flow-associated PAH.
Collapse
Affiliation(s)
- Dongli Liu
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Suyuan Qin
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Danyan Su
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Kai Wang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
- Department
of Pediatrics, The First Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyun Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yuqin Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yusheng Pang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
23
|
Farha S, Comhair S, Hou Y, Park MM, Sharp J, Peterson L, Willard B, Zhang R, DiFilippo FP, Neumann D, Tang WHW, Cheng F, Erzurum S. Metabolic endophenotype associated with right ventricular glucose uptake in pulmonary hypertension. Pulm Circ 2021; 11:20458940211054325. [PMID: 34888034 PMCID: PMC8649443 DOI: 10.1177/20458940211054325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Alterations in metabolism and bioenergetics are hypothesized in the mechanisms
leading to pulmonary vascular remodeling and heart failure in pulmonary
hypertension (PH). To test this, we performed metabolomic analyses on 30 PH
individuals and 12 controls. Furthermore, using 2-[18F]fluoro-2-deoxy-D-glucose
positron emission tomography, we dichotomized PH patients into metabolic
phenotypes of high and low right ventricle (RV) glucose uptake and followed them
longitudinally. In support of metabolic alterations in PH and its progression,
the high RV glucose group had higher RV systolic pressure (p < 0.001), worse
RV function as measured by RV fractional area change and peak global
longitudinal strain (both p < 0.05) and may be associated with poorer
outcomes (33% death or transplantation in the high glucose RV uptake group
compared to 7% in the low RV glucose uptake group at five years follow-up,
log-ranked p = 0.07). Pathway enrichment analysis identified key metabolic
pathways including fructose catabolism, arginine-nitric oxide metabolism,
tricarboxylic acid cycle, and ketones metabolism. Integrative human
protein-protein interactome network analysis of metabolomic and transcriptomic
data identified key pathobiological pathways: arginine biosynthesis,
tricarboxylic acid cycle, purine metabolism, hypoxia-inducible factor 1, and
apelin signaling. These findings identify a PH metabolomic endophenotype, and
for the first time link this to disease severity and outcomes.
Collapse
Affiliation(s)
- Samar Farha
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suzy Comhair
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Hou
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Margaret M Park
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacqueline Sharp
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laura Peterson
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Renliang Zhang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - W H Wilson Tang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Serpil Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A. Plasma S1P (Sphingosine-1-Phosphate) Links to Hypertension and Biomarkers of Inflammation and Cardiovascular Disease: Findings From a Translational Investigation. Hypertension 2021; 78:195-209. [PMID: 33993723 DOI: 10.1161/hypertensionaha.120.17379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Lund University Diabetes Centre (A.J.), Lund University, Malmö, Sweden
| | - Frank Matthes
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Lotte Vanherle
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Henning Petzka
- Department of Mathematics, Lund Technical University, Sweden (H.P.)
| | - Marju Orho-Melander
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Internal Medicine, Clinical Research Unit, Malmö, Sweden (P.M.N.)
| | - Martin Magnusson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Hypertension in Africa Research Team, North West University Potchefstroom, South Africa (M.M.)
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden (M.M.)
| | - Anja Meissner
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
26
|
Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension. Sci Rep 2021; 11:5583. [PMID: 33692478 PMCID: PMC7946953 DOI: 10.1038/s41598-021-85004-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the first time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 differentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, inflammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantification of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased attesting the dysregulation of oxidative stress response. In conclusion this is the first quantitative study to highlight the involvement of endothelial dysfunction in CTEPH using patient samples and by network medicine approach.
