1
|
Edel C, Rühr PT, Frenzel M, van de Kamp T, Faragó T, Hammel JU, Wilde F, Blanke A. Bite force transmission and mandible shape in grasshoppers, crickets, and allies is not driven by dietary niches. Evolution 2024; 78:1958-1968. [PMID: 39290094 DOI: 10.1093/evolut/qpae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Although species evolve in response to many intrinsic and extrinsic factors, frequently one factor has a dominating influence on a given organ system. In this context, mouthpart shape and function are thought to correlate strongly with dietary niche and this was advocated for decades, e.g., for insects. Orthoptera (grasshoppers, crickets, and allies) are a prominent case in this respect because mandible shape has been even used to predict feeding preferences. Here, we analyzed mandible shape, force transmission efficiency, and their potential correlation with dietary categories in a phylogenetic framework for 153 extant Orthoptera. The mechanical advantage profile was used as a descriptor of gnathal edge shape and bite force transmission efficiency in order to understand how mandible shape is linked to biting efficiency and diet, and how these traits are influenced by phylogeny and allometry. Results show that mandible shape, in fact, is a poor predictor of feeding ecology and phylogenetic history has a strong influence on gnathal edge shape. Being ancestrally phytophagous, Orthoptera evolved in an environment with food sources being always abundant so that selective pressures leading to more specialized mouthpart shapes and force transmission efficiencies were low.
Collapse
Affiliation(s)
- Carina Edel
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Peter T Rühr
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Melina Frenzel
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Thomas van de Kamp
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomáš Faragó
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Lepoldshafen, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Fabian Wilde
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Bäumler F, Gorb SN, Büsse S. Comparative Morphology of the Extrinsic and Intrinsic Leg Musculature in Dictyoptera (Insecta: Blattodea, Mantodea). J Morphol 2024; 285:e70013. [PMID: 39648403 PMCID: PMC11625980 DOI: 10.1002/jmor.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Insect legs, as primarily locomotory devices, can show a tremendous variety of morphological modifications providing a multitude of usages. The prehensile raptorial forelegs of praying mantises (Mantodea) are a prominent example of true multifunctionality since they are used for walking while being efficient prey-capturing and grasping devices. Although being mostly generalist arthropod predators, various morphological adaptations due to different environmental conditions occur across Mantodea. Recently, the general mantodean morphology, and particularly their raptorial forelegs, received an increased interest. Yet, knowledge about the evolutionary transition from walking to prey-grasping legs is still scarce. From evolutionary and functional perspectives, the question arises: what changes were necessary to achieve the strongly modified raptorial forelegs-while keeping walking ability-and how does the foreleg morphology differ from the remaining four walking legs? In this context, we investigated the musculature of the raptorial forelegs in seven phylogenetically distant mantodeans, including pterothoracic legs in four of them, using high-resolution microcomputed tomography and dissection. To understand the results from an evolutionary perspective, we additionally examined all three pairs of unmodified walking legs of the closest sister group-Blattodea. We updated the knowledge of blattodean morphology, revealing differences in cuticle structures of the coxal articulation of the first pair of legs between the two orders and a shared musculature set-up in all pairs of legs among later-branching mantodeans. Interestingly, the early branching species Metallyticus splendidus and Chaeteessa sp. show several muscular characteristics, otherwise found exclusively in one or the other order, with a few procoxal muscles showing an intermediate state between the two orders. Studying the evolutionary transition from a walking leg to a raptorial leg will help to understand the character evolution of this highly specialized biomechanical system from a purely locomotory appendage to a multi-functional device with all related amenities and constraints.
Collapse
Affiliation(s)
- Fabian Bäumler
- Functional Morphology and Biomechanics, Institute of ZoologyKiel UniversityKielSchleswig‐HolsteinGermany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Institute of ZoologyKiel UniversityKielSchleswig‐HolsteinGermany
| | - Sebastian Büsse
- Functional Morphology and Biomechanics, Institute of ZoologyKiel UniversityKielSchleswig‐HolsteinGermany
- Cytology and Evolutionary Biology, Institute of Zoology and MuseumUniversity of GreifswaldGreifswaldMecklenburg‐VorpommernGermany
| |
Collapse
|
3
|
D'Souza S, Siebert T, Fohanno V. A comparison of lower body gait kinematics and kinetics between Theia3D markerless and marker-based models in healthy subjects and clinical patients. Sci Rep 2024; 14:29154. [PMID: 39587194 PMCID: PMC11589150 DOI: 10.1038/s41598-024-80499-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Three-dimensional (3D) marker-based motion capture is the current gold standard to assess and monitor pathological gait in a clinical setting. However, 3D markerless motion capture based on pose estimation is advancing into the field of gait analysis. This study aims at evaluating the lower-body 3D gait kinematics and kinetics from synchronously recorded Theia3D markerless and CAST marker-based systems. Twelve healthy individuals and 34 clinical patients aged 8-61 years walked at self-selected speed over a 13 m long walkway. Similarity between models was statistically analysed using inter-trial variability, root mean square error, Pearson's correlation coefficient and Statistical Parametric Mapping. Inter-trial variability was on average higher for clinical patients in both models. Overall, the markerless system demonstrated similar gait patterns although hip and knee rotations were non-comparable. Pelvic anterior tilt was significantly underestimated. Significant differences especially in peak values at specific phases of the gait cycle were observed across all planes for all joints (more so for clinical patients than healthy subjects) as well as in the sagittal powers of the hip, knee and ankle. Theia3D markerless system offers great potential in gait analysis. This study brings awareness to potential clinical users and researchers where they can have confidence, as well as areas where caution should be exercised.
