1
|
Xu Y, Yan Z, Liu L. Association between dietary intake of live microbes and chronic obstructive pulmonary disease: a cross-sectional study of NHANES 2007-2012. BMC Pulm Med 2025; 25:33. [PMID: 39849413 PMCID: PMC11760668 DOI: 10.1186/s12890-024-03453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Diet plays a crucial role in intervening in the development of chronic obstructive pulmonary disease (COPD), yet previous studies have not investigated the impact of dietary intake of live microbes on COPD. This study aims to assess the relationship between the two. METHODS Participants from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012 were selected. The exposure variable was the estimated intake of live microbes in the diet, categorized into low, medium, and high groups. The outcome variable was COPD. A multivariable logistic regression model was used to assess the relationship between estimated dietary intake of live microbes and the risk of COPD. RESULTS In the fully adjusted multiple logistic regression model, participants with moderate and high dietary intake of live microbes showed a negative association with the prevalence of COPD compared to those with low estimated intake, with reductions of 38% (OR, 0.62; 95% CI: 0.39-0.99, P < 0.05) and 44% (OR, 0.56; 95% CI: 0.34-0.92, P < 0.05) respectively. Additionally, subgroup analysis results remained stable with no observed interactions. CONCLUSION Our study suggests a negative association between higher dietary live microbe intake and the risk of COPD among adults in the United States. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT00005154 First Posted date 26/05/2000(retrospectively registered).
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Zhang Y, Cao R, Wang D, Yue Q, Su L, Li K, Li B, Zhao L, Zhang S. Inhalation of patchouli essential oil alleviates airway inflammation in cigarette smoke-induced COPD mice. Sci Rep 2024; 14:32108. [PMID: 39738731 PMCID: PMC11685846 DOI: 10.1038/s41598-024-83852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by persistent respiratory symptoms and airflow limitations resulting from small airway injury, bronchial wall thickening, and hypersecretion of mucus. Current pharmacological interventions are ineffective in reversing these airflow limitations; In our study, we investigated the potential role of patchouli essential oil (PEO) in the treatment of COPD and its underlying molecular mechanisms, both in vitro and in vivo. To establish a cigarette smoke-induced COPD mice model, we exposed the mice to cigarette smoke (CS) and administered nasal drip of lipopolysaccharides (LPS). During the modeling process, the mice were nebulized daily with PEO; Treatment with PEO significantly ameliorated the inflammatory response in CS-induced COPD mice, leading to improved lung function. Histopathological examination revealed that PEO treatment improved lung tissue changes, as observed through staining. Furthermore, PEO treatment reduced the levels of inflammatory factors IL-6, IL-1β, and TNF-α, and reversed the CS-induced elevation of mRNA levels of these factors. Additionally, PEO treatment significantly countered cigarette smoke-induced COPD via the NF-κB signaling pathway in mice; Our result has shown that inhalation of PEO can substantially alleviate the increase in inflammatory factors, mitigate lung function impairment, and reduce airway remodeling in cigarette smoke-induced COPD mice.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Rui Cao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Duo Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Baojun Li
- Shandong ZhuoRan Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China.
- Shandong Chenzhang Biotechnology Co., Ltd, Jinan, People's Republic of China.
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China.
| |
Collapse
|
3
|
Yu X, Dai S, Dai L, Ao R, Zhang D, Wang L. Systematic Chemical Analysis of Crude Glycan Isolates from the Seven-Herb Decoction Quanzhenyiqitang with Anti-COPD Activity. Chem Biodivers 2024; 21:e202400277. [PMID: 38686912 DOI: 10.1002/cbdv.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The classical Chinese Medicine prescription, Quanzhenyiqitang (QZYQT), containing seven tonic herbs (Shudi, Dangshen, Maidong, Baizhu, Niuxi, Fuzi, and Wuweizi) is clinically used to treat chronic obstructive pulmonary disease (COPD). Although there are studies on the pharmacological effects of QZYQT, little attention has been paid to its active carbohydrate ingredients. We performed a systematic chemical analysis of the crude glycan isolates from the seven-herb decoction (GI-QZYQT) after confirming its anti-COPD activity. GI-QZYQT could enhance lung function, reduce lung damage, and alleviate inflammatory response in mice with COPD. Moreover, two monosaccharides (fructose and glucose) and six oligosaccharides (sucrose, melibiose, 1-kestose, raffinose, mannotriose, and stachyose), accounting for 40.23 % of GI-QZYQT, were discovered using hydrophilic interaction liquid chromatography-evaporative light-scattering detection. Inulin-type fructan with an average molecular weight of 2112 Da was identified using high-performance gel-permeation chromatography in combination with monosaccharide mapping analysis, accounting for 20.10 % of GI-QZYQT in mass. The comparison study showed that the identified monosaccharides, oligosaccharides, and the inulin-type fructan of GI-QZYQT were mainly derived from herbs of Shudi, Dangshen, Maidong, Baizhu, and Niuxi. These findings provide crucial information on the chemical composition of GI-QZYQT, which is vital for the in-depth understanding of its bioactivity, mechanism, and product development.
Collapse
Affiliation(s)
- Xiaoxian Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing City, Jiangsu Province, P. R. China
| | - Shiting Dai
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou City, Guangdong Province, P. R. China
- Integrated Traditional Chinese and Western Medicine, Guangzhou Medical University, 510180, Guangzhou City, Guangdong Province, P. R. China
| | - Longchao Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing City, Jiangsu Province, P. R. China
| | - Ran Ao
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou City, Guangdong Province, P. R. China
| | - Dapeng Zhang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou City, Guangdong Province, P. R. China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing City, Jiangsu Province, P. R. China
| |
Collapse
|
4
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Sá AK, Olímpio F, Vasconcelos J, Rosa P, Faria Neto HC, Rocha C, Camacho MF, Barcick U, Zelanis A, Aimbire F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024; 16:1509. [PMID: 38794746 PMCID: PMC11124176 DOI: 10.3390/nu16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.
Collapse
Affiliation(s)
- Ana Karolina Sá
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Jessica Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Paloma Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Hugo Caire Faria Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation Fundação Oswaldo Cruz, Av. Brazil, Rio de Janeiro 4036, Brazil;
| | - Carlos Rocha
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos 04039-002, Brazil;
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Andre Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, Brazil
| |
Collapse
|
7
|
Lee SH, Lee JH, Lee SW. Application of Microbiome-Based Therapies in Chronic Respiratory Diseases. J Microbiol 2024; 62:201-216. [PMID: 38635003 DOI: 10.1007/s12275-024-00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and affected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably different, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome influences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fiber diets, for example, present beneficial effects through the production of short-chain fatty acids. Additionally, genetically modified probiotics to secrete some beneficial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
8
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Olímpio F, Andreata-Santos R, Rosa PC, Santos W, Oliveira C, Aimbire F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics Antimicrob Proteins 2023; 15:1513-1528. [PMID: 36346611 PMCID: PMC9643982 DOI: 10.1007/s12602-022-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.
