1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Wei S, Guan G, Luan X, Yu C, Miao L, Yuan X, Chen P, Di G. NLRP3 inflammasome constrains liver regeneration through impairing MerTK-mediated macrophage efferocytosis. SCIENCE ADVANCES 2025; 11:eadq5786. [PMID: 39742469 DOI: 10.1126/sciadv.adq5786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data. Global NLRP3 depletion or pharmacologically blocking NLRP3 significantly enhanced liver regeneration, while NLRP3 overexpression impaired it after PHx. Furthermore, mice with myeloid-specific knockout of Nlrp3 (Nlrp3Δmye), rather than hepatocyte-specific knockout (Nlrp3Δhep), showed improved liver regeneration compared to control (Nlrp3fl/fl). Mechanistically, deficiency of Nlrp3 promoted myeloid-epithelial-reproductive tyrosine kinase (MerTK)-mediated efferocytosis, thereby inducing macrophages toward a pro-reparative Ly6Clo phenotype. Notably, NLRP3 inhibition by MCC950 effectively reversed the impairment of liver regeneration after PHx in mice fed a high-fat diet. Our findings provide a potential therapeutic strategy for the prevention and treatment of post-hepatectomy liver failure.
Collapse
Affiliation(s)
- Susu Wei
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, China
| | - Ge Guan
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Yanagisawa H, Maeda H, Noguchi I, Tanaka M, Wada N, Nagasaki T, Kobayashi K, Kanazawa G, Taguchi K, Chuang VTG, Sakai H, Nakashima H, Kinoshita M, Kitagishi H, Iwakiri Y, Sasaki Y, Tanaka Y, Otagiri M, Watanabe H, Maruyama T. Carbon monoxide-loaded red blood cells ameliorate metabolic dysfunction-associated steatohepatitis progression via enhancing AMP-activated protein kinase activity and inhibiting Kupffer cell activation. Redox Biol 2024; 76:103314. [PMID: 39163766 PMCID: PMC11381851 DOI: 10.1016/j.redox.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of nonalcoholic fatty liver disease characterised by fat accumulation, inflammation, oxidative stress, fibrosis, and impaired liver regeneration. In this study, we found that heme oxygenase-1 (HO-1) is induced in both MASH patients and in a MASH mouse model. Further, hepatic carbon monoxide (CO) levels in MASH model mice were >2-fold higher than in healthy mice, suggesting that liver HO-1 is activated as MASH progresses. Based on these findings, we used CO-loaded red blood cells (CO-RBCs) as a CO donor in the liver, and evaluated their therapeutic effect in methionine-choline deficient diet (MCDD)-induced and high-fat-diet (HFD)-induced MASH model mice. Intravenously administered CO-RBCs effectively delivered CO to the MASH liver, where they prevented fat accumulation by promoting fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor induction. They also markedly suppressed Kupffer cell activation and their corresponding anti-inflammatory and antioxidative stress activities in MASH mice. CO-RBCs also helped to restore liver regeneration in mice with HFD-induced MASH by activating AMPK. We confirmed the underlying mechanisms by performing in vitro experiments in RAW264.7 cells and palmitate-stimulated HepG2 cells. Taken together, CO-RBCs show potential as a promising cellular treatment for MASH.
Collapse
Affiliation(s)
- Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Gastroenterology and Hepatology, Saiseikai Kumamoto Hospital, Kumamoto, Japan.
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Gai Kanazawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Victor Tuan Giam Chuang
- Pharmacy Discipline, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, Western Australia, Australia.
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan.
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Li T, Zhong W, Li M, Shao Z, Zhang G, Wang W, Gao Z, Tan X, Xu Z, Luo F, Song G. TRIM26 deficiency enhancing liver regeneration through macrophage polarization and β-catenin pathway activation. Cell Death Dis 2024; 15:453. [PMID: 38926362 PMCID: PMC11208526 DOI: 10.1038/s41419-024-06798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Liver regeneration is a complex process involving the crosstalk between parenchymal and non-parenchymal cells, especially macrophages. However, the underlying mechanisms remain incompletely understood. Here, we identify the E3 ubiquitin ligase TRIM26 as a crucial regulator of liver regeneration. Following partial hepatectomy or acute liver injury induced by carbon tetrachloride, Trim26 knockout mice exhibit enhanced hepatocyte proliferation compared to wild-type controls, while adeno-associated virus (AAV)-mediated overexpression of Trim26 reverses the promotional effects. Mechanistically, Trim26 deficiency promotes the recruitment of macrophages to the liver and their polarization towards pro-inflammatory M1 phenotype. These M1 macrophages secrete Wnts, including Wnt2, which subsequently stimulate hepatocyte proliferation through the activation of Wnt/β-catenin signaling. In hepatocytes, Trim26 knockdown reduces the ubiquitination and degradation of β-catenin, thereby further enhancing Wnt/β-catenin signaling. Pharmacological inhibition of Wnt/β-catenin pathway by ICG-001 or depletion of macrophages by clodronate liposomes diminishes the pro-regenerative effects of Trim26 deficiency. Moreover, bone marrow transplantation experiments provide evidence that Trim26 knockout in myeloid cells alone can also promote liver regeneration, highlighting the critical role of macrophage Trim26 in this process. Taken together, our study uncovers TRIM26 as a negative regulator of liver regeneration by modulating macrophage polarization and Wnt/β-catenin signaling in hepatocytes, providing a potential therapeutic target for promoting liver regeneration in clinical settings.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zile Shao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixing Gao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei Tan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ziyi Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Duan Y, Zhang H, Tan T, Ye W, Yin K, Yu Y, Kang M, Yang J, Liao R. The immune response of hepatocellular carcinoma after locoregional and systemic therapies: The available combination option for immunotherapy. Biosci Trends 2024; 17:427-444. [PMID: 37981319 DOI: 10.5582/bst.2023.01275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is associated with a highly heterogeneous immune environment that produces an immune response to various locoregional treatments (LRTs), which in turn affects the effectiveness of immunotherapy. Although LRTs still dominate HCC therapies, 50-60% of patients will ultimately be treated with systemic therapies and might receive those treatments for the rest of their life. TACE, SIRT, and thermal ablation can dramatically increase the immunosuppressive state of HCC, a condition that can be addressed by combination with immunotherapy to restore the activity of lymphocytes and the secretion of cellular immune factors. Immune treatment with locoregional and systemic treatments has dramatically changed the management of HCC. In this review, we examine the research on the changes in the immune microenvironment after locoregional or systemic treatment. We also summarize the regulation of various immune cells and immune factors in the tumor microenvironment and discuss the different infiltration degrees of immune cells and factors on the prognosis of HCC to better compare the efficacy between different treatment methods from the perspective of the tumor microenvironment. This information can be used to help develop treatment options for the upcoming new era of HCC treatment in the future.
Collapse
Affiliation(s)
- Yuxin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Tan
- Chongqing Health Statistics Information Center, Chongqing, China
| | - Wentao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kunli Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meiqing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Grinberg MV, Lokhonina AV, Vishnyakova PA, Makarov AV, Kananykhina EY, Eremina IZ, Glinkina VV, Elchaninov AV, Fatkhudinov TK. Migration, proliferation and cell death of regenerating liver macrophages in an experimental model. RUDN JOURNAL OF MEDICINE 2023; 27:449-458. [DOI: 10.22363/2313-0245-2023-27-4-449-458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Relevance . Macrophages are the leading regulatory cell-lineage taking part in reparative processes in mammals, and the liver is no exception. The ratio of monocyte migration, proliferation and death of macrophages during liver regeneration requires further studies. The aim was to quantify the intensity of monocyte migration, cell proliferation and apoptosis of resident liver macrophages after its 70 % resection in a mouse model. Materials and Methods. We performed 70 % liver resection in sexually mature male BalbC mice. Cells of liver monocyte-macrophage system were obtained by magnetic sorting by marker F4/80. The immunophenotype of the isolated cells was further studied by cytofluorimetry, the level of proliferation and cell death, the content of cyclins and P53 was determined by western blot. Results and Discussion . It was found that after partial hepatectomy there is a marked migration of monocytes/macrophages positive for Ly6C and CD11b markers to the liver, the migration process starts already in the first day after the operation. On the same terms there is a rise in proliferative activity of macrophages, established by Ki67 marker, the peak of proliferation - 3 days after partial hepatectomy. A significant increase in the number of dying macrophages was found early after liver resection. Conclusion . The obtained data indicate that liver regeneration in mammals on the model in mice is accompanied by proliferation migration and cell death of macrophages. Taking into account the immunophenotype of macrophages, we can conclude that Ly6C+ blood monocytes migrate to the liver, and resident macrophages participate in proliferation. The obtained data confirm the universality of the course of reparative processes in mammals.