Collapse
Affiliation(s)
- Sonia D'Souza
- Gait laboratory, Olgahospital/Frauenklinik, Orthopaedic Clinic, Klinikum Stuttgart, Kriegsbergstrasse 62, 70174, Stuttgart, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Center of Simulation Science, University of Stuttgart, Stuttgart, Germany.
| | | |
Collapse
|
4
|
Catania KC. The Cocoon of the Developing Emerald Jewel Wasp (Ampulex compressa) Resists Cannibalistic Predation of the Zombified Host. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:1-10. [PMID: 39369688 PMCID: PMC11878412 DOI: 10.1159/000540971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/13/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION To reproduce, the parasitoid emerald jewel wasp (Ampulex compressa) envenomates an American cockroach (Periplaneta americana) and barricades it in a hole with an egg on the host's leg. The larval wasp feeds externally before entering the host and consuming internal organs before forming a cocoon inside the host carcass. METHODS The vulnerability of jewel wasp larvae to predation by juvenile cockroaches was investigated, and data were recorded with time-lapse videography. RESULTS Cockroaches were found to be predators of parasitized hosts. When parasitized cockroaches were exposed to hungry cockroaches on days 0-8 of development, the developing larva was killed. Eggs were dislodged or consumed, larvae on the leg were eaten, and larvae inside the host were eaten along with the host. On day 9, 80% of the wasp larvae were killed and eaten along with the host. Conversely, on day 10, 90% of the larvae survived. On developmental day 11 or later, the wasp larva always survived, although the host carcass was consumed. Survival depended entirely on whether the cocoon had been completed. CONCLUSION The results highlight the vulnerability of larvae to predation and suggest the cocoon defends from insect mandibles. This may explain the unusual feeding behavior of the jewel wasp larvae, which eat the host with remarkable speed, tapping into the host respiratory system in the process, and consuming vital organs early, in contrast to many other parasitoids. Results are discussed in relation to larval wasp behavior, evolution, and development, and potential predators are considered. INTRODUCTION To reproduce, the parasitoid emerald jewel wasp (Ampulex compressa) envenomates an American cockroach (Periplaneta americana) and barricades it in a hole with an egg on the host's leg. The larval wasp feeds externally before entering the host and consuming internal organs before forming a cocoon inside the host carcass. METHODS The vulnerability of jewel wasp larvae to predation by juvenile cockroaches was investigated, and data were recorded with time-lapse videography. RESULTS Cockroaches were found to be predators of parasitized hosts. When parasitized cockroaches were exposed to hungry cockroaches on days 0-8 of development, the developing larva was killed. Eggs were dislodged or consumed, larvae on the leg were eaten, and larvae inside the host were eaten along with the host. On day 9, 80% of the wasp larvae were killed and eaten along with the host. Conversely, on day 10, 90% of the larvae survived. On developmental day 11 or later, the wasp larva always survived, although the host carcass was consumed. Survival depended entirely on whether the cocoon had been completed. CONCLUSION The results highlight the vulnerability of larvae to predation and suggest the cocoon defends from insect mandibles. This may explain the unusual feeding behavior of the jewel wasp larvae, which eat the host with remarkable speed, tapping into the host respiratory system in the process, and consuming vital organs early, in contrast to many other parasitoids. Results are discussed in relation to larval wasp behavior, evolution, and development, and potential predators are considered.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Bast EM, Marshall NT, Myers KO, Marsh LW, Hurtado MW, Van Zandt PA, Lehnert MS. Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages. Interface Focus 2024; 14:20230051. [PMID: 38618232 PMCID: PMC11008959 DOI: 10.1098/rsfs.2023.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
Collapse
Affiliation(s)
- Elaine M. Bast
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Natalie T. Marshall
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Kendall O. Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Lucas W. Marsh
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | | | | | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| |
Collapse
|
6
|
Rühr PT, Edel C, Frenzel M, Blanke A. A bite force database of 654 insect species. Sci Data 2024; 11:58. [PMID: 38200056 PMCID: PMC10781734 DOI: 10.1038/s41597-023-02731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Bite force is a decisive performance trait in animals because it plays a role for numerous life history components such as food consumption, inter- and intraspecific interactions, and reproductive success. Bite force has been studied across a wide range of vertebrate species, but only for 32 species of insects, the most speciose animal lineage. Here we present the insect bite force database with bite force measurements for 654 insect species covering 476 genera, 111 families, and 13 orders with body lengths ranging from 3.76 to 180.12 mm. In total we recorded 1906 bite force series from 1290 specimens, and, in addition, present basal head, body, and wing metrics. As such, the database will facilitate a wide range of studies on the characteristics, predictors, and macroevolution of bite force in the largest clade of the animal kingdom and may serve as a basis to further our understanding of macroevolutionary processes in relation to bite force across all biting metazoans.