Collapse
Affiliation(s)
- Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Immunology, and Parasitology, Lab. Retrovirology, Federal University of São Paulo, Rua Botucatu 862 - 6° Andar, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Paloma Cristina Rosa
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Wellington Santos
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP, 64003-120, Brazil
| | - Carlos Oliveira
- Department of Science and Technology, Postgraduate Program in Biomedical Engineering, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
11
|
Yang J, Shi X, Gao R, Fan L, Chen R, Cao Y, Xu T, Yang J. Polydatin alleviates bleomycin-induced pulmonary fibrosis and alters the gut microbiota in a mouse model. J Cell Mol Med 2023; 27:3717-3728. [PMID: 37665061 PMCID: PMC10718135 DOI: 10.1111/jcmm.17937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
To investigate the effect and mechanism of polydatin on bleomycin (BLM)-induced pulmonary fibrosis in a mouse model. The lung fibrosis model was induced by BLM. The contents of TNF-α, LPS, IL-6 and IL-1β in lung tissue, intestine and serum were detected by ELISA. Gut microbiota diversity was detected by 16S rDNA sequencing; R language was used to analyse species composition, α-diversity, β-diversity, species differences and marker species. Mice were fed drinking water mixed with four antibiotics (ampicillin, neomycin, metronidazole, vancomycin; antibiotics, ABx) to build a mouse model of ABx-induced bacterial depletion; and faecal microbiota from different groups were transplanted into BLM-treated or untreated ABx mice. The histopathological changes and collagen I and α-SMA expression were determined. Polydatin effectively reduced the degree of fibrosis in a BLM-induced pulmonary fibrosis mouse model; BLM and/or polydatin affected the abundance of the dominant gut microbiota in mice. Moreover, faecal microbiota transplantation (FMT) from polydatin-treated BLM mice effectively alleviated lung fibrosis in BLM-treated ABx mice compared with FMT from BLM mice. Polydatin can reduce fibrosis and inflammation in a BLM-induced mouse pulmonary fibrosis model. The alteration of gut microbiota by polydatin may be involved in the therapeutic effect.
Collapse
Affiliation(s)
- Jia Yang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiawei Shi
- The First Clinical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| | - Rundi Gao
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liming Fan
- The First Clinical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| | - Ruilin Chen
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yu Cao
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Tingzhen Xu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Junchao Yang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
12
|
Choi JY, Shim B, Park Y, Kang YA. Alterations in lung and gut microbiota reduce diversity in patients with nontuberculous mycobacterial pulmonary disease. Korean J Intern Med 2023; 38:879-892. [PMID: 37867139 PMCID: PMC10636543 DOI: 10.3904/kjim.2023.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND/AIMS Although the incidence of nontuberculous mycobacteria pulmonary disease (NTM-PD), a chronic infectious disease, is increasing, lung and gut microbiota dysbiosis in NTM patients has rarely been studied and was therefore the focus of this study. METHODS We analyzed the microbiota diversity in sputum and stool samples from 10 healthy subjects and 10 patients with NTM-PD through sequencing of the V3 and V4 regions of the 16S rRNA gene. In NTM-PD patients, we comparatively evaluated the microbiota diversity according to the body mass index (BMI), with BMI ≤ 18.5 kg/m2 defined as "underweight" and BMI > 18.5 kg/m2 as "others." RESULTS The sputum microbiota from NTM-PD patients tended to have lower index values of amplicon sequence variant richness, Shannon evenness, and beta diversity than those from the control group. Furthermore, NTM-PD patients with a low BMI had a lower microbiota diversity than patients with high BMI. Fecal samples from NTM-PD patients also significantly differed in alpha and beta diversity compared with the control group and exhibited a diversity pattern similar to that found in sputum samples. CONCLUSION Our results reveal that the lung and gut microbiota of patients with NTM-PD exhibit an altered distribution and reduced richness and diversity.
Collapse
Affiliation(s)
- Ji Yeon Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bora Shim
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| | - Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Lee SH, Kim J, Kim NH, Kim OH, Shon CH, Kim SJ, Jang Y, Yun S, Lim SE, Jung SY, Yoo HJ, Heo SH, Lee SW. Gut microbiota composition and metabolite profiling in smokers: a comparative study between emphysema and asymptomatic individuals with therapeutic implications. Thorax 2023; 78:1080-1089. [PMID: 37495367 DOI: 10.1136/thorax-2021-217923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diet has a crucial role in the gut microbiota, and dysbiosis in the gut and lungs has been suggested to be associated with chronic obstructive pulmonary disease. We compared the diet, microbiome and metabolome between asymptomatic smokers and those with emphysema. METHODS We enrolled 10 asymptomatic smokers with preserved lung function and 16 smokers with emphysema with severe airflow limitation. Dietary intake information was gathered by a self-reported questionnaire. Sputum and faecal samples were collected for microbial and metabolomics analysis. A murine model of emphysema was used to determine the effect of metabolite supplementation. RESULTS Despite having a similar smoking history with emphysema patients, asymptomatic smokers had higher values of body mass index, fibre intake and faecal acetate level. Linear discriminant analysis identified 17 microbial taxonomic members that were relatively enriched in the faeces of asymptomatic smokers. Analysis of similarity results showed dissimilarity between the two groups (r=0.287, p=0.003). Higher acetate level was positively associated with forced expiratory volume in one second in the emphysema group (r=0.628, p=0.012). Asymptomatic smokers had a greater number of species associated with acetate and propionate (r>0.6) than did those with emphysema (30 vs 19). In an emphysema mouse model, supplementation of acetate and propionate reduced alveolar destruction and the production of proinflammatory cytokines, and propionate decreased the CD3+CD4+IL-17+ T-cell population in the lung and spleen. CONCLUSION Smokers with emphysema showed differences in diet, microbiome and short-chain fatty acids compared with asymptomatic smokers. Acetate and propionate showed therapeutic effects in a smoking-induced murine model of emphysema.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jiseon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ock-Hwa Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Division of Pulmonology, Allergy, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University, Sejong, Republic of Korea
| | - Chang-Ho Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngwon Jang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunmi Yun
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - Se Eun Lim
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - So Yi Jung
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Hee Heo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. MICROBIOME RESEARCH REPORTS 2023; 3:3. [PMID: 38455077 PMCID: PMC10917622 DOI: 10.20517/mrr.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024]
Abstract
Gut microbiota research has gained a tremendous amount of attention from the scientific community because of its contribution to gut homeostasis, human health, and various pathophysiological conditions. The early colonizer of the human gut, i.e., bifidobacteria, has emerged as an efficient probiotic in various diseased conditions, including cancer. This review explores the pros and cons of Bifidobacterium in various malignancies and various therapeutic strategies. We have illustrated the controversial role of bifidobacteria participating in various malignancies as well as described the current knowledge regarding its use in anticancer therapies. Ultimately, this article also addresses the need for further extensive research in elucidating the mechanism of how bifidobacteria is involved and is indirectly affecting the tumor microenvironment. Exhaustive and large-scale research is also required to solve the controversial questions regarding the involvement of bifidobacteria in cancer research.
Collapse
Affiliation(s)
| | | | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. J Pers Med 2023; 13:jpm13050804. [PMID: 37240974 DOI: 10.3390/jpm13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. The association between lung and gut microbiomes in the pathogenesis of COPD has been recently uncovered. The goal of this study was to discuss the role of the lung and gut microbiomes in COPD pathophysiology. A systematic search of the PubMed database for relevant articles submitted up to June 2022 was performed. We examined the association between the lung and gut microbiome dysbiosis, reflected in bronchoalveolar lavage (BAL), lung tissue, sputum, and feces samples, and the pathogenesis and progression of COPD. It is evident that the lung and gut microbiomes affect each other and both play a vital role in the pathogenesis of COPD. However, more research needs to be carried out to find the exact associations between microbiome diversity and COPD pathophysiology and exacerbation genesis. Another field that research should focus on is the impact of treatment interventions targeting the human microbiome in preventing COPD genesis and progression.