Collapse
|
27
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Piersigilli F, Syed M, Lam TT, Dotta A, Massoud M, Vernocchi P, Quagliariello A, Putignani L, Auriti C, Salvatori G, Bagolan P, Bhandari V. An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling. J Perinatol 2020; 40:952-961. [PMID: 32080334 DOI: 10.1038/s41372-020-0623-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The omic approach can help identify a signature that can be potentially used as biomarkers in babies with congenital diaphragmatic hernia (CDH). OBJECTIVES To find a specific microRNA (miR) and metabolic fingerprint of the tracheal aspirates (TA) of CDH patients. We conducted a genetic analysis from blood samples. METHODS TA samples collected in the first 48 h of life in patients with CDH, compared with age-matched controls. Metabolomics done by a mass spectroscopy-based assay. Genomics done using chromosomal microarray analysis. RESULTS CDH (n = 17) and 16 control neonates enrolled. miR-16, miR-17, miR-18, miR-19b, and miR-20a had an increased expression, while miR-19a had a twofold decreased expression in CDH patients, compared with age-matched control patients. Specific metabolites separated neonates with CDH from controls. A genetic mutation found in a small subset of patients. CONCLUSIONS Specific patterns of metabolites and miR expression can be discerned in TA samples in infants with CDH.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mansoor Syed
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Andrea Dotta
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michela Massoud
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy.,Unit of Parasitology, Department of Laboratory and Immunological, Diagnostics Bambino Gesù Children's Hospital, Rome, Italy
| | - Cinzia Auriti
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guglielmo Salvatori
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Bagolan
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Vineet Bhandari
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA. .,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA. .,Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
29
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
YAO L, YANG YX, CAO H, REN HH, NIU Z, SHI L. Osthole attenuates pulmonary arterial hypertension by the regulation of sphingosine 1-phosphate in rats. Chin J Nat Med 2020; 18:308-320. [DOI: 10.1016/s1875-5364(20)30038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 10/24/2022]
|
31
|
Kim S, Rigatto K, Gazzana MB, Knorst MM, Richards EM, Pepine CJ, Raizada MK. Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension. Hypertension 2020; 75:1063-1071. [PMID: 32088998 DOI: 10.1161/hypertensionaha.119.14294] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is considered a disease of the pulmonary vasculature. Limited progress has been made in preventing or arresting progression of PAH despite extensive efforts. Our previous studies indicated that PAH could be considered a systemic disease since its pathology involves interplay of multiple organs. This, coupled with increasing implication of the gut and its microbiome in chronic diseases, led us to hypothesize that patients with PAH exhibit a distinct gut microbiome that contributes to, and predicts, the disease. Fecal microbiome of 18 type 1 PAH patients (mean pulmonary arterial pressure, 57.4, SD 16.7 mm Hg) and 13 reference subjects were compared by shotgun metagenomics to evaluate this hypothesis. Significant taxonomic and functional changes in microbial communities in the PAH cohort were observed. Pathways for the synthesis of arginine, proline, and ornithine were increased in PAH cohort compared with reference cohort. Additionally, groups of bacterial communities associated with trimethylamine/ trimethylamine N-oxide and purine metabolism were increased in PAH cohort. In contrast, butyrate-and propionate-producing bacteria such as Coprococcus, Butyrivibrio, Lachnospiraceae, Eubacterium, Akkermansia, and Bacteroides were increased in reference cohort. A random forest model predicted PAH from the composition of the gut microbiome with 83% accuracy. Finally, virome analysis showed enrichment of Enterococcal and relative depletion of Lactococcal phages in the PAH cohort. In conclusion, patients with PAH exhibit a unique microbiome profile that has the high predictive potential for PAH. This highlights previously unknown roles of gut bacteria in this disease and could lead to new therapeutic, diagnostic, or management paradigms for PAH.
Collapse
Affiliation(s)
- Seungbum Kim
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville.,Gilead Sciences, Foster City, California (S.K.)