Collapse
Affiliation(s)
- Peter Thomas Rühr
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany.
- Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany.
| | - Carina Edel
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Melina Frenzel
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Kang V, Püffel F, Labonte D. Three-dimensional kinematics of leaf-cutter ant mandibles: not all dicondylic joints are simple hinges. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220546. [PMID: 37839448 PMCID: PMC10577034 DOI: 10.1098/rstb.2022.0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Insects use their mandibles for a variety of tasks, including food processing, material transport, nest building, brood care, and fighting. Despite this functional diversity, mandible motion is typically thought to be constrained to rotation about a single fixed axis. Here, we conduct a direct quantitative test of this 'hinge joint hypothesis' in a species that uses its mandibles for a wide range of tasks: Atta vollenweideri leaf-cutter ants. Mandible movements from live restrained ants were reconstructed in three dimensions using a multi-camera rig. Rigid body kinematic analyses revealed strong evidence that mandible movement occupies a kinematic space that requires more than one rotational degree of freedom: at large opening angles, mandible motion is dominated by yaw. But at small opening angles, mandibles both yaw and pitch. The combination of yaw and pitch allows mandibles to 'criss-cross': either mandible can be on top when mandibles are closed. We observed criss-crossing in freely cutting ants, suggesting that it is functionally important. Combined with recent reports on the diversity of joint articulations in other insects, our results show that insect mandible kinematics are more diverse than traditionally assumed, and thus worthy of further detailed investigation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Siddiqui R, Khan NA. Is the gut microbiome of insects a potential source to meet UN sustainable development goals to eliminate plastic pollution? ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:455-458. [PMID: 37688332 PMCID: PMC10667635 DOI: 10.1111/1758-2229.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 09/10/2023]
Abstract
As insects such as cockroaches can endure high radiation, flourish in unsanitary circumstances, thrive on germ-infested feed, and can even digest the organic polymer cellulose, the gut microbiota of these species likely produces enzymes contributing to their ability to digest a variety of materials. The use of cockroaches as a bio-resource to eliminate plastic is discussed. We explore whether species such as cockroaches are a potential bio-resource to eliminate plastic pollution and contribute to the sustainable development goals adopted by the United Nations as well as the global community to reduce and/or eliminate plastic pollution.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and SciencesAmerican University of SharjahSharjahUnited Arab Emirates
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
- Department of Clinical Sciences, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| |
Collapse
|
9
|
Klunk CL, Argenta MA, Rosumek FB, Schmelzle S, van de Kamp T, Hammel JU, Pie MR, Heethoff M. Simulated biomechanical performance of morphologically disparate ant mandibles under bite loading. Sci Rep 2023; 13:16833. [PMID: 37803099 PMCID: PMC10558566 DOI: 10.1038/s41598-023-43944-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023] Open
Abstract
Insects evolved various modifications to their mouthparts, allowing for a broad exploration of feeding modes. In ants, workers perform non-reproductive tasks like excavation, food processing, and juvenile care, relying heavily on their mandibles. Given the importance of biting for ant workers and the significant mandible morphological diversity across species, it is essential to understand how mandible shape influences its mechanical responses to bite loading. We employed Finite Element Analysis to simulate biting scenarios on mandible volumetric models from 25 ant species classified in different feeding habits. We hypothesize that mandibles of predatory ants, especially trap-jaw ants, would perform better than mandibles of omnivorous species due to their necessity to subdue living prey. We defined simulations to allow only variation in mandible morphology between specimens. Our results demonstrated interspecific differences in mandible mechanical responses to biting loading. However, we found no evident differences in biting performance between the predatory and the remaining ants, and trap-jaw mandibles did not show lower stress levels than other mandibles under bite loading. These results suggest that ant feeding habit is not a robust predictor of mandible biting performance, a possible consequence of mandibles being employed as versatile tools to perform several tasks.
Collapse
Affiliation(s)
- C L Klunk
- Graduate Program in Ecology and Conservation, Universidade Federal do Paraná, Centro Politécnico, Av. Cel. Francisco H. dos Santos, 100 - Jardim das Américas, Curitiba, PR, 81531-980, Brazil.