Collapse
|
8
|
Liang W, Huang X, Shi J. Macrophages Serve as Bidirectional Regulators and Potential Therapeutic Targets for Liver Fibrosis. Cell Biochem Biophys 2023; 81:659-671. [PMID: 37695501 DOI: 10.1007/s12013-023-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Liver fibrosis is a dynamic pathological process in which the structure and function of the liver abnormally change due to long-term complex inflammatory reactions and chronic liver injury caused by multiple internal and external factors. Previous studies believed that the activation of hepatic stellate cells is a critical part of the occurrence and development of liver fibrosis. However, an increasing number of studies have indicated that the macrophage plays an important role as a central regulator in liver fibrosis, and it directly affects the development and recovery of liver fibrosis. Studies of macrophages and liver fibrosis in the recent 10 years will be reviewed in this paper. This review will not only clarify the molecular mechanism of liver fibrosis regulated by macrophages but also provide new strategies and methods for ameliorating and treating liver fibrosis.
Collapse
Affiliation(s)
- Wei Liang
- Clinical Medical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Xianing Huang
- Guangxi International Travel Healthcare Centre (Port Clinic of Nanning Customs District), Nanning, 530021, Guangxi, China
| | - Jingjing Shi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Ruiqi W, Xiaoli F, Leyu Z, Mengyi S, Qiaoyu D, Yanyi Z, Li Y. Monocyte-derived macrophages contribute to the deterioration of immunological liver injury in mice. Int Immunopharmacol 2023; 124:111036. [PMID: 37832236 DOI: 10.1016/j.intimp.2023.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is characterized by hepatocyte destruction, leading to lymphocyte and macrophage accumulation in the liver. However, the specific mechanisms of how macrophages participate in the occurrence and development of AIH are still unclear. In this study, we investigated the effect of monocyte-derived macrophages on Con A-induced immunological liver injury in mice and we hypothesized that inhibition of CCR2 with the dual CCR2/5 inhibitor, cenicriviroc (CVC), would attenuate Con A-induced hepatitis in mice by reducing the recruitment of monocytes into the liver. METHODS Murine experimental AIH was established by concanavalin A (Con A) injection intravenously. Macrophages were depleted by injection of clodronate liposomes in Con A-treated mice. Moreover, inhibition of the CCR2/5 signaling pathway in Con A mice is achieved by CVC. Liver injury and infiltration of monocyte-derived macrophages were assessed by serum transaminase levels, histopathology, immunohistochemistry, flow cytometry, RT-qPCR, ELISA, TUNEL assay and dihydroethidium staining. RESULTS The number of macrophages in the mouse livers increased in the Con A-induced hepatitis mouse model, and flow cytometry showed a significant increase in the proportion of F4/80loCD11bhi monocyte-derived macrophages, while there was no significant change in the proportion of F4/80hiCD11blo Kupffer cells. After the depletion of liver macrophages by clodronate liposomes, the levels of serum ALT and AST, and the degree of liver tissue damage were alleviated in Con A-treated mice. Furthermore, Con A leaded an increase in the expression of a group of CC chemokines in mouse livers, and the elevation of CCL2 was prevented with the depletion of macrophages. Additionally, CVC reduced macrophage infiltration in the liver and ameliorated Con A-induced liver injury. Meanwhile, CVC reduced the apoptosis and oxidative damage of hepatocytes caused by Con A. CONCLUSIONS Our research demonstrates that there is an increase in monocyte-derived macrophages in the livers due to the monocyte infiltration resulted from the activation of the CCL2-CCR2 axis in Con A-induced liver injury mouse model. Pharmacological inhibition of CCR2 monocyte recruitment by CVC efficiently ameliorates the hepatic inflammation, indicating the therapeutic potential of CVC in patients with AIH.
Collapse
Affiliation(s)
- Wu Ruiqi
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Xiaoli
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhou Leyu
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shen Mengyi
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deng Qiaoyu
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Yanyi
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Li
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Videla LA, Valenzuela R, Del Campo A, Zúñiga-Hernández J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int J Mol Sci 2023; 24:15528. [PMID: 37958514 PMCID: PMC10647594 DOI: 10.3390/ijms242115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
11
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
12
|
Wen Y. The Role of Immune Cells in Liver Regeneration. LIVERS 2023; 3:383-396. [DOI: 10.3390/livers3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The liver is the only organ that can regenerate and regain its original tissue-to-body weight ratio within a short period of time after tissue loss. Insufficient liver regeneration in patients after partial hepatectomy or liver transplantation with partial liver grafts often leads to post-hepatectomy liver failure or small-for-size syndrome, respectively. Enhancing liver regeneration after liver injury might improve outcomes and increase patient survival. Liver regeneration comprises hepatocyte proliferation, and hepatic progenitor cell expansion and differentiation into hepatocytes. The immune system is intensively involved in liver regeneration. The current review provides a comprehensive overview of the diverse roles played by immune cells in liver regeneration. Macrophages, neutrophils, eosinophils, basophils, mast cells, platelets, dendritic cells, type 1 innate lymphoid cells, B cells, and T cells are implicated in promoting liver regeneration, while natural killer cells and overactivated natural killer T cells are supposed to inhibit hepatocyte proliferation. We also highlight the predominant underlying mechanisms mediated by immune cells, which may contribute to the development of novel strategies for promoting liver regeneration in patients with liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Albiero M, Ciciliot S, Rodella A, Migliozzi L, Amendolagine FI, Boscaro C, Zuccolotto G, Rosato A, Fadini GP. Loss of Hematopoietic Cell-Derived Oncostatin M Worsens Diet-Induced Dysmetabolism in Mice. Diabetes 2023; 72:483-495. [PMID: 36657995 DOI: 10.2337/db22-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Innate immune cells infiltrate growing adipose tissue and propagate inflammatory clues to metabolically distant tissues, thereby promoting glucose intolerance and insulin resistance. Cytokines of the IL-6 family and gp130 ligands are among such signals. The role played by oncostatin M (OSM) in the metabolic consequences of overfeeding is debated, at least in part, because prior studies did not distinguish OSM sources and dynamics. Here, we explored the role of OSM in metabolic responses and used bone marrow transplantation to test the hypothesis that hematopoietic cells are major contributors to the metabolic effects of OSM. We show that OSM is required to adapt during the development of obesity because OSM concentrations are dynamically modulated during high-fat diet (HFD) and Osm-/- mice displayed early-onset glucose intolerance, impaired muscle glucose uptake, and worsened liver inflammation and damage. We found that OSM is mostly produced by blood cells and deletion of OSM in hematopoietic cells phenocopied glucose intolerance of whole-body Osm-/- mice fed a HFD and recapitulated liver damage with increased aminotransferase levels. We thus uncovered that modulation of OSM is involved in the metabolic response to overfeeding and that hematopoietic cell-derived OSM can regulate metabolism, likely via multiple effects in different tissues.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Rodella
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ludovica Migliozzi
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Ivan Amendolagine
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlotta Boscaro
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
14
|