Collapse
Affiliation(s)
- Efstathios Karakasidis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Department of Human Pathophysiology, Faculty of Nursing, School of Health Science, University of Thessaly, Gaiopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
17
|
Assad SE, Fragomeno M, Rumbo M, Minnaard J, Pérez PF. The immunomodulating effect of bifidobacteria is modified by the anticoagulant acenocoumarol. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
19
|
Budden KF, Gellatly SL, Vaughan A, Amorim N, Horvat JC, Hansbro NG, Wood DLA, Hugenholtz P, Dennis PG, Wark PAB, Hansbro PM. Probiotic Bifidobacterium longum subsp. longum Protects against Cigarette Smoke-Induced Inflammation in Mice. Int J Mol Sci 2022; 24:252. [PMID: 36613693 PMCID: PMC9820259 DOI: 10.3390/ijms24010252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.
Collapse
Affiliation(s)
- Kurtis F. Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaan L. Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David L. A. Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter A. B. Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
The Role of Gut Bacteriome in Asthma, Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnoea. Microorganisms 2022; 10:microorganisms10122457. [PMID: 36557710 PMCID: PMC9781820 DOI: 10.3390/microorganisms10122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The human body contains a very complex and dynamic ecosystem of bacteria. The bacteriome interacts with the host bi-directionally, and changes in either factor impact the entire system. It has long been known that chronic airway diseases are associated with disturbances in the lung bacteriome. However, less is known about the role of gut bacteriome in the most common respiratory diseases. Here, we aim to summarise the evidence concerning the role of the intestinal bacteriome in the pathogenesis and disease course of bronchial asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea. Furthermore, we discuss the consequences of an altered gut bacteriome on the most common comorbidities of these lung diseases. Lastly, we also reflect on the therapeutic potential of influencing the gut microbiome to improve disease outcomes.
Collapse
|
21
|
Lacticaseibacillus rhamnosus attenuates acute lung inflammation in a murine model of acute respiratory distress syndrome: Relevance to cytokines associated to STAT4/T-bet and STAT3/RORɣt”. Microb Pathog 2022; 173:105831. [DOI: 10.1016/j.micpath.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
22
|
Krumina A, Bogdanova M, Gintere S, Viksna L. Gut-Lung Microbiota Interaction in COPD Patients: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121760. [PMID: 36556962 PMCID: PMC9785780 DOI: 10.3390/medicina58121760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Respiratory diseases are one of the leading causes of death in the world, which is why a lot of attention has been recently paid to studying the possible mechanisms for the development of pulmonary diseases and assessing the impact on their course. The microbiota plays an important role in these processes and influences the functionality of the human immune system. Thus, alterations in the normal microflora contribute to a reduction in immunity and a more severe course of diseases. In this review, we summarized the information about gut and lung microbiota interactions with particular attention to their influence on the course of chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Angelika Krumina
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Marina Bogdanova
- Faculty of Residency, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Sandra Gintere
- Department of Family Medicine, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
23
|
Leszczyńska K, Jakubczyk D, Górska S. The NLRP3 inflammasome as a new target in respiratory disorders treatment. Front Immunol 2022; 13:1006654. [PMID: 36203607 PMCID: PMC9531678 DOI: 10.3389/fimmu.2022.1006654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years a continuous increase in new cases of respiratory disorders, such as rhinitis, asthma, and chronic obstructive pulmonary disease (COPD), has been observed. The exact pathomechanism of these diseases is still blurry, resulting in the lack of targeted and effective therapy. The conventional use of treatment strategies, such as antihistamine drugs and/or glucocorticosteroids act mainly symptomatically and have significant side effects. Specific allergen immunotherapy is only useful in the management of specific allergies and selected patients. Therefore, new therapeutic solutions are constantly being sought. The novelty of recent years has been the association between NLRP3 inflammasome activation and the development of airway inflammatory diseases. This seems to be an interesting therapeutic target that may support or even replace traditional therapies in the future. The review presented, discusses the contribution of NLRP3 inflammasome to the development of allergic rhinitis, allergic asthma, and COPD. Moreover, the modulatory properties of probiotics as potential inhibitors of NLRP3 inflammasome are emphasised.
Collapse
|
24
|
Du T, Lei A, Zhang N, Zhu C. The Beneficial Role of Probiotic Lactobacillus in Respiratory Diseases. Front Immunol 2022; 13:908010. [PMID: 35711436 PMCID: PMC9194447 DOI: 10.3389/fimmu.2022.908010] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Respiratory diseases cause a high incidence and mortality worldwide. As a natural immunobiotic, Lactobacillus has excellent immunomodulatory ability. Administration of some Lactobacillus species can alleviate the symptoms of respiratory diseases such as respiratory tract infections, asthma, lung cancer and cystic fibrosis in animal studies and clinical trials. The beneficial effect of Lactobacillus on the respiratory tract is strain dependent. Moreover, the efficacy of Lactobacillus may be affected by many factors, such as bacteria dose, timing and host background. Here, we summarized the beneficial effect of administered Lactobacillus on common respiratory diseases with a focus on the mechanism and safety of Lactobacillus in regulating respiratory immunity.
Collapse
|
25
|
Shi CY, Yu CH, Yu WY, Ying HZ. Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:9278441. [PMID: 34900069 PMCID: PMC8664551 DOI: 10.1155/2021/9278441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiota colonized in the human body has a symbiotic relationship with human body and forms a different microecosystem, which affects human immunity, metabolism, endocrine, and other physiological processes. The imbalance of microbiota is usually linked to the aberrant immune responses and inflammation, which eventually promotes the occurrence and development of respiratory diseases. Patients with chronic respiratory diseases, including asthma, COPD, bronchiectasis, and idiopathic pulmonary fibrosis, often have alteration of the composition and function of intestinal and lung microbiota. Gut microbiota affects respiratory immunity and barrier function through the lung-gut microbiota, resulting in altered prognosis of chronic respiratory diseases. In turn, lung dysbiosis promotes aggravation of lung diseases and causes intestinal dysfunction through persistent activation of lymphoid cells in the body. Recent advances in next-generation sequencing technology have disclosed the pivotal roles of lung-gut microbiota in the pathogenesis of chronic respiratory diseases. This review focuses on the association between the gut-lung dysbiosis and respiratory diseases pathogenesis. In addition, potential therapeutic modalities, such as probiotics and fecal microbiota transplantation, are also evaluated for the prevention of chronic respiratory diseases.