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
| | - M A Argenta
- Department of Civil Construction, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - F B Rosumek
- Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - S Schmelzle
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany
| | - T van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - J U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - M R Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire, UK
| | - M Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
| |
Collapse
|
10
|
Adeola F, Lailvaux S. Bite force, body size, and octopamine mediate mating interactions in the house cricket (Acheta domesticus). J Evol Biol 2023; 36:1494-1502. [PMID: 37737492 DOI: 10.1111/jeb.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Mating interactions are rife with conflict because the evolutionary interests of males and females seldom coincide. Intersexual conflict affects sexual selection, yet the proximate factors underlying male coercive ability and female resistance are poorly understood. Male combat outcomes are often influenced by bite force, with superior biters being more likely to achieve victory over poorer biters in a range of species, including crickets. If good performers also achieve mating success through sexual coercion, then bite force might play a role in intersexual conflict as well. We tested the capacity of bite force to influence mating interactions in house crickets both directly by measuring bite forces of males and females and by altering male bite capacity through neuropharmacological manipulation. In addition, the invertebrate neurotransmitter octopamine both mediates aggression and underlies motivation to bite in male house crickets. By blocking octopamine receptors through the application of an antagonist, epinastine, we tested the effects of reduced bite force on male mating success. Our results show that male bite capacity, in combination with body size, influences both the likelihood and the outcomes of mating interactions, whereas treatment of males with epinastine eliminates motivation to mate. Our results suggest a functional role for bite force in affecting both sexual conflict and sexual selection and expand our knowledge of the influence of biogenic amines on reproductive behaviour.
Collapse
Affiliation(s)
- Fadeke Adeola
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Simon Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Püffel F, Johnston R, Labonte D. A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221066. [PMID: 36816849 PMCID: PMC9929505 DOI: 10.1098/rsos.221066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have a significant ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance, and its variation with mandible gape. To address this gap, we derived a biomechanical model that characterizes the relationship between bite force and mandibular opening angle from first principles. We validate this model by comparing its geometric predictions with morphological measurements on the muscoloskeletal bite apparatus of Atta cephalotes leaf-cutter ants, using computed tomography (CT) scans obtained at different mandible opening angles. We then demonstrate its deductive and inductive utility with three examplary use cases: Firstly, we extract the physiological properties of the leaf-cutter ant mandible closer muscle from in vivo bite force measurements. Secondly, we show that leaf-cutter ants are specialized to generate extraordinarily large bite forces, equivalent to about 2600 times their body weight. Thirdly, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that a more detailed quantitative understanding of the link between morphology, physiology, and bite performance will facilitate future comparative studies on the insect bite apparatus, and help to advance our knowledge of the behaviour, ecology and evolution of arthropods.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Johnston
- School of Engineering, Materials Research Centre, Swansea University, Swansea SA2 8PP, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Siddiqui R, Elmashak Y, Khan NA. Cockroaches: a potential source of novel bioactive molecule(s) for the benefit of human health. APPLIED ENTOMOLOGY AND ZOOLOGY 2022; 58:1-11. [PMID: 36536895 PMCID: PMC9753028 DOI: 10.1007/s13355-022-00810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cockroaches are one of the hardiest insects that have survived on this planet for millions of years. They thrive in unhygienic environments, are able to survive without food for up to 30 days, without air for around 45 min and being submerged under water for 30 min. Cockroaches are omnivorous and feed on a variety of foods, including cellulose and plastic, to name a few. It is intriguing that cockroaches are able to endure and flourish under conditions that are harmful to Homo sapiens. Given the importance of the gut microbiome on its' host physiology, we postulate that the cockroach gut microbiome and/or its metabolites, may be contributing to their "hardiness", which should be utilized for the discovery of biologically active molecules for the benefit of human health. Herein, we discuss the biology, diet/habitat of cockroaches, composition of gut microbiome, cellular senescence, and resistance to infectious diseases and cancer. Furthermore, current knowledge of the genome and epigenome of these remarkable species is considered. Being one of the most successful and diverse insects, as well as their extensive use in traditional and Chinese medicine, the lysates/extracts and gut microbial metabolites of cockroaches may offer a worthy resource for novel bioactive molecule(s) of therapeutic potential for the benefit of human health and may be potentially used as probiotics.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Yara Elmashak
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| |
Collapse
|
13
|