Li B, Qi X, Liu Y, Yan Y, Shan J, Cai X, Lv J, Zhou X, Yu T, Ma X. Monocyte-derived macrophages: The supplements of hepatic macrophage in Echinococcus multilocularis infected mice. Immun Inflamm Dis 2022; 10:e699. [PMID: 36169259 PMCID: PMC9511960 DOI: 10.1002/iid3.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis is a potentially lethal zoonosis caused by the cestode Echinococcus multilocularis. This study is to investigate the dynamic changes of monocytes, macrophages, and related cytokines in animal models of persistent infection of E. multilocularis. METHODS An infection model was established by intraperitoneal injection of a protoscolex suspension. The pathological changes of liver were observed by HE staining. The percentage of Ly6Chi and Ly6Clo Monocytes in peripheral blood was detected by flow cytometry. The distribution and expression of CX3CL1, CX3CR1, iNOS, CD163, and CD11b in the liver were detected by immunohistochemistry. The mRNA expression of tumor necrosis factor-α (TNF-α) and Arg1 in the liver was detected by quantitative reverse transcription polymerase chain reaction. The expression of INF-γ, interleukin-17 (IL-17), IL-4, and IL-10 in peripheral blood was detected by enzyme-linked immunosorbent assay. RESULTS Hematoxylin-eosin(HE) staining showed that significant lesions appeared in the later stages of infection in the liver. The proportion of Ly6Chi monocytes in the peripheral blood of the experimental group mice decreased after a brief rise, Ly6Clo monocytes decreased first and then increased. The expression of CX3CL1, CX3CR1, CD11b, CD163, and iNOS in the mice liver of the experimental group was increased. The expression level of TNF-α and Arg1 mRNA in the liver of the experimental group mice increased. The expression level of IFN-γ, IL-17, IL-4, and IL-10 increased with the duration of infection. CONCLUSIONS Monocytes as a supplement to hepatic macrophage, monocytes and kupffer cells may both participate in Th1 and Th2 immune responses by differentiating into M1 or M2 at different stages of E. multilocularis infection.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Xinwei Qi
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Yumei Liu
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Clinical Laboratory CenterChildren's Hospital of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Yi Yan
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Jiaoyu Shan
- Basic Medical CollegeXinjiang Medical UniversityUrumqiXinjiangChina
| | - Xuanlin Cai
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Tao Yu
- Shandong Institute of Parasitic DiseasesShandong First Medical University & Shandong Academy of Medical SciencesJiningChina
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| |
Collapse
|
15
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:9868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
16
|
Xie G, Song Y, Li N, Zhang Z, Wang X, Liu Y, Jiao S, Wei M, Yu B, Wang Y, Wang H, Qu A. Myeloid peroxisome proliferator-activated receptor α deficiency accelerates liver regeneration via IL-6/STAT3 pathway after 2/3 partial hepatectomy in mice. Hepatobiliary Surg Nutr 2022; 11:199-211. [PMID: 35464270 DOI: 10.21037/hbsn-20-688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Background Liver regeneration is a fundamental process for sustained body homeostasis and liver function recovery after injury. Emerging evidence demonstrates that myeloid cells play a critical role in liver regeneration by secreting cytokines and growth factors. Peroxisome proliferator-activated receptor α (PPARα), the target of clinical lipid-lowering fibrate drugs, regulates cell metabolism, proliferation, and survival. However, the role of myeloid PPARα in partial hepatectomy (PHx)-induced liver regeneration remains unknown. Methods Myeloid-specific PPARa-deficient (Ppara Mye-/-) mice and the littermate controls (Ppara fl/fl) were subjected to sham or 2/3 PHx to induce liver regeneration. Hepatocyte proliferation and mitosis were assessed by immunohistochemical (IHC) staining for 5-bromo-2'-deoxyuridine (BrdU) and Ki67 as well as hematoxylin and eosin (H&E) staining. Macrophage and neutrophil infiltration into livers were reflected by IHC staining for galectin-3 and myeloperoxidase (MPO) as well as flow cytometry analysis. Macrophage migration ability was evaluated by transwell assay. The mRNA levels for cell cycle or inflammation-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by Western blotting. Results Ppara Mye-/- mice showed enhanced hepatocyte proliferation and mitosis at 32 h after PHx compared with Ppara fl/fl mice, which was consistent with increased proliferating cell nuclear antigen (Pcna) mRNA and cyclinD1 (CYCD1) protein levels in Ppara Mye-/- mice at 32 h after PHx, indicating an accelerated liver regeneration in Ppara Mye-/- mice. IHC staining showed that macrophages and neutrophils were increased in Ppara Mye-/- liver at 32 h after PHx. Livers of Ppara Mye-/- mice also showed an enhanced infiltration of M1 macrophages at 32 h after PHx. In vitro, Ppara-deficient bone marrow-derived macrophages (BMDMs) exhibited markedly enhanced migratory capacity and upregulated M1 genes Il6 and Tnfa but downregulated M2 gene Arg1 expressions. Furthermore, the phosphorylation of STAT3, a key transcript factor mediating IL6-promoted hepatocyte survival and proliferation, was reinforced in the liver of Ppara Mye-/- mice after PHx. Conclusions This study provides evidence that myeloid PPARα deficiency accelerates PHx-induced liver regeneration via macrophage polarization and consequent IL-6/STAT3 activation, thus providing a potential target for manipulating liver regeneration.
Collapse
Affiliation(s)
- Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Na Li
- Department of Endocrinology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ming Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Uchida T, Seki S, Oda T. Infections, Reactions of Natural Killer T Cells and Natural Killer Cells, and Kidney Injury. Int J Mol Sci 2022; 23:ijms23010479. [PMID: 35008905 PMCID: PMC8745257 DOI: 10.3390/ijms23010479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells and NK cells are representative innate immune cells that perform antitumor and antimicrobial functions. The involvement of these cells in various renal diseases, including acute kidney injury (AKI), has recently become evident. Murine NKT cells are activated and cause AKI in response to various stimuli, such as their specific ligand, cytokines, and bacterial components. Both renal vascular endothelial cell injury (via the perforin-mediated pathway) and tubular epithelial cell injury (via the tumor necrosis factor-alpha/Fas ligand pathway) are independently involved in the pathogenesis of AKI. NK cells complement the functions of NKT cells, thereby contributing to the development of infection-associated AKI. Human CD56+ T cells, which are a functional counterpart of murine NKT cells, as well as a subpopulation of CD56+ NK cells, strongly damage intrinsic renal cells in vitro upon their activation, possibly through mechanisms similar to those in mice. These cells are also thought to be involved in the acute exacerbation of pre-existing glomerulonephritis triggered by infection in humans, and their roles in sepsis-associated AKI are currently under investigation. In this review, we will provide an overview of the recent advances in the understanding of the association among infections, NKT and NK cells, and kidney injury, which is much more profound than previously considered. The important role of liver macrophages in the activation of NKT cells will also be introduced.
Collapse
Affiliation(s)
- Takahiro Uchida
- Kidney Disease Center, Department of Nephrology and Blood Purification, Tokyo Medical University Hachioji Medical Center, Tokyo 193-0998, Japan;
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan;
| | - Takashi Oda
- Kidney Disease Center, Department of Nephrology and Blood Purification, Tokyo Medical University Hachioji Medical Center, Tokyo 193-0998, Japan;
- Correspondence: ; Tel.: +81-42-665-5611; Fax: +81-42-665-1796
| |
Collapse
|
18
|
Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules 2021; 11:biom11121907. [PMID: 34944550 PMCID: PMC8699389 DOI: 10.3390/biom11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes' regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.
Collapse
|
19
|
Biondo-Simões MDELP, Pessini VCDEA, Ichi CA, Robes RR, Ioshii S. Acetylsalicylic acid (Aspirin®) and liver regeneration: experimental study in rats. Rev Col Bras Cir 2021; 48:e20213164. [PMID: 34816883 PMCID: PMC10683428 DOI: 10.1590/0100-6991e-20213164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE to evaluate the influence of acetylsalicylic acid (ASA) on cell proliferation after partial hepatectomy in rats. METHODS 40 male Wistar rats were separated into four groups of ten rats each. Groups 1 and 2 (controls): undergoing 30% partial hepatectomy and, after one day (group 1) and seven days (group 2), to euthanasia; daily administration of 0.9% saline solution (1mL per 200g of body weight). Groups 3 and 4 (experimental): undergoing 30% partial hepatectomy and, after one day (group 3) and seven days (group 4), to euthanasia; daily administration of ASA (40mg/mL, 1mL per 200g of body weight). The absolute number of cells stained with PCNA was counted in photomicrographs, in five fields, and it was calculated the mean of positive cells per animal and per group. RESULTS the final mean of PCNA+ cells per group was: in group 1, 17.57 ± 6.77; in group 2, 19.31 ± 5.30; in group 3, 27.46 ± 11.55; and, in group 4, 12.40 ± 5.23. There was no significant difference at the two evaluation times in the control group (p=0.491), but there was in the experimental group (p=0.020), with a lower number of PCNA+ cells on the seventh day. The comparison between the two groups, on the first day, showed more PCNA+ cells in the livers of the animals that received ASA (p=0.047), and on the seventh day the number was lower in the experimental group (p=0.007). CONCLUSION ASA induced greater hepatocyte proliferation.