Collapse
Affiliation(s)
- Chang Yi Shi
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Chen Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wen Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Hua Zhong Ying
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Jang AY, Rod-In W, Monmai C, Sohn M, Kim TR, Jeon MG, Park WJ. Anti-inflammatory potential of Lactobacillus reuteri LM1071 via eicosanoid regulation in LPS-stimulated RAW264.7 cells. J Appl Microbiol 2021; 133:67-75. [PMID: 34688224 DOI: 10.1111/jam.15331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS To investigate anti-inflammatory effects of Lactobacillus reuteri LM1071 in lipopolysaccharides (LPS)-induced inflammation RAW264.7 cells. METHODS AND RESULTS To evaluate anti-inflammatory activities of L. reuteri LM1071, LPS-stimulated RAW264.7 cells were used. Gene expression levels of eight immune-associated genes including IL-1β, IL-6 and TNF-α and protein production levels of COX-1 and COX-2 were analysed. Moreover, the production of eicosanoids as important biomarkers for anti-inflammation was determined. CONCLUSIONS The current study demonstrates that L. reuteri LM1071 has anti-inflammatory potential by inhibiting the production of inflammation mediators such as NO, eicosanoids such as PGE1 & PGE2, pro-inflammatory cytokines and COX proteins. It can also enhance the production of inflammatory associated genes such as IL-11, BMP4, LEFTY2 and EET metabolite. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus reuteri is one of the crucial bacteria for food fermentation. It can be found in the gastrointestinal system of human and animals. Several studies have shown that L. reuteri has valuable effects on host health. The current study firstly demonstrated that L. reuteri has a beneficial effect on the inflammation containing the variation of eicosanoids (PGE1 and PGE2) which are one of the most important biomarkers and moreover eicosanoid-associated genes as well as proteins (COX-2).
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-In
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Minn Sohn
- Center for Research and Development, LACTOMASON, Jinju, Korea
| | - Tae-Rahk Kim
- Center for Research and Development, LACTOMASON, Jinju, Korea
| | - Min-Gyu Jeon
- Center for Research and Development, LACTOMASON, Jinju, Korea
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
27
|
Chan Y, Raju Allam VSR, Paudel KR, Singh SK, Gulati M, Dhanasekaran M, Gupta PK, Jha NK, Devkota HP, Gupta G, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34613853 DOI: 10.1080/10408398.2021.1986467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
28
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
29
|
Li J, Qiu C, Xu P, Lu Y, Chen R. Casticin Improves Respiratory Dysfunction and Attenuates Oxidative Stress and Inflammation via Inhibition of NF-ĸB in a Chronic Obstructive Pulmonary Disease Model of Chronic Cigarette Smoke-Exposed Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5019-5027. [PMID: 33235440 PMCID: PMC7680168 DOI: 10.2147/dddt.s277126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022]
Abstract
Objective The present study was conducted to elucidate the protective effect of Casticin against chronic obstructive pulmonary disease (COPD) in rats. Methods The COPD in rats was induced by the controlled cigarette smoke, and CST (10, 20, and 30 mg/kg) was injected into the cigarette-smoke exposed rats. Blood was taken from the abdominal vein and centrifuged (1500×g, 4°C, 15min); plasma was collected and used for the determination of various biochemical parameters. Results The results of the study suggested that CST significantly improved the lung functions of the rats in a dose-dependent manner. It also causes a reduction of white blood cells, neutrophils, and macrophages in BALF of rats. The plasma level of leptin and C-reactive protein together with pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were also significantly restored to near to normal in CST-treated group. In Western blot analysis, CST causes significant inhibition of the NF-ĸB and iNOS pathway. Conclusion Our study demonstrated that the CST protects lungs against COPD via improving lung functions and inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease. Life Sci 2020; 265:118738. [PMID: 33181175 DOI: 10.1016/j.lfs.2020.118738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023]
Abstract
AIM Alterations in the respiratory and digestive tract microbiomes influence the occurrence and progression of chronic obstructive pulmonary disease (COPD). Here, we aimed to identify fecal microbiome profiles during COPD development. METHODS Fecal samples were collected from 29 COPD patients with acute exacerbation (AECOPD), 29 stable COPD patients, and 22 normal subjects (NS). The fecal microbial profiles were obtained using 16S rRNA gene sequencing. KEY FINDINGS The diversity and richness were lower and fewer variations in the taxonomic composition of fecal microbiota were observed in AECOPD patients than in stable COPD and NS. The relative abundances of Firmicutes and Actinobacteria were decreased, while those of Bacteroidetes and Proteobacteria were increased in AECOPD compared to COPD and NS. Among the top ten genera, the proportions of Lachnoclostridium and Parabacteroides significantly increased in AECOPD, whereas those of other genera decreased. Discriminative bacteria, such as p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, Lactobacillales, and Proteobacteria, were identified in AECOPD compared to stable COPD and NS. The weighted gene co-expression networks showed that Firmicutes and Actinobacteria were the main hub bacterial taxa related with lung function (FEV1% and FEV1/FVC%) and inflammatory indices (TNF-α, IL-6, IL-8, PCT, and CRP). SIGNIFICANCE These findings emphasized the changes in the abundance and composition of the fecal microbiome in stable COPD and AECOPD. Variations in fecal microbiota may be associated with COPD progression.
Collapse
|
31
|
Assad SE, Rolny IS, Minnaard J, Pérez PF. Bifidobacteria from human origin: interaction with phagocytic cells. J Appl Microbiol 2020; 130:1357-1367. [PMID: 32970888 DOI: 10.1111/jam.14861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
AIM OF THE STUDY Given that phagocytic cells are main players of the host immune response, we studied the interaction of bifidobacteria with monocytic THP-1 cells in nonopsonic conditions. METHODS AND RESULTS Association/internalization, cell response (expression of HLA-DR and TLR2), M1/M2 macrophage polarization and colocalization of micro-organisms with Lysotracker or transferrin were evaluated. Screening with eight Bifidobacterium strains showed two patterns of interactions with THP-1 cells: high and low association and phagocytosis. Two strains with different surface properties were further studied: B. bifidum CIDCA 5310 and B. adolescentis CIDCA 5317. Strain CIDCA 5310 showed higher levels of colocalization in lysosome than strain CIDCA 5317. Both strains stimulated TLR2 expression. Strain CIDCA 5317 significantly increases HLA-DR expression, however, when cells are stimulated with IFN-γ, strain CIDCA 5310 induces the highest value of expression. Noteworthy, strain CIDCA 5310 was able to upregulate both M1 and M2 markers of macrophage polarization. CONCLUSIONS Our results demonstrate that bifidobacteria from human origin show different patterns of interaction with phagocytic cells thus leading to different cell responses. These findings add further insight on the mechanisms involved in the biologic effects of probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Knowledge of the interaction of bifidobacteria with key players of the host immune response is paramount for the understanding of the mechanisms involved in the beneficial effects.
Collapse
Affiliation(s)
- S E Assad
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina
| | - I S Rolny
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, UNLP, La Plata, Argentina
| | - J Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, UNLP, La Plata, Argentina
| | - P F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, UNLP, La Plata, Argentina
| |
Collapse
|
32
|
The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res 2020; 2020:2340670. [PMID: 32802893 PMCID: PMC7415116 DOI: 10.1155/2020/2340670] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.
Collapse
|
33
|
Kochalska K, Oakden W, Słowik T, Chudzik A, Pankowska A, Łazorczyk A, Kozioł P, Andres-Mach M, Pietura R, Rola R, Stanisz GJ, Orzylowska A. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutr Res 2020; 82:44-57. [PMID: 32961399 DOI: 10.1016/j.nutres.2020.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.