Josten B, Gorb SN, Büsse S. The mouthparts of the adult dragonfly Anax imperator (Insecta: Odonata), functional morphology and feeding kinematics. J Morphol 2022; 283:1163-1181. [PMID: 35848446 DOI: 10.1002/jmor.21497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Insects evolved differently specialized mouthparts. We study the mouthparts of adult Anax imperator, one of the largest odonates found in Central Europe. Like all adult dragonflies, A. imperator possesses carnivorous-type of biting-chewing mouthparts. To gain insights into the feeding process, behavior and kinematics, living specimens were filmed during feeding using synchronized high-speed videography. Additionally, the maximum angles of movement were measured using a measuring microscope and combined with data from micro-computed tomography (µCT). The resulting visualizations of the 3D-geometry of each mouthpart were used to study their anatomy and complement the existing descriptive knowledge of muscles in A. imperator to date. Furthermore, CLSM-projections allow for estimation of differences in the material composition of the mouthparts' cuticle. By combining all methods, we analyze possible functions and underlying biomechanics of each mouthpart. We also analyzed the concerted movements of the mouthparts; unique behavior of the mouthparts during feeding is active participation by the labrum and distinct movement by the maxillary laciniae. We aim to elucidate the complex movements of the mouthparts and their functioning by combining detailed information on (1) in vivo movement behavior (supplemented with physiological angle approximations), (2) movement ability provided by morphology (morphological movement angles), (3) 3D-anatomy, and (4) cuticle composition estimates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benedikt Josten
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
14
|
Rühr PT, Blanke A. forceX
and
forceR
: a mobile setup and R package to measure and analyse a wide range of animal closing forces. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter T. Rühr
- Institute of Evolutionary Biology and Animal Ecology University of Bonn, An der Immenburg 1 Bonn Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology University of Bonn, An der Immenburg 1 Bonn Germany
| |
Collapse
|
15
|
Wipfler B, Triesch F, Evangelista D, Weihmann T. Morphological, functional, and phylogenetic aspects of the head capsule of the cockroach Ergaula capucina (Insecta/Blattodea). PeerJ 2022; 10:e12470. [PMID: 35462775 PMCID: PMC9029459 DOI: 10.7717/peerj.12470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/20/2021] [Indexed: 01/06/2023] Open
Abstract
Background Cockroaches are usually typical omnivorous detritivores and their cephalic morphology is considered to be ancestral in various aspects. Thus, several studies addressed the morphology and function of the blattodean head, and the cockroach usually serves as a model for standard mouthparts in text books. However, so far only two of the three major lineages of Blattodea have been studied and no detailed information for the head of any Corydioidea was available. The present study closes this gap by providing a detailed morphological description of the head of Ergaula capucina, studying some important functional parameters of the mandible and discussing it in a phylogenetic framework. Methods The cephalic morphology of Ergaula studied in detail using a broad set of different techniques including digital microscopy, µ-computed tomography, and 3-dimensional reconstructions. Concerning the functional morphology of the mandible, we compared the volume and effective cross sections of the eight compartments of the primary mandibular adductor muscle for Ergaula, Blattella germanica, and Salganea rossi and measured the mechanical advantage, i.e., the force transmission ratio for all teeth of the mandible of Ergaula. Results The head capsule of Ergaula is characterized by a strong sexual dimorphism and typical orthopteran mouthparts. It resembles the head capsule of other roaches in several respects and confirms oesotendons, the reduction of the mesal occelus, and bipartite M. verticopharyngealis and M. hypopharyngosalivaris as blattodean apomorphies. But it also shows some unique adaptations. It is the first described cockroach that lacks the dorsal tentorial arms which has various consequences for the cephalic musculature. On the maxillary lacinia, Ergaula is the first described blattodean to show strong and blunt setae instead of a lacinula, which might be homologues to the dentisetae of dragonflies and mayflies. Like other corydiid roaches that inhabit xeric areas, Ergaula has an atmospheric water-vapor absorption mechanism that includes a gland and a ductus on the epipharnyx and bladders on the hypopharynx. The mandibular adductor is in cockroaches asymmetric, a pattern not found in termites, mantids, or other closely related insects.
Collapse
Affiliation(s)
- Benjamin Wipfler
- Morphologielabor, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Felix Triesch
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Dominic Evangelista
- Biology Department, Adelphi University, Garden City, New York, United States of America
| | - Tom Weihmann
- Department of Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Katzke J, Puchenkov P, Stark H, Economo EP. A Roadmap to Reconstructing Muscle Architecture from CT Data. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac001. [PMID: 35211665 PMCID: PMC8857456 DOI: 10.1093/iob/obac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 02/02/2023]
Abstract
Skeletal muscle is responsible for voluntary force generation across animals, and muscle architecture largely determines the parameters of mechanical output. The ability to analyze muscle performance through muscle architecture is thus a key step towards better understanding the ecology and evolution of movements and morphologies. In pennate skeletal muscle, volume, fiber lengths, and attachment angles to force transmitting structures comprise the most relevant parameters of muscle architecture. Measuring these features through tomographic techniques offers an alternative to tedious and destructive dissections, particularly as the availability of tomographic data is rapidly increasing. However, there is a need for streamlined computational methods to access this information efficiently. Here, we establish and compare workflows using partially automated image analysis for fast and accurate estimation of animal muscle architecture. After isolating a target muscle through segmentation, we evaluate freely available and proprietary fiber tracing algorithms to reconstruct muscle fibers. We then present a script using the Blender Python API to estimate attachment angles, fiber lengths, muscle volume, and physiological cross-sectional area. We apply these methods to insect and vertebrate muscle and provide guided workflows. Results from fiber tracing are consistent compared to manual measurements but much less time-consuming. Lastly, we emphasize the capabilities of the open-source three-dimensional software Blender as both a tool for visualization and a scriptable analytic tool to process digitized anatomical data. Across organisms, it is feasible to extract, analyze, and visualize muscle architecture from tomography data by exploiting the spatial features of scans and the geometric properties of muscle fibers. As digital libraries of anatomies continue to grow, the workflows and approach presented here can be part of the open-source future of digital comparative analysis.