Collapse
Affiliation(s)
| | | | | | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná (UFPR), Departamento de Veterinária - Curitiba - PR - Brasil
| | - Sérgio Ioshii
- - Universidade Federal do Paraná (UFPR), Departamento de Anatomia Patológica - Curitiba - PR - Brasil
| |
Collapse
|
20
|
Elchaninov A, Lokhonina A, Vishnyakova P, Soboleva A, Poltavets A, Artemova D, Makarov A, Glinkina V, Goldshtein D, Bolshakova G, Sukhikh G, Fatkhudinov T. MARCO + Macrophage Dynamics in Regenerating Liver after 70% Liver Resection in Mice. Biomedicines 2021; 9:1129. [PMID: 34572315 PMCID: PMC8471044 DOI: 10.3390/biomedicines9091129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection. METHODS In BALB/c male mice, a model of liver regeneration after 70% resection was reproduced. The dynamics of markers CD68, TIM4, and MARCO were studied immunohistochemically and by using a Western blot. RESULTS The number of MARCO- and CD68-positive macrophages in the regenerating liver increased 1 day and 3 days after resection, respectively. At the same time, the content of the MARCO protein increased in the sorted macrophages of the regenerating liver on the third day. CONCLUSIONS The data indicate that the number of MARCO-positive macrophages in the regenerating liver increases due to the activation of MARCO synthesis in the liver macrophages. The increased expression of MARCO by macrophages can be regarded as a sign of their activation. In the present study, stimulation with LPS led to an increase in the expression of the Marco gene in both Kupffer cells and macrophages of bone marrow origin.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anna Soboleva
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Daria Artemova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Andrey Makarov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Valeria Glinkina
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| |
Collapse
|
21
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Sorg UR, Küpper N, Mock J, Tersteegen A, Petzsch P, Köhrer K, Hehlgans T, Pfeffer K. Lymphotoxin-β-receptor (LTβR) signaling on hepatocytes is required for liver regeneration after partial hepatectomy. Biol Chem 2021; 402:1147-1154. [PMID: 34087963 DOI: 10.1515/hsz-2021-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
Lymphotoxin-β-receptor deficient (LTβR-/-) and Tumor Necrosis Factor Receptor p55 deficient (TNFRp55-/-) mice show defects in liver regeneration (LR) after partial hepatectomy (PHx) with significantly increased mortality. LTβR and TNFRp55 belong to the core members of the TNF/TNFR superfamily. Interestingly, combined failure of LTβR and TNFRp55 signaling after PHx leads to a complete defect in LR. Here, we first addressed the question which liver cell population crucially requires LTβR signaling for efficient LR. To this end, mice with a conditionally targeted LTβR allele (LTβRfl/fl) were crossed to AlbuminCre and LysozymeMCre mouse lines to unravel the function of the LTβR on hepatocytes and monocytes/macrophages/Kupffer cells, respectively. Analysis of these mouse lines clearly reveals that LTβR is required on hepatocytes for efficient LR while no deficit in LR was found in LTβRfl/fl × LysMCre mice. Second, the molecular basis for the cooperating role of LTβR and TNFRp55 signaling pathways in LR was investigated by transcriptome analysis of etanercept treated LTβR-/- (LTβR-/-/ET) mice. Bioinformatic analysis and subsequent verification by qRT-PCR identified novel target genes (Cyclin-L2, Fas-Binding factor 1, interferon-related developmental regulator 1, Leucyl-tRNA Synthetase 2, and galectin-4) that are upregulated by LTβR/TNFRp55 signaling after PHx and fail to be upregulated after PHx in LTβR-/-/ET mice.
Collapse
Affiliation(s)
- Ursula R Sorg
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Nicole Küpper
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Julia Mock
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Anne Tersteegen
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Current address: Institute of Biochemistry and Cell Biology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas Hehlgans
- Regensburg Center for Interventional Immunology (RCI), Regensburg University, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Lopez-Ichikawa M, Vu NK, Nijagal A, Rubinsky B, Chang TT. Neutrophils are important for the development of pro-reparative macrophages after irreversible electroporation of the liver in mice. Sci Rep 2021; 11:14986. [PMID: 34294763 PMCID: PMC8298444 DOI: 10.1038/s41598-021-94016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal tissue ablative technology that has emerging applications in surgical oncology and regenerative surgery. To advance its therapeutic usefulness, it is important to understand the mechanisms through which IRE induces cell death and the role of the innate immune system in mediating subsequent regenerative repair. Through intravital imaging of the liver in mice, we show that IRE produces distinctive tissue injury features, including delayed yet robust recruitment of neutrophils, consistent with programmed necrosis. IRE treatment converts the monocyte/macrophage balance from pro-inflammatory to pro-reparative populations, and depletion of neutrophils inhibits this conversion. Reduced generation of pro-reparative Ly6CloF4/80hi macrophages correlates with lower numbers of SOX9+ hepatic progenitor cells in areas of macrophage clusters within the IRE injury zone. Our findings suggest that neutrophils play an important role in promoting the development of pro-reparative Ly6Clo monocytes/macrophages at the site of IRE injury, thus establishing conditions of regenerative repair.
Collapse
Affiliation(s)
- Maya Lopez-Ichikawa
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Ngan K Vu
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amar Nijagal
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, 6124 Etcheverry Hall, Berkeley, CA, 94720, USA
| | - Tammy T Chang
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
24
|
Elchaninov A, Nikitina M, Vishnyakova P, Lokhonina A, Makarov A, Sukhikh G, Fatkhudinov T. Macro- and microtranscriptomic evidence of the monocyte recruitment to regenerating liver after partial hepatectomy in mouse model. Biomed Pharmacother 2021; 138:111516. [PMID: 33765583 DOI: 10.1016/j.biopha.2021.111516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are important regulators of liver repair. Participation of migratory monocytes/macrophages in regeneration of hepatic tissues after resection remains disputable. In mouse the resection promotes migration of Ly6C+CD11b+ monocytes/macrophages to the remnant liver accompanied by a reduction in its CD206 + macrophage content. Macrophage proliferation within the liver reaches maximum on day 3 after the surgery. Corresponding macro- and microtranscriptomic profiles of macrophages in regeneration liver cannot be unambiguously defined as pro- or anti-inflammatory. Their typical features include elevated expression of leukocyte chemoattractant factors, and many of the differentially expressed sequences are related to the control of cell growth and metabolic processes in the liver. These findings revealed essential roles of immigration of monocytes/macrophages and macrophages proliferation in maintenance of macrophage populations in the mouse liver during its recovery from a massive resection.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia; Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Maria Nikitina
- Laboratory of Growth and Development, FSBSI Scientific Research Institute of Human Morphology, Moscow 117418, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia; Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia; Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Andrey Makarov
- Laboratory of Regenerative Medicine, FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia; Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow 117997 Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, FSBSI Scientific Research Institute of Human Morphology, Moscow 117418, Russia; Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| |
Collapse
|
25
|
Nobs SP, Kopf M. Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol 2021; 42:495-507. [PMID: 33972166 DOI: 10.1016/j.it.2021.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Tissue-resident macrophages (MTR) have recently emerged as a key rheostat capable of regulating the balance between organ health and disease. In most organs, ontogenetically and functionally distinct macrophage subsets fulfill a plethora of functions specific to their tissue environment. In this review, we summarize recent findings regarding the ontogeny and functions of macrophage populations in different mammalian tissues, describing how these cells regulate tissue homeostasis and how they can contribute to inflammation. Furthermore, we highlight new developments concerning certain general principles of tissue macrophage biology, including the importance of metabolism for understanding macrophage activation states and the influence of intrinsic and extrinsic factors on macrophage metabolic control. We also shed light on certain open questions in the field and how answering these might pave the way for tissue-specific therapeutic approaches.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
26
|
F4/80 + Kupffer Cell-Derived Oncostatin M Sustains the Progression Phase of Liver Regeneration through Inhibition of TGF-β2 Pathway. Molecules 2021; 26:molecules26082231. [PMID: 33924385 PMCID: PMC8069260 DOI: 10.3390/molecules26082231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.