Collapse
Affiliation(s)
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tymoteusz Słowik
- Center of Experimental Medicine, Medical University of Lublin, Lublin, Poland
| | - Agata Chudzik
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Anna Orzylowska
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
34
|
Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC, Aimbire F. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One 2020; 15:e0225560. [PMID: 32330145 PMCID: PMC7182195 DOI: 10.1371/journal.pone.0225560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
COPD is a prevalent lung disease with significant impacts on public health. Affected airways exhibit pulmonary neutrophilia and consequent secretion of pro-inflammatory cytokines and proteases, which result in lung emphysema. Probiotics act as nonspecific modulators of the innate immune system that improve several inflammatory responses. To investigate the effect of Lactobacillus rhamnosus (Lr) on cigarette smoke (CS)-induced COPD C57Bl/6 mice were treated with Lr during the week before COPD induction and three times/week until euthanasia. For in vitro assays, murine bronchial epithelial cells as well as human bronchial epithelial cells exposed to cigarette smoke extract during 24 hours were treated with Lr 1 hour before CSE addition. Lr treatment attenuated the inflammatory response both in the airways and lung parenchyma, reducing inflammatory cells infiltration and the production of pro-inflammatory cytokines and chemokines. Also, Lr-treated mice presented with lower metalloproteases in lung tissue and lung remodeling. In parallel to the reduction in the expression of TLR2, TLR4, TLR9, STAT3, and NF-κB in lung tissue, Lr increased the levels of IL-10 as well as SOCS3 and TIMP1/2, indicating the induction of an anti-inflammatory environment. Similarly, murine bronchial epithelial cells as well as human bronchial epithelial cells (BEAS) exposed to CSE produced pro-inflammatory cytokines and chemokines, which were inhibited by Lr treatment in association with the production of anti-inflammatory molecules. Moreover, the presence of Lr also modulated the expression of COPD-associated transcription found into BALF of COPD mice group, i.e., Lr downregulated expression of NF-κB and STAT3, and inversely upregulated increased expression of SOCS3. Thus, our findings indicate that Lr modulates the balance between pro- and anti-inflammatory cytokines in human bronchial epithelial cells upon CS exposure and it can be a useful tool to improve the lung inflammatory response associated with COPD.
Collapse
Affiliation(s)
- J. L. Carvalho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - M. Miranda
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - A. K. Fialho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - E. Anatriello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - A. C. Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - F. Aimbire
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
35
|
Feleszko W, Rossi GA, Krenke R, Canonica GW, Van Gerven L, Kalyuzhin O. Immunoactive preparations and regulatory responses in the respiratory tract: potential for clinical application in chronic inflammatory airway diseases. Expert Rev Respir Med 2020; 14:603-619. [PMID: 32250709 DOI: 10.1080/17476348.2020.1744436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: The prevalence of chronic inflammatory airway diseases is rising. Their treatment with corticosteroids increases infection risk, while overuse of antimicrobial agents may increase morbidity and antimicrobial resistance. Nonspecific immunomodulatory compounds alter immune responses to both infectious and atopic challenges. These compounds may offer an alternative approach for symptom reduction and prophylaxis against both infections and exacerbations in chronic inflammatory airway disease.Areas covered: We assessed the available data on the efficacy of nonspecific immunomodulators including bacterial lysates, synthetic compounds, and vaccines in chronic rhinosinusitis (CRS); allergic and non-allergic rhinitis; chronic obstructive pulmonary disease (COPD), and asthma. A search of PubMed was carried out using the 'Clinical Trials' filter for each condition and immunomodulatory product detailed below, where available, data from meta-analyses were reported.Expert opinion: Pre-clinical data has revealed a coherent mechanistic path of action for oral immunomodulators on the respiratory immune system, principally via the gut-lung immune axis. In patients with asthma, allergic rhinitis, CRS, and COPD immunomodulatory therapy reduces symptoms, exacerbations, hospitalizations, and drug consumption. However, data are heterogeneous, and study quality remains limited. A lack of high-quality recent trials remains the major unmet research need in the field.
Collapse
Affiliation(s)
- Wojciech Feleszko
- Department of Pediatric Respiratory Diseases and Allergy, The Medical University of Warsaw, Warsaw, Poland
| | - Giovanni A Rossi
- Chief Emeritus, Pediatric Pulmonology and Allergy Units, Cystic Fibrosis Regional Centre, IRCCS G. Gaslini, Genoa, Italy
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy, Clinic-Humanitas University & Research Hospital, Milan, Italy
| | - Laura Van Gerven
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Oleg Kalyuzhin
- Professor of Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
36
|
Yang L, Dunlap DG, Qin S, Fitch A, Li K, Koch CD, Nouraie M, DeSensi R, Ho KS, Martinson JJ, Methé B, Morris A. Alterations in Oral Microbiota in HIV Are Related to Decreased Pulmonary Function. Am J Respir Crit Care Med 2020; 201:445-457. [PMID: 31682463 PMCID: PMC7049920 DOI: 10.1164/rccm.201905-1016oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
Rationale: Mechanisms of HIV-associated chronic obstructive pulmonary disease (COPD) are poorly understood. The oral microbiome shapes the lung microbiome, and gut dysbiosis can affect lung diseases; however, relationships of the oral and gut microbiome to COPD in HIV have not been explored.Objectives: To examine alterations in the oral and gut microbiome associated with pulmonary disease in persons with HIV (PWH).Methods: Seventy-five PWH and 93 HIV-uninfected men from the MACS (Multicenter AIDS Cohort Study) performed pulmonary function testing. Sequencing of bacterial 16S ribosomal RNA in saliva and stool was performed. We used nonmetric multidimensional scaling, permutational multivariate ANOVA, and linear discriminant analysis to analyze communities by HIV and lung function.Measurements and Main Results: Oral microbiome composition differed by HIV and smoking status. Alterations of oral microbial communities were observed in PWH with abnormal lung function with increases in relative abundance of Veillonella, Streptococcus, and Lactobacillus. There were no significant associations between the oral microbiome and lung function in HIV-uninfected individuals. No associations with HIV status or lung function were seen with the gut microbiome.Conclusions: Alterations of oral microbiota in PWH were related to impaired pulmonary function and to systemic inflammation. These results suggest that the oral microbiome may serve as a biomarker of lung function in HIV and that its disruption may contribute to COPD pathogenesis.