| | - Katya Rigatto
- Department of Basic Health Sciences (K.R.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Marcelo B Gazzana
- Department of Pulmonology, Hospital de Clinicas de Porto Alegre, and Faculty of Medicine (M.B.G., M.M.K.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Marli M Knorst
- Department of Pulmonology, Hospital de Clinicas de Porto Alegre, and Faculty of Medicine (M.B.G., M.M.K.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Elaine M Richards
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| |
Collapse
|
32
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
33
|
Zhao JH, He YY, Guo SS, Yan Y, Wang Z, Ye J, Zhang JL, Wang Y, Pang XB, Xie XM, Lin JH, Jing ZC, Han ZY. Circulating Plasma Metabolomic Profiles Differentiate Rodent Models of Pulmonary Hypertension and Idiopathic Pulmonary Arterial Hypertension Patients. Am J Hypertens 2019; 32:1109-1117. [PMID: 31350549 DOI: 10.1093/ajh/hpz121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe progressive disease with systemic metabolic dysregulation. Monocrotaline (MCT)-induced and hypoxia-induced pulmonary hypertension (PH) rodent models are the most widely used preclinical models, however, whether or not these preclinical models recapitulate metabolomic profiles of PAH patients remain unclear. METHODS In this study, a targeted metabolomics panel of 126 small molecule metabolites was conducted. We applied it to the plasma of the 2 preclinical rodent models of PH and 30 idiopathic pulmonary arterial hypertension (IPAH) patients as well as 30 healthy controls to comparatively assess the metabolomic profiles of PAH patients and rodent models. RESULTS Significantly different metabolomics profiling and pathways were shown among the 2 classical rodent models and IPAH patients. Pathway analysis demonstrated that methionine metabolism and urea cycle metabolism were the most significant pathway involved in the pathogenesis of hypoxia-induced PH model and MCT-induced model, respectively, and both of them were also observed in the dysregulated pathways in IPAH patients. CONCLUSIONS These 2 models may develop PAH through different metabolomic pathways and each of the 2 classical PH model resembles IPAH patients in certain aspects.
Collapse
Affiliation(s)
- Jun-Han Zhao
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang-Yang He
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Shan Guo
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Biochemistry, Pharmaceutical College, Henan University, Kaifeng, Henan, China
| | - Yi Yan
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jue Ye
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Department of Respiration, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Bin Pang
- Department of Biochemistry, Pharmaceutical College, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- Department of Biochemistry, Pharmaceutical College, Henan University, Kaifeng, Henan, China
| | - Jian-Hui Lin
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Yan Han
- Department of Anesthesiology, FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019; 20:ijms20020411. [PMID: 30669371 PMCID: PMC6359388 DOI: 10.3390/ijms20020411] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to playing a role as a structural component of cellular membranes, ceramide is now clearly recognized as a bioactive lipid implicated in a variety of physiological functions. This review aims to provide updated information on the role of ceramide in the regulation of vascular tone. Ceramide may induce vasodilator or vasoconstrictor effects by interacting with several signaling pathways in endothelial and smooth muscle cells. There is a clear, albeit complex, interaction between ceramide and redox signaling. In fact, reactive oxygen species (ROS) activate different ceramide generating pathways and, conversely, ceramide is known to increase ROS production. In recent years, ceramide has emerged as a novel key player in oxygen sensing in vascular cells and mediating vascular responses of crucial physiological relevance such as hypoxic pulmonary vasoconstriction (HPV) or normoxic ductus arteriosus constriction. Likewise, a growing body of evidence over the last years suggests that exaggerated production of vascular ceramide may have detrimental effects in a number of pathological processes including cardiovascular and lung diseases.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), 6202 AZ Maastricht, The Netherlands.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
35
|
Don-Doncow N, Zhang Y, Matuskova H, Meissner A. The emerging alliance of sphingosine-1-phosphate signalling and immune cells: from basic mechanisms to implications in hypertension. Br J Pharmacol 2018; 176:1989-2001. [PMID: 29856066 DOI: 10.1111/bph.14381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023] Open
Abstract
The immune system plays a considerable role in hypertension. In particular, T-lymphocytes are recognized as important players in its pathogenesis. Despite substantial experimental efforts, the molecular mechanisms underlying the nature of T-cell activation contributing to an onset of hypertension or disease perpetuation are still elusive. Amongst other cell types, lymphocytes express distinct profiles of GPCRs for sphingosine-1-phosphate (S1P) - a bioactive phospholipid that is involved in many critical cell processes and most importantly majorly regulates T-cell development, lymphocyte recirculation, tissue-homing patterns and chemotactic responses. Recent findings have revealed a key role for S1P chemotaxis and T-cell mobilization for the onset of experimental hypertension, and elevated circulating S1P levels have been linked to several inflammation-associated diseases including hypertension in patients. In this article, we review the recent progress towards understanding how S1P and its receptors regulate immune cell trafficking and function and its potential relevance for the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Yun Zhang