Collapse
Affiliation(s)
| | - Pavel Puchenkov
- Scientific Computing and Data Analysis Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495 Okinawa, Japan
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Fürstengraben 1,07743 Jena, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495 Okinawa, Japan
| |
Collapse
|
17
|
Chen L, Gu JJ, Yang Q, Ren D, Blanke A, Béthoux O. Ovipositor and mouthparts in a fossil insect support a novel ecological role for early orthopterans in 300 million years old forests. eLife 2021; 10:e71006. [PMID: 34844668 PMCID: PMC8631945 DOI: 10.7554/elife.71006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
A high portion of the earliest known insect fauna is composed of the so-called 'lobeattid insects', whose systematic affinities and role as foliage feeders remain debated. We investigated hundreds of samples of a new lobeattid species from the Xiaheyan locality using a combination of photographic techniques, including reflectance transforming imaging, geometric morphometrics, and biomechanics to document its morphology, and infer its phylogenetic position and ecological role. Ctenoptilus frequens sp. nov. possessed a sword-shaped ovipositor with valves interlocked by two ball-and-socket mechanisms, lacked jumping hind-legs, and certain wing venation features. This combination of characters unambiguously supports lobeattids as stem relatives of all living Orthoptera (crickets, grasshoppers, katydids). Given the herein presented and other remains, it follows that this group experienced an early diversification and, additionally, occurred in high individual numbers. The ovipositor shape indicates that ground was the preferred substrate for eggs. Visible mouthparts made it possible to assess the efficiency of the mandibular food uptake system in comparison to a wide array of extant species. The new species was likely omnivorous which explains the paucity of external damage on contemporaneous plant foliage.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal UniversityBeijingChina
| | - Jun-Jie Gu
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural UniversityChengduChina
| | - Qiang Yang
- School of Life Sciences, Guangzhou University, 230 Waihuanxi Road, Guangzhou Higher Education Mega CenterGuangzhouChina
| | - Dong Ren
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal UniversityBeijingChina
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of BonnBonnGermany
| | - Olivier Béthoux
- CR2P (Centre de Recherche en Paléontologie – Paris), MNHN – CNRS – Sorbonne Université; Muséum National d’Histoire NaturelleParisFrance
| |
Collapse
|
18
|
Ali KA, Willenborg CJ. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: A review. Ecol Evol 2021; 11:13702-13722. [PMID: 34707812 PMCID: PMC8525183 DOI: 10.1002/ece3.7898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Species of carabid (ground) beetles are among the most important postdispersal weed seed predators in temperate arable lands. Field studies have shown that carabid beetles can remove upwards of 65%-90% of specific weed seeds shed in arable fields each year. Such data do not explain how and why carabid predators go after weed seeds, however. It remains to be proven that weed seed predation by carabids is a genuine ecological interaction driven by certain ecological factors or functional traits that determine interaction strength and power predation dynamics, bringing about therefore a natural regulation of weed populations. Along these lines, this review ties together the lines of evidence around weed seed predation by carabid predators. Chemoperception rather than vision seems to be the primary sensory mechanism guiding seed detection and seed selection decisions in carabid weed seed predators. Selection of weed seeds by carabid seed predators appears directed rather than random. Yet, the nature of the chemical cues mediating detection of different seed species and identification of the suitable seed type among them remains unknown. Selection of certain types of weed seeds cannot be predicted based on seed chemistry per se in all cases, however. Rather, seed selection decisions are ruled by sophisticated behavioral mechanisms comprising the assessment of both chemical and physical characteristics of the seed. The ultimate selection of certain weed seed types is determined by how the chemical and physical properties of the seed match with the functional traits of the predator in terms of seed handling ability. Seed density, in addition to chemical and physical seed traits, is also an important factor that is likely to shape seed selection decisions in carabid weed seed predators. Carabid responses to seed density are rather complex as they are influenced not only by seed numbers but also by trait-based suitability ranks of the different seed types available in the environment.