Collapse
Affiliation(s)
- Libing Yang
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
- School of Medicine, Tsinghua University, Beijing, China; and
| | | | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Adam Fitch
- Center for Medicine and the Microbiome, Department of Medicine
| | - Kelvin Li
- Center for Medicine and the Microbiome, Department of Medicine
| | - Carl D. Koch
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Rebecca DeSensi
- Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Ken S. Ho
- Division of Infectious Disease, Department of Medicine, and
| | - Jeremy J. Martinson
- Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - Barbara Methé
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Center for Medicine and the Microbiome, Department of Medicine
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Aggeletopoulou I, Konstantakis C, Assimakopoulos SF, Triantos C. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb Pathog 2019; 137:103774. [PMID: 31586663 DOI: 10.1016/j.micpath.2019.103774] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
The human intestinal microbiota coevolves with its host through a symbiotic relationship and exerts great influence on substantial functions including aspects of physiology, metabolism, nutrition and regulation of immune responses leading to physiological homeostasis. Over the last years, several studies have been conducted toward the assessment of the host-gut microbiota interaction, aiming to elucidate the mechanisms underlying the pathogenesis of several diseases. A defect on the microbiota-host crosstalk and the concomitant dysregulation of immune responses combined with genetic and environmental factors have been implicated in the pathogenesis of inflammatory bowel diseases (IBD). To this end, novel therapeutic options based on the gut microbiota modulation have been an area of extensive research interest. In this review we present the recent findings on the association of dysbiosis with IBD pathogenesis, we focus on the role of gut microbiota on the treatment of IBD and discuss the novel and currently available therapeutic strategies in manipulating the composition and function of gut microbiota in IBD patients. Applicable and emerging microbiota treatment modalities, such as the use of antibiotics, prebiotics, probiotics, postbiotics, synbiotics and fecal microbiota transplantation (FMT) constitute promising therapeutic options. However, the therapeutic potential of the aforementioned approaches is a topic of investigation and further studies are needed to elucidate their position in the present treatment algorithms of IBD.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| |
Collapse
|
38
|
Fabbrizzi A, Amedei A, Lavorini F, Renda T, Fontana G. The lung microbiome: clinical and therapeutic implications. Intern Emerg Med 2019; 14:1241-1250. [PMID: 31667699 DOI: 10.1007/s11739-019-02208-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The human respiratory tract, usually considered sterile, is currently being investigated for human-associated microbial communities. According to Dickson's conceptual model, the lung microbiota (LMt) is a dynamic ecosystem, whose composition, in healthy lungs, is likely to reflect microbial migration, reproduction, and elimination. However, which microbial genera constitutes a "healthy microbiome" per se remains hotly debated. It is now widely accepted that a bi-directional gut-lung axis connects the intestinal with the pulmonary microbiota and that the diet could have a role in modulating both microbiotas as in health as in pathological status. The LMt is altered in numerous respiratory disorders such as obstructive airway diseases, interstitial lung diseases, infections, and lung cancer. Some authors hypothesize that the use of specific bacterial strains, termed "probiotics," with positive effects on the host immunity and/or against pathogens, could have beneficial effects in the treatment of intestinal disorders and pulmonary diseases. In this manuscript, we have reviewed the literature available on the LMt to delineate and discuss the potential relationship between composition alterations of LMt and lung diseases. Finally, we have reported some meaningful clinical studies that used integrated probiotics' treatments to contrast some lung-correlated disorders.
Collapse
Affiliation(s)
- Alessio Fabbrizzi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
- Sod of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), University of Florence, 50134, Florence, Italy.
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Teresa Renda
- Respiratory Unit, Careggi University Hospital, Florence, Italy
| | - Giovanni Fontana
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
39
|
Toraldo DM, Conte L. Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. J Clin Med Res 2019; 11:667-675. [PMID: 31636780 PMCID: PMC6785281 DOI: 10.14740/jocmr3875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with loss of lung function, poorer quality of life, co-morbidities, significant mortality, and higher health care costs. Frequent acute exacerbations of COPD are sudden worsening of symptoms, the nature of which is associated with bacterial or viral infections. However, one-third of exacerbations remain of undetermined origin. Although it is largely discussed and controversial, current guidelines recommend treatment of exacerbations with bronchodilators, antibiotics, and systemic corticosteroids; this is despite being associated with limited benefits in term of reducing mortality, side effects and without paying attention to the heterogeneity of these exacerbations. Increasing evidence suggests that the lung microbiota plays an important role in COPD and numerous studies have reported differences in the microbiota between healthy and disease states, as well as between exacerbations and stable COPD, leading to the hypothesis that frequent acute exacerbation is more likely to experience significant changes in lung microbiota composition. These findings will need further examination to explain the causes of lung dysbiosis, namely microbial composition, the host response, including the recruitment of eosinophils, lifestyle, diet, cigarette smoking and the use of antibiotics and corticosteroids. It is now important to assess: 1) Whether alterations in the lung microbiota contribute to disease pathogenesis, especially in exacerbations of unknown origin; 2) The role of eosinophils; and 3) Whether the microbiota of the lung can be manipulated therapeutically to improve COPD exacerbation event and disease progression. In summary, we hypothesize that the alterations of the lung microbiota may explain the undetermined origins of exacerbations and that there is an urgent need to facilitate the design of intervention studies that aim at conserving the lung microbial flora.
Collapse
Affiliation(s)
- Domenico Maurizio Toraldo
- Department of Rehabilitation, Respiratory Care Unit, ASL/Lecce, Italy
- Both authors contributed equally to this manuscript
| | - Luana Conte
- Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, “V. Fazzi” Hospital, Lecce, Italy
- Both authors contributed equally to this manuscript
| |
Collapse
|
40
|
Wong CB, Iwabuchi N, Xiao JZ. Exploring the Science behind Bifidobacterium breve M-16V in Infant Health. Nutrients 2019; 11:nu11081724. [PMID: 31349739 PMCID: PMC6723912 DOI: 10.3390/nu11081724] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022] Open
Abstract
Probiotics intervention has been proposed as a feasible preventative approach against adverse health-related complications in infants. Nevertheless, the umbrella concept of probiotics has led to a massive application of probiotics in a range of products for promoting infant health, for which the strain-specificity, safety and efficacy findings associated with a specific probiotics strain are not clearly defined. Bifidobacterium breve M-16V is a commonly used probiotic strain in infants. M-16V has been demonstrated to offer potential in protecting infants from developing the devastating necrotising enterocolitis (NEC) and allergic diseases. This review comprehends the potential beneficial effects of M-16V on infant health particularly in the prevention and treatment of premature birth complications and immune-mediated disorders in infants. Mechanistic studies supporting the use of M-16V implicated that M-16V is capable of promoting early gut microbial colonisation and may be involved in the regulation of immune balance and inflammatory response to protect high-risk infants from NEC and allergies. Summarised information on M-16V has provided conceptual proof of the use of M-16V as a potential probiotics candidate aimed at promoting infant health, particularly in the vulnerable preterm population.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bifidobacterium breve/physiology
- Disease Models, Animal
- Gastrointestinal Microbiome
- Gestational Age
- Humans
- Infant
- Infant Health
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/microbiology
- Infant, Newborn, Diseases/prevention & control
- Infant, Premature
- Probiotics/adverse effects
- Probiotics/therapeutic use
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 252-8583, Japan
| | - Noriyuki Iwabuchi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 252-8583, Japan.