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Deidda M, Noto A, Bassareo PP, Cadeddu Dessalvi C, Mercuro G. Metabolomic Approach to Redox and Nitrosative Reactions in Cardiovascular Diseases. Front Physiol 2018; 9:672. [PMID: 29997515 PMCID: PMC6031070 DOI: 10.3389/fphys.2018.00672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Metabolomics, also referred to as metabonomics, is one of the most recent innovative technologies in medicine. It offers a direct functional read-out of phenotypes by the detection, identification, and quantification of a large number of metabolites within a biological sample such as urine and blood. Metabolites (<1500 Da) represent the output of cellular metabolism, accounting for expression and activity of genes, transcripts, and proteins, and offering unique insights into small molecule regulation, which may uncover new biochemical patterns. Metabolomics research has considerable potential for translating the metabolic fingerprint into personalized therapeutic strategies. Within the field of interest, cardiovascular disease (CVD) is one of the most developed areas. However, CVD remains the leading cause of death worldwide with a marked increase in mortality rates over the past six decades. In this scenario, recent findings indicate the important role of redox and nitrosative (RN) reactions in CVD development and progression. RN reactions are generally involved in the homeostatic modulation of a wide number of cellular and organ functions. Conversely, the imbalance of these reactions may lead to a condition of allostasis that in turn can cause CVD. The aim of this review is to highlight how the use of metabolomics may be useful for the study of RN reactions related to CVD, providing a tool to understand the mechanisms underlying reactions that could lead to impaired ROS or RNS formation.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | - Pier P Bassareo
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| |
Collapse
|
37
|
Zheng HK, Zhao JH, Yan Y, Lian TY, Ye J, Wang XJ, Wang Z, Jing ZC, He YY, Yang P. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline. Respir Res 2018; 19:94. [PMID: 29751839 PMCID: PMC5948901 DOI: 10.1186/s12931-018-0800-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. Method A single subcutaneous injection of monocrotaline (MCT) (60 mg kg− 1) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Results Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. Conclusion The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.
Collapse
Affiliation(s)
- Hai-Kuo Zheng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun-Han Zhao
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Yan
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Yu Lian
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jue Ye
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Jian Wang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang-Yang He
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
38
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
39
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
40
|
Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension - progress in understanding the disease and prioritizing strategies for drug development. J Intern Med 2017; 282:129-141. [PMID: 28524624 DOI: 10.1111/joim.12623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH), at one time a largely overlooked disease, is now the subject of intense study in many academic and biotech groups. The availability of new treatments has increased awareness of the condition. This in turn has driven a change in the demographics of PAH, with an increase in the mean age at diagnosis. The diagnosis of PAH in more elderly patients has highlighted the need for careful phenotyping of patients and for further studies to understand how best to manage pulmonary hypertension associated with, for example, left heart disease. The breadth and depth of expertise focused on unravelling the molecular pathology of PAH has yielded novel insights, including the role of growth factors, inflammation and metabolic remodelling. The description of the genetic architecture of PAH is accelerating in parallel, with novel variants, such as those reported in potassium two-pore domain channel subfamily K member 3 (KCNK3), adding to the list of more established mutations in genes associated with bone morphogenetic protein receptor type 2 (BMPR2) signalling. These insights have supported a paradigm shift in treatment strategies away from simply addressing the imbalance of vasoactive mediators observed in PAH towards tackling more directly the structural remodelling of the pulmonary vasculature. Here, we summarize the changing clinical and molecular landscape of PAH. We highlight novel drug therapies that are in various stages of clinical development, targeting for example cell proliferation, metabolic, inflammatory/immune and BMPR2 dysfunction, and the challenges around developing these treatments. We argue that advances in the treatment of PAH will come through deep molecular phenotyping with the integration of clinical, genomic, transcriptomic, proteomic and metabolomic information in large populations of patients through international collaboration. This approach provides the best opportunity for identifying key signalling pathways, both as potential drug targets and as biomarkers for patient selection. The expectation is that together these will enable the prioritization of potential therapies in development and the evolution of personalized medicine for PAH.