Collapse
|
27
|
Zhang W, Wang L, Sun XH, Liu X, Xiao Y, Zhang J, Wang T, Chen H, Zhan YQ, Yu M, Ge CH, Li CY, Ren GM, Yin RH, Yang XM. Toll-like receptor 5-mediated signaling enhances liver regeneration in mice. Mil Med Res 2021; 8:16. [PMID: 33622404 PMCID: PMC7901072 DOI: 10.1186/s40779-021-00309-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration. METHODS We performed 2/3 PHx in wild-type (WT) mice, TLR5 knockout mice, or TLR5 agonist CBLB502 treated mice, as a model of liver regeneration. Bacterial flagellin content was measured with ELISA, and hepatic TLR5 expression was determined with quantitative PCR analyses and flow cytometry. To study the effects of TLR5 on hepatocyte proliferation, we analyzed bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression with immunohistochemistry (IHC) staining. The effects of TLR5 during the priming phase of liver regeneration were examined with quantitative PCR analyses of immediate early gene mRNA levels, and with Western blotting analysis of hepatic NF-κB and STAT3 activation. Cytokine and growth factor production after PHx were detected with real-time PCR and cytometric bead array (CBA) assays. Oil Red O staining and hepatic lipid concentrations were analyzed to examine the effect of TLR5 on hepatic lipid accumulation after PHx. RESULTS The bacterial flagellin content in the serum and liver increased, and the hepatic TLR5 expression was significantly up-regulated in WT mice after PHx. TLR5-deficient mice exhibited diminished numbers of BrdU- and PCNA-positive cells, suppressed immediate early gene expression, and decreased cytokine and growth factor production. Moreover, PHx-induced hepatic NF-κB and STAT3 activation was inhibited in Tlr5-/- mice, as compared with WT mice. Consistently, the administration of CBLB502 significantly promoted PHx-mediated hepatocyte proliferation, which was correlated with enhanced production of proinflammatory cytokines and the recruitment of macrophages and neutrophils in the liver. Furthermore, Tlr5-/- mice displayed significantly lower hepatic lipid concentrations and smaller Oil Red O positive areas than those in control mice after PHx. CONCLUSION We reveal that TLR5 activation contributes to the initial events of liver regeneration after PHx. Our findings demonstrate that TLR5 signaling positively regulates liver regeneration and suggest the potential of TLR5 agonist to promote liver regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xue-Hua Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
28
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Elchaninov A, Lokhonina A, Nikitina M, Vishnyakova P, Makarov A, Arutyunyan I, Poltavets A, Kananykhina E, Kovalchuk S, Karpulevich E, Bolshakova G, Sukhikh G, Fatkhudinov T. Comparative Analysis of the Transcriptome, Proteome, and miRNA Profile of Kupffer Cells and Monocytes. Biomedicines 2020; 8:627. [PMID: 33352881 PMCID: PMC7766432 DOI: 10.3390/biomedicines8120627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage populations in most mammalian organs consist of cells of different origin. Resident macrophages originate from erythromyeloid precursors of the yolk sac wall; maintenance of the numbers of such macrophages in postnatal ontogenesis is practically independent of bone marrow haematopoiesis. The largest populations of the resident macrophages of embryonic origin are found in the central nervous system (microglia) and liver (Kupffer cells). In contrast, skin dermis and mucous membranes become predominantly colonized by bone marrow-derived monocytes that show pronounced functional and phenotypic plasticity. In the present study, we compared Kupffer cells and monocytes using the immunophenotype, gene expression profile, proteome, and pool of microRNA. The observed differences did not consider the resident liver macrophages as purely M2 macrophages or state that monocytes have purely M1 features. Monocytes show signs of high plasticity and sensitivity to pathogen-associated molecular patterns (e.g., high levels of transcription for Tlr 2, 4, 7, and 8). In contrast, the resident liver macrophages were clearly involved in the regulation of specific organ functions (nitrogen metabolism, complement system protein synthesis).
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Maria Nikitina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Andrey Makarov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Evgenia Kananykhina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Sergey Kovalchuk
- Laboratory of Bioinformatic Methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, 109004 Moscow, Russia;
- Genome Engineering Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| |
Collapse
|
30
|
Bhandari S, Li R, Simón-Santamaría J, McCourt P, Johansen SD, Smedsrød B, Martinez-Zubiaurre I, Sørensen KK. Transcriptome and proteome profiling reveal complementary scavenger and immune features of rat liver sinusoidal endothelial cells and liver macrophages. BMC Mol Cell Biol 2020; 21:85. [PMID: 33246411 PMCID: PMC7694354 DOI: 10.1186/s12860-020-00331-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body's most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD (SD), male rats using high throughput mRNA-sequencing and label-free proteomics. RESULTS We observed a robust correlation between the proteomes and transcriptomes of the two cell types. Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2) suggested functional similarity between the two cell types, while functional distinction between the cells was evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved in antigen processing and presentation, and lymphocyte co-stimulation. CONCLUSIONS Our findings support complementary and partly overlapping scavenging and immune functions of LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance and toxicity of large molecule drugs and nano-formulations.
Collapse
Affiliation(s)
- Sabin Bhandari
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Ruomei Li
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Jaione Simón-Santamaría
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Peter McCourt
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway.
| | | | - Karen Kristine Sørensen
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| |
Collapse
|
31
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Seddek AL, Hassan R. Modelling of liver regeneration after hepatectomy. Arch Toxicol 2020; 94:3605-3606. [DOI: 10.1007/s00204-020-02891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
|
33
|
Shi JH, Line PD. Hallmarks of postoperative liver regeneration: An updated insight on the regulatory mechanisms. J Gastroenterol Hepatol 2020; 35:960-966. [PMID: 31782974 DOI: 10.1111/jgh.14944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Performance and advances in liver surgery makes remarkable progress of the understanding of liver regeneration. Liver regeneration after liver resection has been widely researched, and the underlying mechanism mostly concerns proliferation of hepatocytes and the influence by inflammation through activation of Kupffer cells and the other parenchymal cells, the second regenerative pathway by hepatic progenitor cells (HPCs), inducing angiogenesis, remodeling of a extracellular matrix (ECM), and termination mechanisms. New clinical surgeries and the updated multiomics analysis are exploiting the remarkable progress, especially in immune regulation and metabolic process of two emerging hallmarks. This review briefly represents a systemic outline of eight hallmarks, including hepatocyte proliferation, contribution of hepatic progenitor cells, inducing angiogenesis, reprogramming of the extracellular matrix, apoptosis and termination of proliferation, inflammation, immune and metabolic regulation, which are set as organizing characteristics of postoperative liver regeneration and future directions of refining treatment targets.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pål-Dag Line
- Department of Transplantation Medicine, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Zeng T, Deng G, Zhong W, Gao Z, Ma S, Mo C, Li Y, Huang S, Zhou C, Lai Y, Xie S, Xie Z, Chen Y, He S, Lv Z, Gao L. Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress. Free Radic Biol Med 2020; 152:668-679. [PMID: 31945497 DOI: 10.1016/j.freeradbiomed.2020.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, the molecular mechanisms of ferroptosis in acute immune hepatitis (AIH) are largely unknown. In this study, we investigated the classical ferroptotic events in the livers of mice with concanavalin A (ConA) to induce AIH. The dramatically upregulated gene indoleamine 2, 3-dioxygenase 1 (IDO1) was identified with AIH, and its role in generation of ferroptosis and reactive nitrogen species (RNS) was assessed both in vitro and in vivo by genetic deletion or pharmacologic inhibition of IDO1. We observed that ferroptosis contributed to the ConA-induced hepatic damage, which was confirmed by the therapeutical effects of ferroptosis inhibitor (ferrostatin-1). Noteworthy, upregulation of hepatic IDO1 and nitrative stress in ConA-induced hepatic damage were also remarkably inhibited by the ferroptosis abolishment. Additionally, IDO1 deficiency contributed to ferroptosis resistance by activating solute carrier family 7 member 11 (SLC7A11; also known as xCT) expression, accompanied with the reductions of murine liver lesions and RNS. Meanwhile, IDO inhibitor 1-methyl tryptophan alleviated murine liver damage with the reduction of inducible nitric oxide synthase and 3-nitrotyrosine expression. Consistent with the results in vivo, hepatocytes-specific knockdown of IDO1 led to ferroptosis resistance upon exposure to ferroptosis-inducing compound (Erastin) in vitro, whereas IDO1 overexpression aggravated the classical ferroptotic events, and the RNS stress. Overall, these results revealed a novel molecular mechanism of ferroptosis with the key feature of nitrative stress in ConA-induced liver injury, and also identified IDO1-dependent ferroptosis as a potential target for the treatment of AIH.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, Shenzhen, Guangdong, China