| |
Collapse
|
41
|
Wang L, Wang Y, Li H, Feng X, Yuan D, Yang J. A Bidirectional Label Propagation Based Computational Model for Potential Microbe-Disease Association Prediction. Front Microbiol 2019; 10:684. [PMID: 31024481 PMCID: PMC6465563 DOI: 10.3389/fmicb.2019.00684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
A growing number of clinical observations have indicated that microbes are involved in a variety of important human diseases. It is obvious that in-depth investigation of correlations between microbes and diseases will benefit the prevention, early diagnosis, and prognosis of diseases greatly. Hence, in this paper, based on known microbe-disease associations, a prediction model called NBLPIHMDA was proposed to infer potential microbe-disease associations. Specifically, two kinds of networks including the disease similarity network and the microbe similarity network were first constructed based on the Gaussian interaction profile kernel similarity. The bidirectional label propagation was then applied on these two kinds of networks to predict potential microbe-disease associations. We applied NBLPIHMDA on Human Microbe-Disease Association database (HMDAD), and compared it with 3 other recent published methods including LRLSHMDA, BiRWMP, and KATZHMDA based on the leave-one-out cross validation and 5-fold cross validation, respectively. As a result, the area under the receiver operating characteristic curves (AUCs) achieved by NBLPIHMDA were 0.8777 and 0.8958 ± 0.0027, respectively, outperforming the compared methods. In addition, in case studies of asthma, colorectal carcinoma, and Chronic obstructive pulmonary disease, simulation results illustrated that there are 10, 10, and 8 out of the top 10 predicted microbes having been confirmed by published documentary evidences, which further demonstrated that NBLPIHMDA is promising in predicting novel associations between diseases and microbes as well.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Yuqi Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Hao Li
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Xiang Feng
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Dawei Yuan
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
42
|
Bingula R, Filaire M, Radosevic-Robin N, Berthon JY, Bernalier-Donadille A, Vasson MP, Thivat E, Kwiatkowski F, Filaire E. Characterisation of gut, lung, and upper airways microbiota in patients with non-small cell lung carcinoma: Study protocol for case-control observational trial. Medicine (Baltimore) 2018; 97:e13676. [PMID: 30558074 PMCID: PMC6320062 DOI: 10.1097/md.0000000000013676] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Several studies have confirmed the important role of the gut microbiota in the regulation of immune functions and its correlation with different diseases, including cancer. While brain-gut and liver-gut axes have already been demonstrated, the existence of a lung-gut axis has been suggested more recently, with the idea that changes in the gut microbiota could affect the lung microbiota, and vice versa. Likewise, the close connection between gut microbiota and cancer of proximal sites (intestines, kidneys, liver, etc.) is already well established. However, little is known whether there is a similar relation when looking at world's number one cause of death from cancer-lung cancer. OBJECTIVE Firstly, this study aims to characterise the gut, lung, and upper airways (UAs) microbiota in patients with non-small cell lung cancer (NSCLC) treated with surgery or neoadjuvant chemotherapy plus surgery. Secondly, it aims to evaluate a chemotherapy effect on site-specific microbiota and its influence on immune profile. To our knowledge, this is the 1st study that will analyse multi-site microbiota in NSCLC patients along with site-specific immune response. METHODS The study is a case-controlled observational trial. Forty NSCLC patients will be divided into 2 groups depending on their anamnesis: Pchir, patients eligible for surgery, or Pct-chir, patients eligible for neoadjuvant chemotherapy plus surgery. Composition of the UAs (saliva), gut (faeces), and lung microbiota (from broncho-alveolar lavage fluid (BALF) and 3 lung pieces: "healthy" tissue distal to tumour, peritumoural tissue and tumour itself) will be analysed in both groups. Immune properties will be evaluated on the local (evaluation of the tumour immune cell infiltrate, tumour classification and properties, immune cell phenotyping in BALF; human neutrophil protein (HNP) 1-3, β-defensin 2, and calprotectin in faeces) and systemic level (blood cytokine and immune cell profile). Short-chain fatty acids (SCFAs) (major products of bacterial fermentation with an effect on immune system) will be dosed in faecal samples. Other factors such as nutrition and smoking status will be recorded for each patient. We hypothesise that smoking status and tumour type/grade will be major factors influencing both microbiota and immune/inflammatory profile of all sampling sites. Furthermore, due to non-selectivity, the same effect is expected from chemotherapy.
Collapse
Affiliation(s)
- Rea Bingula
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
| | - Marc Filaire
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Centre Jean Perrin, Thoracic Surgery Department, Clermont-Ferrand
| | - Nina Radosevic-Robin
- INSERM U1240, University Clermont Auvergne, Centre Jean Perrin, Department of Pathology, Clermont-Ferrand
| | | | | | - Marie-Paule Vasson
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Centre Jean Perrin, CHU Gabriel-Montpied, Clinical Nutrition Unit, Clermont-Ferrand
| | - Emilie Thivat
- University of Clermont-Auvergne, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand
- Centre Jean Perrin, Clinical Research Department, Clermont-Ferrand, France
| | - Fabrice Kwiatkowski
- University of Clermont-Auvergne, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand
- Centre Jean Perrin, Clinical Research Department, Clermont-Ferrand, France
| | - Edith Filaire
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Greentech SA, Biopole Clermont-Limagne, Saint-Beauzire
| |
Collapse
|
43
|
Anand S, Mande SS. Diet, Microbiota and Gut-Lung Connection. Front Microbiol 2018; 9:2147. [PMID: 30283410 PMCID: PMC6156521 DOI: 10.3389/fmicb.2018.02147] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
The gut microbial community (Gut microbiota) is known to impact metabolic functions as well as immune responses in our body. Diet plays an important role in determining the composition of the gut microbiota. Gut microbes help in assimilating dietary nutrients which are indigestible by humans. The metabolites produced by them not only modulate gastro-intestinal immunity, but also impact distal organs like lung and brain. Micro-aspiration of gut bacteria or movement of sensitized immune cells through lymph or bloodstream can also influence immune response of other organs. Dysbiosis in gut microbiota has been implicated in several lung diseases, including allergy, asthma and cystic fibrosis. The bi-directional cross-talk between gut and lung (termed as Gut-Lung axis) is best exemplified by intestinal disturbances observed in lung diseases. Some of the existing probiotics show beneficial effects on lung health. A deeper understanding of the gut microbiome which comprises of all the genetic material within the gut microbiota and its role in respiratory disorders is likely to help in designing appropriate probiotic cocktails for therapeutic applications.
Collapse
Affiliation(s)
- Swadha Anand
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| |
Collapse
|
44
|
Arenas‐Padilla M, Duarte‐Gutiérrez J, Mata‐Haro V. Bifidobacterium animalis ssp. lactis Bb12 induces IL-10 through cell membrane-associated components via TLR2 in swine. J Appl Microbiol 2018; 125:1881-1889. [PMID: 30106205 PMCID: PMC7166459 DOI: 10.1111/jam.14069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/06/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023]
Abstract
AIM To investigate the role of Toll-like receptor 2 (TLR2) in interleukin-10 (IL-10) production induced by Bifidobacterium animalis ssp. lactis Bb12 (Bb12) in swine immune cells. METHODS AND RESULTS Blood-monocytes and cells from mesenteric lymph nodes were obtained from pigs and cultured with live Bb12 for 4 and 12 h. Transcript levels of IL-10 and TLR2 were analysed. Furthermore, TLR2 was blocked to determine its participation in IL-10 production. TLR2 blockade was achieved with neutralizing antibodies, followed by stimulation with Bb12. Bifidobacteria induced IL-10 production in both swine monocytes and mesenteric cells. Monocytes with TLR2 blockade had a decrease in IL-10 transcripts, while mesenteric cells did not. Bacterial cell wall components were responsible for Bb12-induced IL-10 production since no IL-10 was detected in the culture supernatant. CONCLUSIONS We demonstrated that IL-10 production is largely mediated through the recognition of Bb12 structures by TLR2, as bacterial metabolites in the culture supernatant failed to induce IL-10 expression. SIGNIFICANCE AND IMPACT OF THE STUDY The present study provides evidence for the potential use of Bb12 in the swine industry; these bacteria can also be used as additional method to treat intestinal inflammation and enhance intestinal health in pigs.