Collapse
Affiliation(s)
- P Ghataorhe
- Department of Medicine, Imperial College London, London, UK
| | - C J Rhodes
- Department of Medicine, Imperial College London, London, UK
| | - L Harbaum
- Department of Medicine, Imperial College London, London, UK
| | - M Attard
- Department of Medicine, Imperial College London, London, UK
| | - J Wharton
- Department of Medicine, Imperial College London, London, UK
| | - M R Wilkins
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
41
|
Deidda M, Piras C, Cadeddu Dessalvi C, Locci E, Barberini L, Orofino S, Musu M, Mura MN, Manconi PE, Finco G, Atzori L, Mercuro G. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary arterial hypertension. Int J Cardiol 2017; 241:401-406. [PMID: 28476520 DOI: 10.1016/j.ijcard.2017.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) in systemic sclerosis (SS) identifies a poor prognosis subset of patients. Recent studies suggested a "metabolic theory" on the development of pulmonary arterial hypertension. On this basis we performed a metabolomic study in order to evaluate whether differences in pulmonary arterial blood metabolites were identifiable in SS patients with increased pulmonary vascular resistance (PVR). METHODS We studied 18 SS patients (age 58.7±15.6years) free of pulmonary fibrosis who underwent a right heart catheterization (RHC). A blood sample was collected during the RHC in the distal peripheral circulation of the pulmonary arteries to perform the metabolomic analysis. RESULTS Based on PVR we divided the population into Group A (n=8; PVR=1.16±0.23WU) and Group B (n=10; PVR=2.67±0.67WU; p<0.001 vs Group A). No significant differences were identified in terms of anthropometric, clinical, echo and therapeutic characteristics. At RHC the 2 groups showed a difference in mean pulmonary pressure values (Group A: 20±4mmHg; Group B: 27±3.4mmHg; p=0.03), with mild PAH in Group B. We applied an OSC-PLS-DA with a clear clusterization; SSc patients with PAH showed an increase in acetate, alanine, lactate, and lipoprotein levels and a decrease in γ-aminobutyrate, arginine, betaine, choline, creatine, creatinine, glucose, glutamate, glutamine, glycine, histidine, phenylalanine, and tyrosine levels CONCLUSIONS: Our results suggest that, despite similar clinical and disease-related parameters, SSc patients who develop PAH have an unfavorable metabolic profile able to cause an impaired production of metabolites with protective effects on endothelial cells.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Emanuela Locci
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Susanne Orofino
- Intensive Care Unit, Azienda Ospedaliero-Universitaria di Cagliari, 09128, Cagliari, Italy
| | - Mario Musu
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Mario Nicola Mura
- Department of Internal Medicine, AOU di Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Gabriele Finco
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
42
|
Rhodes CJ, Ghataorhe P, Wharton J, Rue-Albrecht KC, Hadinnapola C, Watson G, Bleda M, Haimel M, Coghlan G, Corris PA, Howard LS, Kiely DG, Peacock AJ, Pepke-Zaba J, Toshner MR, Wort SJ, Gibbs JSR, Lawrie A, Gräf S, Morrell NW, Wilkins MR. Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation 2016; 135:460-475. [PMID: 27881557 PMCID: PMC5287439 DOI: 10.1161/circulationaha.116.024602] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. Methods: We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. Results: Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. Conclusions: Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients.