| | - Zhuowei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuoyi Ma
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Chauhan A, Sheriff L, Hussain MT, Webb GJ, Patten DA, Shepherd EL, Shaw R, Weston CJ, Haldar D, Bourke S, Bhandari R, Watson S, Adams DH, Watson SP, Lalor PF. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun 2020; 11:1939. [PMID: 32321925 PMCID: PMC7176690 DOI: 10.1038/s41467-020-15584-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is the main cause of acute liver failure in the West. Specific efficacious therapies for acute liver failure (ALF) are limited and time-dependent. The mechanisms that drive irreversible acute liver failure remain poorly characterized. Here we report that the recently discovered platelet receptor CLEC-2 (C-type lectin-like receptor) perpetuates and worsens liver damage after toxic liver injury. Our data demonstrate that blocking platelet CLEC-2 signalling enhances liver recovery from acute toxic liver injuries (APAP and carbon tetrachloride) by increasing tumour necrosis factor-α (TNF-α) production which then enhances reparative hepatic neutrophil recruitment. We provide data from humans and mice demonstrating that platelet CLEC-2 influences the hepatic sterile inflammatory response and that this can be manipulated for therapeutic benefit in acute liver injury. Since CLEC-2 mediated platelet activation is independent of major haemostatic pathways, blocking this pathway represents a coagulopathy-sparing, specific and novel therapy in acute liver failure.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Lozan Sheriff
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammed T Hussain
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gwilym J Webb
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emma L Shepherd
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert Shaw
- Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christopher J Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Debashis Haldar
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Bourke
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rajan Bhandari
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, Nottingham, UK
| | - Patricia F Lalor
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
Zhou J, Sun X, Yang L, Wang L, Ran G, Wang J, Cao Q, Wu L, Bryant A, Ling C, Pi L. Hepatocyte nuclear factor 4α negatively regulates connective tissue growth factor during liver regeneration. FASEB J 2020; 34:4970-4983. [PMID: 32057145 PMCID: PMC7722640 DOI: 10.1096/fj.201902382r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/25/2022]
Abstract
Liver regeneration after injury requires fine-tune regulation of connective tissue growth factor (Ctgf). It also involves dynamic expression of hepatocyte nuclear factor (Hnf)4α, Yes-associated protein (Yap), and transforming growth factor (Tgf)-β. The upstream inducers of Ctgf, such as Yap, etc, are well-known. However, the negative regulator of Ctgf remains unclear. Here, we investigated the Hnf4α regulation of Ctgf post-various types of liver injury. Both wild-type animals and animals contained siRNA-mediated Hnf4α knockdown and Cre-mediated Ctgf conditional deletion were used. We observed that Ctgf induction was associated with Hnf4α decline, nuclear Yap accumulation, and Tgf-β upregulation during early stage of liver regeneration. The Ctgf promoter contained an Hnf4α binding sequence that overlapped with the cis-regulatory element for Yap and Tgf-β. Ctgf loss attenuated inflammation, hepatocyte proliferation, and collagen synthesis, whereas Hnf4α knockdown enhanced Ctgf induction and liver fibrogenesis. These findings provided a new mechanism about fine-tuned regulation of Ctgf through Hnf4α antagonism of Yap and Tgf-β activities to balance regenerative and fibrotic signals.
Collapse
Affiliation(s)
- Junmei Zhou
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
- Institute of Cardiovascular DiseaseKey Laboratory for Arteriosclerology of Hunan ProvinceUniversity of South ChinaHengyangChina
| | - Xiaowei Sun
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
- Institute of PathologySchool of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Lu Yang
- Integrative Genomics CoreBeckman Research Institute of the City of HopeDuarteCAUSA
| | - Liqun Wang
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Gai Ran
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Jinhui Wang
- Integrative Genomics CoreBeckman Research Institute of the City of HopeDuarteCAUSA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Lizi Wu
- Department of Microbiology& Molecular GeneticsCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Andrew Bryant
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Chen Ling
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Liya Pi
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
37
|
Oliveira CN, Azevedo ÍM, Rocha KBF, Egito EST, Medeiros AC. Effect of the Ileum and Colon on Liver Regeneration. J INVEST SURG 2020; 34:711-715. [PMID: 32028809 DOI: 10.1080/08941939.2019.1687793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The colon and ileum play significant roles on liver physiology. Studies about simultaneous hepatectomy and colectomy or enterectomy are scarce and controversial. We investigated and compared the effects of ileum and colon resection on liver regeneration. MATERIALS AND METHODS Twenty four Wistar rats were allocated in group I-(sham), group II-70% hepatectomy; group III-70% hepatectomy + ileal resection, and group IV-70% hepatectomy + partial colectomy. On the sixth day, serum hepatic enzymes, albumin, hepatocyte growth-factor (HGF) and transforming growth factor-alpha (TGF-α) were measured. The hepatic regeneration rate was estimated. Ki-67 immunohistochemical analysis was done in remnant liver. RESULTS Hepatic enzymes levels were significantly higher in group III rats comparing to the other groups (p < 0.001). In group IV, the levels were significantly lower than in groups II and III (p < 0.001). Albuminemia was significantly lower in group III rats comparing with the other groups (p < 0.001). Albuminemia was not different comparing groups I and IV (p > 0.05). Cytokines HGF and TGF-α levels in group IV were significantly higher than in the other groups (p < 0.001). Liver regeneration rate was higher group IV than in groups II and III, and the difference was statistically significant (p = 0.002). The hepatocytes expression of Ki-67 was significantly higher in the remnant liver of group IV than in group III (p = 0.002). There was no difference in Ki-67 expression between groups II and IV (p > 0.05). CONCLUSION Ileum and colon resection have different effects on liver regeneration. Colon resection positively influences liver regeneration, while ileum resection negatively influences the regenerative process, in a rat model.
Collapse
Affiliation(s)
- Cláudia Nunes Oliveira
- Graduate Program in Health Sciences, College of Medicine, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Ítalo Medeiros Azevedo
- Graduate Program in Health Sciences, College of Medicine, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Keyla Borges Ferreira Rocha
- Graduate Program in Health Sciences, College of Medicine, Federal University of Rio Grande Do Norte, Natal, Brazil
| | | | - Aldo Cunha Medeiros
- Graduate Program in Health Sciences, College of Medicine, Federal University of Rio Grande Do Norte, Natal, Brazil
| |
Collapse
|
38
|
Participation of 5-lipoxygenase and LTB4 in liver regeneration after partial hepatectomy. Sci Rep 2019; 9:18176. [PMID: 31796842 PMCID: PMC6890767 DOI: 10.1038/s41598-019-54652-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regeneration is the unmatched liver ability for recovering its functional mass after tissue lost. Leukotrienes (LT) are a family of eicosanoids with the capacity of signaling to promote proliferation. We analyzed the impact of blocking LT synthesis during liver regeneration after partial hepatectomy (PH). Male Wistar rats were subjected to two-third PH and treated with zileuton, a specific inhibitor of 5-lipoxygenase (5-LOX). Our first find was a significant increment of intrahepatic LTB4 during the first hour after PH together with an increase in 5-LOX expression. Zileuton reduced hepatic LTB4 levels at the moment of hepatectomy and also inhibited the increase in hepatic LTB4. This inhibition produced a delay in liver proliferation as seen by decreased PCNA and cyclin D1 nuclear expression 24 h post-PH. Results also showed that hepatic LTB4 diminution by zileuton was associated with a decrease in NF-ĸB activity. Additionally, decreased hepatic LTB4 levels by zileuton affected the recruitment of neutrophils and macrophages. Non-parenchymal cells (NPCs) from zileuton-treated PH-rats displayed higher apoptosis than NPCs from PH control rats. In conclusion, the present work provides evidences that 5-LOX activation and its product LTB4 are involved in the initial signaling events for liver regeneration after PH and the pharmacological inhibition of this enzyme can delay the initial time course of the phenomenon.