Collapse
Affiliation(s)
- Khaldoun A. Ali
- Plant Sciences DepartmentCollege of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSKCanada
| | - Christian J. Willenborg
- Plant Sciences DepartmentCollege of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
19
|
Püffel F, Pouget A, Liu X, Zuber M, van de Kamp T, Roces F, Labonte D. Morphological determinants of bite force capacity in insects: a biomechanical analysis of polymorphic leaf-cutter ants. J R Soc Interface 2021; 18:20210424. [PMID: 34493090 PMCID: PMC8424304 DOI: 10.1098/rsif.2021.0424] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
The extraordinary success of social insects is partially based on division of labour, i.e. individuals exclusively or preferentially perform specific tasks. Task preference may correlate with morphological adaptations so implying task specialization, but the extent of such specialization can be difficult to determine. Here, we demonstrate how the physical foundation of some tasks can be leveraged to quantitatively link morphology and performance. We study the allometry of bite force capacity in Atta vollenweideri leaf-cutter ants, polymorphic insects in which the mechanical processing of plant material is a key aspect of the behavioural portfolio. Through a morphometric analysis of tomographic scans, we show that the bite force capacity of the heaviest colony workers is twice as large as predicted by isometry. This disproportionate 'boost' is predominantly achieved through increased investment in muscle volume; geometrical parameters such as mechanical advantage, fibre length or pennation angle are likely constrained by the need to maintain a constant mandibular opening range. We analyse this preference for an increase in size-specific muscle volume and the adaptations in internal and external head anatomy required to accommodate it with simple geometric and physical models, so providing a quantitative understanding of the functional anatomy of the musculoskeletal bite apparatus in insects.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Anaya Pouget
- Department of Bioengineering, Imperial College London, London, UK
| | - Xinyue Liu
- Department of Bioengineering, Imperial College London, London, UK
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
20
|
Krings W, Neumann C, Neiber MT, Kovalev A, Gorb SN. Radular force performance of stylommatophoran gastropods (Mollusca) with distinct body masses. Sci Rep 2021; 11:10560. [PMID: 34006949 PMCID: PMC8131350 DOI: 10.1038/s41598-021-89892-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
The forces exerted by the animal's food processing structures can be important parameters when studying trophic specializations to specific food spectra. Even though molluscs represent the second largest animal phylum, exhibiting an incredible biodiversity accompanied by the establishment of distinct ecological niches including the foraging on a variety of ingesta types, only few studies focused on the biomechanical performance of their feeding organs. To lay a keystone for future research in this direction, we investigated the in vivo forces exerted by the molluscan food gathering and processing structure, the radula, for five stylommatophoran species (Gastropoda). The chosen species and individuals have a similar radular morphology and motion, but as they represent different body mass classes, we were enabled to relate the forces to body mass. Radular forces were measured along two axes using force transducers which allowed us to correlate forces with the distinct phases of radular motion. A radular force quotient, AFQ = mean Absolute Force/bodymass0.67, of 4.3 could be determined which can be used further for the prediction of forces generated in Gastropoda. Additionally, some specimens were dissected and the radular musculature mass as well as the radular mass and dimensions were documented. Our results depict the positive correlation between body mass, radular musculature mass, and exerted force. Additionally, it was clearly observed that the radular motion phases, exerting the highest forces during feeding, changed with regard to the ingesta size: all smaller gastropods rather approached the food by a horizontal, sawing-like radular motion leading to the consumption of rather small food particles, whereas larger gastropods rather pulled the ingesta in vertical direction by radula and jaw resulting in the tearing of larger pieces.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Charlotte Neumann
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Marco T Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
21
|
Ospina-Garcés SM, Ibarra-Juarez LA, Escobar F, Lira-Noriega A. Growth temperature effect on mandibles' ontogeny and sexual dimorphism in the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101029. [PMID: 33607463 DOI: 10.1016/j.asd.2021.101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Ambrosia beetles from the genus Xyleborus are important vectors of fungal pathogens in forest and agricultural systems, yet the influence of temperature on their morphological development has been poorly studied. Because host colonization and ambrosial fungi cultivation is mostly restricted to females, it is possible to speculate on strong sexual dimorphism expression in secondary sexual characters and ecological segregation between sexes. Here, we determined the effect of different growing temperatures (17, 23, 26 and 29 °C) on mandible ontogeny of larvae and adult individuals of X. affinis, and sexual dimorphism in adults, in shape and size variation using geometric morphometrics. Mandible shape change showed significant differences in magnitude and direction through larval ontogeny among temperature treatments. Sexual shape and size dimorphism were found in adult mandibles, and the degree of sexual dimorphism was dependent on growth temperature, with a significant effect of the interaction between temperature and sex on mandible shape and size variation. Higher morphological differences were observed at the base of mandibles among temperature treatments in adults and a gradual narrowing trend with temperature increments. These findings could have consequences on feeding performance and fungus cultivation inside colonies, potentially influencing their ability to establish populations in new geographical areas.
Collapse
Affiliation(s)
- Sandra M Ospina-Garcés
- Instituto de Ecología, A. C., Red de Ecoetología, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México; Museo de Zoología "Alfonso L. Herrera", Facultad de Ciencias, Universidad Nacional Autónoma de México, México
| | - Luis A Ibarra-Juarez
- CONACYT Research Fellow, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México
| | - Federico Escobar
- Instituto de Ecología, A. C., Red de Ecoetología, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México
| | - Andrés Lira-Noriega
- CONACYT Research Fellow, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México.
| |
Collapse
|
22
|
Gundiah N, Jaddivada S. Making the cut: mechanics of cutting and steering of insect probes. CURRENT OPINION IN INSECT SCIENCE 2020; 42:84-89. [PMID: 33038534 DOI: 10.1016/j.cois.2020.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Many insects forage, oviposit or inject venom in their prey by penetrating or cutting through substrates. From a physical perspective, cutting involves creation of new free surfaces. The cutting parts of insects, such as their mandibles or ovipositor tips, are often zinc-enriched and hardened as compared to the other cuticular regions. Whereas tip hardening is key to their ability to penetrate surfaces, it is often also important for probes to be maneuverable through substrates. How do insect probes negotiate the trade-off between cutting and steering through substrates of diverse stiffness? To address this question, we review the morphology, mechanics, and adaptations in the cutting parts of various insects. Understanding these mechanisms will allow us to develop biomimetic tools, including agricultural and surgical tools, that can both cut and steer through diverse substrates.