Collapse
Affiliation(s)
- Christopher J Rhodes
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Pavandeep Ghataorhe
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - John Wharton
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Kevin C Rue-Albrecht
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Charaka Hadinnapola
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Geoffrey Watson
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Marta Bleda
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Matthias Haimel
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Gerry Coghlan
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Paul A Corris
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Luke S Howard
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - David G Kiely
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Andrew J Peacock
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Joanna Pepke-Zaba
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Mark R Toshner
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - S John Wort
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - J Simon R Gibbs
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Allan Lawrie
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Stefan Gräf
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Nicholas W Morrell
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.)
| | - Martin R Wilkins
- From the Department of Medicine, Imperial College London, Hammersmith Campus, United Kingdom (C.J.R., P.G., J.W., K.C.R.-A., G.W., M.R.W.); Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom (C.H., M.B., M.H., M.R.T., S.G., N.W.M.); Cardiology Department, Royal Free Hospital, London, United Kingdom (G.C.); Institute of Cellular Medicine, Newcastle University and the Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom (P.A.C.); National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (L.S.H., J.S.R.G.); National Heart and Lung Institute, Imperial College London, Hammersmith Campus, United Kingdom (L.S.H., J.S.R.G.); Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, United Kingdom (D.G.K.); Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, United Kingdom (D.G.K., A.L.); Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom (A.J.P.); Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom (J.P.Z., M.R.T.); Pulmonary Hypertension Service, Royal Brompton Hospital, London, United Kingdom (S.J.W.); and Department of Haematology, University of Cambridge, United Kingdom (S.G.).
| |
Collapse
|
43
|
Gairhe S, Joshi SR, Bastola MM, McLendon JM, Oka M, Fagan KA, McMurtry IF. Sphingosine-1-phosphate is involved in the occlusive arteriopathy of pulmonary arterial hypertension. Pulm Circ 2016; 6:369-80. [PMID: 27683614 DOI: 10.1086/687766] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite several advances in the pathobiology of pulmonary arterial hypertension (PAH), its pathogenesis is not completely understood. Current therapy improves symptoms but has disappointing effects on survival. Sphingosine-1-phosphate (S1P) is a lysophospholipid synthesized by sphingosine kinase 1 (SphK1) and SphK2. Considering the regulatory roles of S1P in several tissues leading to vasoconstriction, inflammation, proliferation, and fibrosis, we investigated whether S1P plays a role in the pathogenesis of PAH. To test this hypothesis, we used plasma samples and lung tissue from patients with idiopathic PAH (IPAH) and the Sugen5416/hypoxia/normoxia rat model of occlusive PAH. Our study revealed an increase in the plasma concentration of S1P in patients with IPAH and in early and late stages of PAH in rats. We observed increased expression of both SphK1 and SphK2 in the remodeled pulmonary arteries of patients with IPAH and PAH rats. Exogenous S1P stimulated the proliferation of cultured rat pulmonary arterial endothelial and smooth-muscle cells. We also found that 3 weeks of treatment of late-stage PAH rats with an SphK1 inhibitor reduced the increased plasma levels of S1P and the occlusive pulmonary arteriopathy. Although inhibition of SphK1 improved cardiac index and the total pulmonary artery resistance index, it did not reduce right ventricular systolic pressure or right ventricular hypertrophy. Our study supports that S1P is involved in the pathogenesis of occlusive arteriopathy in PAH and provides further evidence that S1P signaling may be a novel therapeutic target.
Collapse
Affiliation(s)
- Salina Gairhe
- Departments of Internal Medicine and Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sachindra R Joshi
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Mrigendra M Bastola
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Jared M McLendon
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Masahiko Oka
- Departments of Internal Medicine and Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Karen A Fagan
- Departments of Internal Medicine and Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ivan F McMurtry
- Departments of Internal Medicine and Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
44
|
Calvo E, García-Álvarez A, Vázquez J. The Quest for Metabolic Biomarkers of Pulmonary Hypertension. J Am Coll Cardiol 2016; 67:190-192. [PMID: 26791066 DOI: 10.1016/j.jacc.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| |
Collapse
|