Collapse
|
39
|
Endo-Umeda K, Makishima M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int J Mol Sci 2019; 20:ijms20205045. [PMID: 31614590 PMCID: PMC6834202 DOI: 10.3390/ijms20205045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Excess dietary cholesterol intake and the dysregulation of cholesterol metabolism are associated with the pathogenesis and progression of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and fibrosis. Hepatic accumulation of free cholesterol induces activation of nonparenchymal cells, including Kupffer cells, macrophages, and hepatic stellate cells, which leads to persistent inflammation and fibrosis. The nuclear receptors liver X receptor α (LXRα) and LXRβ act as negative regulators of cholesterol metabolism through the induction of hepatocyte cholesterol catabolism, excretion, and the reverse cholesterol transport pathway. Additionally, LXRs exert an anti-inflammatory effect in immune cell types, such as macrophages. LXR activation suppresses acute hepatic inflammation that is mediated by Kupffer cells/macrophages. Acute liver injury, diet-induced steatohepatitis, and fibrosis are exacerbated by significant hepatic cholesterol accumulation and inflammation in LXR-deficient mice. Therefore, LXRs regulate hepatic lipid metabolism and immunity and they are potential therapeutic targets in the treatment of hepatic inflammation that is associated with cholesterol accumulation.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
40
|
Wakasa Y, Kimura N, Yamada T, Shimizu T, Hakamada K, Tsuchida S. Delay in hepatocyte proliferation and prostaglandin D2 synthase expression for cholestasis due to endotoxin during partial hepatectomy in rats. Mol Med Rep 2019; 20:4367-4375. [PMID: 31545425 PMCID: PMC6797974 DOI: 10.3892/mmr.2019.10681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 11/05/2022] Open
Abstract
Infection is a frequent complication of liver transplantation or partial hepatectomy (PH) and sometimes results in cholestasis. We examined factors involved in infection‑induced cholestasis after PH, employing a rat PH model and lipopolysaccharide (LPS) as a bacterial toxin. Male Sprague‑Dawley rats were subjected to 70% PH and/or LPS injection, and tissues were harvested at 0, 24, 72 and 168 h. Gene expression was analyzed by microarray analysis and reverse transcription‑quantitative polymerase chain reaction, and protein levels and localization were analyzed by western blotting and immunohistochemistry, respectively. Plasma bile acid levels were significantly higher in the LPS + PH group than in the PH group. Ribonucleotide reductase regulatory subunit M2 and proliferating cell nuclear antigen peaked at 24 and 72 h in the PH group and LPS + PH group, respectively, indicating a delay in cell proliferation in the latter group. The sodium‑dependent taurocholate cotransporting polypeptide and organic‑anion‑transporting polypeptide 1a1 and 1a2 were reduced in the PH group at 24 h, and were not further decreased in the LPS + PH group. Chemokine ligand 9 (Cxcl9), a chemokine involved in M2 macrophage polarization, increased after 24 h in the LPS and the LPS + PH groups. The number and shape of Cxcl9‑positive cells were similar to CD163‑positive cells, suggesting that such cells produced the chemokine. Hematopoietic prostaglandin D2 synthase (Ptgds2) was only detected in hepatocytes of the LPS + PH group exhibiting a delay in cell proliferation. Thus, Kupffer cells activated with LPS were suggested to be responsible for a delay in hepatocyte proliferation after PH.
Collapse
Affiliation(s)
- Yusuke Wakasa
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Takeshi Shimizu
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Shigeki Tsuchida
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
41
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
42
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|
43
|
Zafarnia S, Mrugalla A, Rix A, Doleschel D, Gremse F, Wolf SD, Buyel JF, Albrecht U, Bode JG, Kiessling F, Lederle W. Non-invasive Imaging and Modeling of Liver Regeneration After Partial Hepatectomy. Front Physiol 2019; 10:904. [PMID: 31379606 PMCID: PMC6652107 DOI: 10.3389/fphys.2019.00904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
The liver has a unique regenerative capability upon injury or partial resection. The regeneration process comprises a complex interplay between parenchymal and non-parenchymal cells and is tightly regulated at different scales. Thus, we investigated liver regeneration using multi-scale methods by combining non-invasive imaging with immunohistochemical analyses. In this context, non-invasive imaging can provide quantitative data of processes involved in liver regeneration at organ and body scale. We quantitatively measured liver volume recovery after 70% partial hepatectomy (PHx) by micro computed tomography (μCT) and investigated changes in the density of CD68+ macrophages by fluorescence-mediated tomography (FMT) combined with μCT using a newly developed near-infrared fluorescent probe. In addition, angiogenesis and tissue-resident macrophages were analyzed by immunohistochemistry. Based on the results, a model describing liver regeneration and the interactions between different cell types was established. In vivo analysis of liver volume regeneration over 21 days after PHx by μCT imaging demonstrated that the liver volume rapidly increased after PHx reaching a maximum at day 14 and normalizing until day 21. An increase in CD68+ macrophage density in the liver was detected from day 4 to day 8 by combined FMT-μCT imaging, followed by a decline towards control levels between day 14 and day 21. Immunohistochemistry revealed the highest angiogenic activity at day 4 after PHx that continuously declined thereafter, whereas the density of tissue-resident CD169+ macrophages was not altered. The simulated time courses for volume recovery, angiogenesis and macrophage density reflect the experimental data describing liver regeneration after PHx at organ and tissue scale. In this context, our study highlights the importance of non-invasive imaging for acquiring quantitative organ scale data that enable modeling of liver regeneration.
Collapse
Affiliation(s)
- Sara Zafarnia
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Mrugalla
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dennis Doleschel
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stephanie D Wolf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ute Albrecht
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Zhao J, Xu H, Li Y, Gong L, Zheng G, Wang X, Luan W, Li S, Ma F, Ni L, Tang X, Wang X, Yu L. NAFLD Induction Delays Postoperative Liver Regeneration of ALPPS in Rats. Dig Dis Sci 2019; 64:456-468. [PMID: 30470953 DOI: 10.1007/s10620-018-5346-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Associating liver partition and portal vein ligation (ALPPS) is a promising two-step hepatectomy that is beneficial for accumulative regeneration of the future liver remnant (FLR) and avoids postoperative liver failure. AIMS Our study aimed to evaluate whether nonalcoholic fatty liver disease affected the liver regeneration induced by ALPPS. METHODS Sprague-Dawley rats fed a high-fat diet were used to construct the NAFLD model. ALPPS were performed, and blood and future liver remnant samples were collected at postoperative days 1 (POD1), POD3, and POD7. RESULTS The hepatic regeneration rate (HRR) of ALPPS was higher than that of portal vein ligation (PVL) at POD3 and POD7 (p < 0.05), and the number of Ki-67-positive hepatocytes (POD3) and CD68-positive Kupffer cells (POD7) per visual field was higher in the ALPPS group than in the PVL group (p < 0.05). The serum TNF-α, hepatocyte growth factor protein, and the serum IL-6 level were higher in the ALPPS group than in the PVL group at POD3 and POD7. Compared with those of the standard laboratory diet (SLD)-fed rats, the rats with NAFLD exhibited a decrease in the HRR, Ki-67-positive hepatocytes, and CD68-positive Kupffer cells in the FLR. The number of CD68-positive Kupffer cells was lower in rats with NAFLD than that in SLD-fed rats; noteworthily, the serum level of IL-6 and TNF-α changed dramatically after surgeries. CONCLUSIONS NAFLD induction delayed liver regeneration induced by the ALPPS procedure, which might be associated with hepatocyte proliferation and the number of Kupffer cells.