Collapse
Affiliation(s)
- M. Arenas‐Padilla
- Department of Food Science, Microbiology and ImmunologyCentro de Investigación en Alimentación y Desarrollo, A. C.HermosilloMéxico
| | - J.L. Duarte‐Gutiérrez
- Department of Food Science, Microbiology and ImmunologyCentro de Investigación en Alimentación y Desarrollo, A. C.HermosilloMéxico
| | - V. Mata‐Haro
- Department of Food Science, Microbiology and ImmunologyCentro de Investigación en Alimentación y Desarrollo, A. C.HermosilloMéxico
| |
Collapse
|
45
|
Protective Effect of Jianpiyifei II Granule against Chronic Obstructive Pulmonary Disease via NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4265790. [PMID: 30174706 PMCID: PMC6098891 DOI: 10.1155/2018/4265790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/29/2018] [Accepted: 07/08/2018] [Indexed: 01/31/2023]
Abstract
Jianpiyifei II granule (JPYF II) is an oriental herbal formula used clinically in China to treat chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the anti-inflammatory and antioxidative activities of JPYF II in a mouse model of COPD induced by lipopolysaccharide (LPS) and cigarette smoke (CS) and in RAW264.7 cells stimulated with cigarette smoke extract (CSE). Mice were given LPS via intratracheal instillation on days 1 and 15 and exposed to CS generated from 4 cigarettes/day for 28 days. The mice were treated with 0.75, 1.5, or 3 g/kg/d JPYF II by intragastric administration in low, middle, and high dose groups, respectively, for two weeks. RAW264.7 cells were stimulated by CSE and treated with JPYF II at doses of 12.5, 25, or 50 μg/mL. In the mouse model of LPS and CS-induced COPD, JPYF II decreased inflammatory cell counts in broncho alveolar lavage fluid (BALF), in addition to mRNA expression of proinflammatory cytokines and metalloproteinases (MMPs) in lung tissues. In addition, JPYF II elevated catalase (CAT) and glutathione peroxidase (GSH-Px) activities and reduced the levels of malondialdehyde (MDA) and IκBα and p65 phosphorylation and inflammatory cell infiltration in the lung tissues. In RAW264.7 cells stimulated with CSE, JPYF II inhibited the mRNA levels of inflammatory mediators and the phosphorylation of IκBα and p65. Our results suggest that JPYF II enhanced anti-inflammatory and antioxidative activities in a mouse model of COPD induced by LPS and CS and in RAW264.7 cells stimulated with CSE via inhibition of the NF-κB pathway.
Collapse
|
46
|
Kwon JY, Lee SH, Jhun J, Choi J, Jung K, Cho KH, Kim SJ, Yang CW, Park SH, Cho ML. The Combination of Probiotic Complex, Rosavin, and Zinc Improves Pain and Cartilage Destruction in an Osteoarthritis Rat Model. J Med Food 2018; 21:364-371. [DOI: 10.1089/jmf.2017.4034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Impact Biotech, Seoul, Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Keun hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Impact Biotech, Seoul, Korea
| |
Collapse
|
47
|
The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2018; 2018:8387150. [PMID: 29725272 PMCID: PMC5872612 DOI: 10.1155/2018/8387150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD.
Collapse
|
48
|
Park JS, Choi J, Kwon JY, Jung KA, Yang CW, Park SH, Cho ML. A probiotic complex, rosavin, zinc, and prebiotics ameliorate intestinal inflammation in an acute colitis mouse model. J Transl Med 2018; 16:37. [PMID: 29466999 PMCID: PMC5822606 DOI: 10.1186/s12967-018-1410-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background An altered gut microbiota balance is involved in the pathogenesis of inflammatory bowel disease (IBD), and several probiotic strains are used as dietary supplements to improve intestinal health. We evaluated the therapeutic effect of 12 probiotics in combination with prebiotics, rosavin, and zinc in the dextran sodium sulfate (DSS)-induced colitis mouse model. Methods The probiotic complex or the combination drug was administered orally to mice with DSS-induced colitis, and the body weight, disease activity index, colon length, and histopathological parameters were evaluated. Also, the combination drug was applied to HT-29 epithelial cells, and the expression of monocyte chemoattractant protein 1 (MCP-1) was evaluated by real-time polymerase chain reaction. Results Administration of the combination drug attenuated the severity of DSS-induced colitis. Moreover, the combination drug significantly reduced the levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and IL-17, and significantly increased the levels of Foxp3 and IL-10 in colon sections. Additionally, treatment with the combination drug reduced MCP-1 expression in HT-29 cells. Treatment with the combination drug decreased the levels of α-smooth muscle actin and type I collagen compared with vehicle treatment in mice with DSS-induced colitis. Conclusion These results suggest that the combination of a probiotic complex with rosavin, zinc, and prebiotics exerts a therapeutic effect on IBD by modulating production of pro- and anti-inflammatory cytokines and the development of fibrosis.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Kyung-Ah Jung
- IMPACT Biotech, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. .,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 137-701, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
49
|
Mayhew D, Devos N, Lambert C, Brown JR, Clarke SC, Kim VL, Magid-Slav M, Miller BE, Ostridge KK, Patel R, Sathe G, Simola DF, Staples KJ, Sung R, Tal-Singer R, Tuck AC, Van Horn S, Weynants V, Williams NP, Devaster JM, Wilkinson TMA. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 2018; 73:422-430. [PMID: 29386298 PMCID: PMC5909767 DOI: 10.1136/thoraxjnl-2017-210408] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Background Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD. Objective To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes. Methods We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene. We incorporated additional lung microbiology, blood markers and in-depth clinical assessments to classify COPD phenotypes. Results The stability of the lung microbiome over time was more likely to be decreased in exacerbations and within individuals with higher exacerbation frequencies. Analysis of exacerbation phenotypes using a Markov chain model revealed that bacterial and eosinophilic exacerbations were more likely to be repeated in subsequent exacerbations within a subject, whereas viral exacerbations were not more likely to be repeated. We also confirmed the association of bacterial genera, including Haemophilus and Moraxella, with disease severity, exacerbation events and bronchiectasis. Conclusions Subtypes of COPD have distinct bacterial compositions and stabilities over time. Some exacerbation subtypes have non-random probabilities of repeating those subtypes in the future. This study provides insights pertaining to the identification of bacterial targets in the lung and biomarkers to classify COPD subtypes and to determine appropriate treatments for the patient. Trial registration number Results, NCT01360398.
Collapse
Affiliation(s)
- David Mayhew
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | | | - James R Brown
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Stuart C Clarke
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Viktoriya L Kim
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Michal Magid-Slav
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Bruce E Miller
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Kristoffer K Ostridge
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Ruchi Patel
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ganesh Sathe
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Daniel F Simola
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Ruby Sung
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ruth Tal-Singer
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Andrew C Tuck
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Stephanie Van Horn
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | - Nicholas P Williams
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
50
|
Liang S, Meng X, Wang Z, Liu J, Kuang H, Wang Q. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-β1/Smad2 signaling. Int J Biol Macromol 2018; 106:947-954. [DOI: 10.1016/j.ijbiomac.2017.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
|