Collapse
Affiliation(s)
- Jinwei Zhao
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Hongyue Xu
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Yuan Li
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Lulu Gong
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Ge Zheng
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Xuefei Wang
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Wenjin Luan
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Shulin Li
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Fangxue Ma
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Lihui Ni
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China
| | - Xudong Tang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Xueyan Wang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Lu Yu
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130041, China.
| |
Collapse
|
45
|
Stahl EC, Haschak MJ, Popovic B, Brown BN. Macrophages in the Aging Liver and Age-Related Liver Disease. Front Immunol 2018; 9:2795. [PMID: 30555477 PMCID: PMC6284020 DOI: 10.3389/fimmu.2018.02795] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
The number of individuals aged 65 or older is projected to increase globally from 524 million in 2010 to nearly 1. 5 billion in 2050. Aged individuals are particularly at risk for developing chronic illness, while being less able to regenerate healthy tissue and tolerate whole organ transplantation procedures. In the liver, these age-related diseases include non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis. Hepatic macrophages, a population comprised of both Kupffer cells and infiltrating monocyte derived macrophages, are implicated in several chronic liver diseases and also play important roles in the homeostatic functions of the liver. The effects of aging on hepatic macrophage population dynamics, polarization, and function are not well understood. Studies performed on macrophages derived from other aged sources, such as the bone marrow, peritoneal cavity, lungs, and brain, demonstrate general reductions in autophagy and phagocytosis, dysfunction in cytokine signaling, and altered morphology and distribution, likely mediated by epigenetic changes and mitochondrial defects, that may be applicable to hepatic macrophages. This review highlights recent findings in macrophage developmental biology and function, particularly in the liver, and discusses the role of macrophages in various age-related liver diseases. A better understanding of the biology of aging that influences hepatic macrophages and thus the progression of chronic liver disease will be crucial in order to develop new interventions and treatments for liver disease in aging populations.
Collapse
Affiliation(s)
- Elizabeth C Stahl
- Department of Bioengineering, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Martin J Haschak
- Department of Bioengineering, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Branimir Popovic
- Department of Bioengineering, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bryan N Brown
- Department of Bioengineering, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Liang Q, Liu Z, Zhu C, Wang B, Liu X, Yang Y, Lv X, Mu H, Wang K. Intrahepatic T-Cell Receptor β Immune Repertoire Is Essential for Liver Regeneration. Hepatology 2018; 68:1977-1990. [PMID: 29704254 DOI: 10.1002/hep.30067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
T lymphocytes synergize with the cellular immune system to promote hepatocyte regeneration. The T-cell receptor (TCR) immune repertoire is closely associated with the host immune response and regenerative proliferation. High-throughput sequencing of TCR provides deep insight into monitoring the immune microenvironment. Here, we aimed to determine the role of the TCRβ immune repertoire in liver regeneration (LR). We investigated hepatic regeneration in TCRβ chain-deficient (tcrb-/- ) mice by two-thirds partial hepatectomy (PHx) method. Our results demonstrated that tcrb-/- mice revealed a reduced capacity for LR, which was characterized by impaired hepatocyte proliferation and enhanced hepatocyte apoptosis. Dysregulation of inflammatory signaling activation and inflammatory factors was observed in regenerated tcrb-/- livers. Simultaneously, significantly altered immunocyte levels and aberrant cytokine levels were observed during hepatic regeneration. In addition, we first determined the profile of the TCRβ immune repertoire during LR, indicating that PHx resulted in remarkably lower TCRβ diversity in intrahepatic T lymphocytes. Conclusion: Taken together, our data suggest that TCRβ deficiency gives a rise to aberrant intrahepatic immune microenvironment that impairs LR, and the TCRβ reconstitution is required for hepatic immunocyte recruitment and activation during LR.
Collapse
Affiliation(s)
- Qing Liang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Zeyuan Liu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Chao Zhu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bin Wang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoke Liu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanan Yang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xue Lv
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiyu Mu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Markose D, Kirkland P, Ramachandran P, Henderson N. Immune cell regulation of liver regeneration and repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Endo-Umeda K, Nakashima H, Komine-Aizawa S, Umeda N, Seki S, Makishima M. Liver X receptors regulate hepatic F4/80 + CD11b + Kupffer cells/macrophages and innate immune responses in mice. Sci Rep 2018; 8:9281. [PMID: 29915246 PMCID: PMC6006359 DOI: 10.1038/s41598-018-27615-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
The liver X receptors (LXRs), LXRα and LXRβ, are nuclear receptors that regulate lipid homeostasis. LXRs also regulate inflammatory responses in cultured macrophages. However, the role of LXRs in hepatic immune cells remains poorly characterized. We investigated the role of LXRs in regulation of inflammatory responses of hepatic mononuclear cells (MNCs) in mice. Both LXRα and LXRβ were expressed in mouse hepatic MNCs and F4/80+ Kupffer cells/macrophages. LXRα/β-knockout (KO) mice had an increased number of hepatic MNCs and elevated expression of macrophage surface markers and inflammatory cytokines compared to wild-type (WT) mice. Among MNCs, F4/80+CD11b+ cells, not F4/80+CD11b- or F4/80+CD68+ cells, were increased in LXRα/β-KO mice more than WT mice. Isolated hepatic MNCs and F4/80+CD11b+ cells of LXRα/β-KO mice showed enhanced production of inflammatory cytokines after stimulation by lipopolysaccharide or CpG-DNA compared to WT cells, and LXR ligand treatment suppressed lipopolysaccharide-induced cytokine expression in hepatic MNCs. Lipopolysaccharide administration also stimulated inflammatory cytokine production in LXRα/β-KO mice more effectively than WT mice. Thus, LXR deletion enhances recruitment of F4/80+CD11b+ Kupffer cells/macrophages and acute immune responses in the liver. LXRs regulate the Kupffer cell/macrophage population and innate immune and inflammatory responses in mouse liver.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Naoki Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
49
|
Lokhonina AV, Elchaninov AV, Arutyunyan IV, Pokusaev AS, Makarov AV, Eremina IZ, Surovtsev VV, Bolshakova GB, Goldshtein DV, Fatkhudinov TK. Morphofunctional characteristic of macrophages of embryonic and monocytic origin. GENES & CELLS 2018; 13:56-62. [DOI: 10.23868/201808020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophages of mammals are a heterogeneous population of cells. This applies both to the functional parameters of macrophages and to the sources of their development. The comparative characteristics of macrophages of embryonic origin on the example of Kupffer cells and macrophages of bone marrow origin on the example of macrophages of monocyte derivatives were carried out. Cultures of Kupffer cells and macrophages of monocytic origin were obtained. The phenotype, profile of gene expression of native macrophages activated in direction M1 and M2 was studied. The phenotype of isolated cultures is characterized by methods of immunocytochemistry, flow cytometry. Gene expression was studied by real-time polymerase chain reaction. Under the influence of inducing factors, the phenotype of two populations of macrophages changes in a similar way: under the influence of M1-factors, the synthesis of CD86 and iNOs is activated in cells, under the influence of M2 - CD163 and Arg1. In Kupffer cells, expression of anti-inflammatory cytokines - il4, il13, is more pronounced, and in macrophages of monocytic origin of pro-inflammatory cytokines - il1b, tnfa, il12a. The induction of the genes of proinflammatory cytokines in Kupffer cells is slower compared to macrophages of monocytic origin.
Collapse
|
50
|
Ogiso H, Ito H, Kanbe A, Ando T, Hara A, Shimizu M, Moriwaki H, Seishima M. The Inhibition of Indoleamine 2,3-Dioxygenase Accelerates Early Liver Regeneration in Mice After Partial Hepatectomy. Dig Dis Sci 2017. [PMID: 28639129 DOI: 10.1007/s10620-017-4651-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM The inflammatory response accelerates early liver regeneration after liver injury and resection. Recent studies have demonstrated that indoleamine 2,3-dioxygenase-1 (IDO1) suppresses the activation of inflammatory cells and induces immune tolerance. In this study, we examined the role of IDO1 in liver regeneration after partial hepatectomy (PHx). METHODS WT or IDO1-knockout (IDO1-KO) mice received 70% PHx. The liver-body weight ratio after PHx was measured and hepatocyte growth was assessed by immunostaining. The expression of cell cycle genes and pro-inflammatory cytokines in the liver was analyzed by quantitative RT-PCR. In addition, 1-methyl-DL-tryptophan (1-MT), which is an IDO1 inhibitory agent, was given to WT mice and the liver-body weight ratio was measured after PHx. RESULTS The liver-body weight ratio was significantly increased in IDO1-KO mice compared with that in WT mice after PHx. More Ki-67-positive cells were present in IDO1-KO mice than in WT mice after PHx. The expression of cell cycle genes (cyclin D1, cyclin E) and pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) was up-regulated in the remnant liver of IDO1-KO mice compared with WT mice. Moreover, treatment with 1-MT promoted liver regeneration. CONCLUSION IDO1 deficiency promoted early liver regeneration after PHx, indicating that IDO1 suppresses the production of inflammatory cytokines and subsequently inhibits hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Hideyuki Ogiso
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahito Shimizu
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisataka Moriwaki
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|