Collapse
Affiliation(s)
- Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| | - Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
23
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
24
|
Schmelzle S, Blüthgen N. Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). Front Zool 2019; 16:24. [PMID: 31312228 PMCID: PMC6611053 DOI: 10.1186/s12983-019-0325-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mechanical defenses are very common and diverse in prey species, for example in oribatid mites. Here, the probably most complex form of morphological defense is known as ptychoidy, that enables the animals to completely retract the appendages into a secondary cavity and encapsulate themselves. The two groups of ptychoid mites constituting the Ptyctima, i.e. Euphthiracaroidea and Phthiracaroidea, have a hardened cuticle and are well protected against similar sized predators. Euphthiracaroidea additionally feature predator-repelling secretions. Since both taxa evolved within the glandulate group of Oribatida, the question remains why Phthiracaroidea lost this additional protection. In earlier predation bioassays, chemically disarmed specimens of Euphthiracaroidea were cracked by the staphylinid beetle Othius punctulatus, whereas equally sized specimens of Phthiracaroidea survived. We thus hypothesized that Phthiracaroidea can withstand significantly more force than Euphthiracaroidea and that the specific body form in each group is key in understanding the loss of chemical defense in Phthiracaroidea. To measure force resistance, we adapted the principle of machines applying compressive forces for very small animals and tested the two ptyctimous taxa as well as the soft-bodied mite Archegozetes longisetosus. Results Some Phthiracaroidea individuals sustained about 560,000 times their body weight. Their mean resistance was about three times higher, and their mean breaking point in relation to body weight nearly two times higher than Euphthiracaroidea individuals. The breaking point increased with body weight and differed significantly between the two taxa. Across taxa, the absolute force resistance increased sublinearly (with a 0.781 power term) with the animal's body weight. Force resistance of A. longisetosus was inferior in all tests (about half that of Euphthiracaroidea after accounting for body weight). As an important determinant of mechanical resistance in ptychoid mites, the individuals' cuticle thickness increased sublinearly with body diameter and body mass as well and did not differ significantly between the taxa. Conclusion We showed the feasibility of the force resistance measurement method, and our results were consistent with the hypothesis that Phthiracaroidea compensated its lack of chemical secretions by a heavier mechanical resistance based on a different body form and associated build-up of hemolymph pressure (defensive trade-off).
Collapse
Affiliation(s)
- Sebastian Schmelzle
- Department of Biology, Ecological Networks, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287 Darmstadt, Germany
| | - Nico Blüthgen
- Department of Biology, Ecological Networks, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287 Darmstadt, Germany
| |
Collapse
|
25
|
Blanke A, Pinheiro M, Watson PJ, Fagan MJ. A biomechanical analysis of prognathous and orthognathous insect head capsules: evidence for a many-to-one mapping of form to function. J Evol Biol 2018; 31:665-674. [PMID: 29444377 DOI: 10.1111/jeb.13251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
Abstract
Insect head shapes are remarkably variable, but the influences of these changes on biomechanical performance are unclear. Among 'basal' winged insects, such as dragonflies, mayflies, earwigs and stoneflies, some of the most prominent anatomical changes are the general mouthpart orientation, eye size and the connection of the endoskeleton to the head. Here, we assess these variations as well as differing ridge and sclerite configurations using modern engineering methods including multibody dynamics modelling and finite element analysis in order to quantify and compare the influence of anatomical changes on strain in particular head regions and the whole head. We show that a range of peculiar structures such as the genal/subgenal, epistomal and circumocular areas are consistently highly loaded in all species, despite drastically differing morphologies in species with forward-projecting (prognathous) and downward-projecting (orthognathous) mouthparts. Sensitivity analyses show that the presence of eyes has a negligible influence on head capsule strain if a circumocular ridge is present. In contrast, the connection of the dorsal endoskeletal arms to the head capsule especially affects overall head loading in species with downward-projecting mouthparts. Analysis of the relative strains between species for each head region reveals that concerted changes in head substructures such as the subgenal area, the endoskeleton and the epistomal area lead to a consistent relative loading for the whole head capsule and vulnerable structures such as the eyes. It appears that biting-chewing loads are managed by a system of strengthening ridges on the head capsule irrespective of the general mouthpart and head orientation. Concerted changes in ridge and endoskeleton configuration might allow for more radical anatomical changes such as the general mouthpart orientation, which could be an explanation for the variability of this trait among insects. In an evolutionary context, many-to-one mapping of strain patterns onto a relatively similar overall head loading indeed could have fostered the dynamic diversification processes seen in insects.
Collapse
Affiliation(s)
- A Blanke
- Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany.,Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, UK
| | - M Pinheiro
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, UK
| | - P J Watson
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, UK
| | - M J Fagan
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, UK
| |
Collapse
|
26
|
Blanke A, Schmitz H, Patera A, Dutel H, Fagan MJ. Form-function relationships in dragonfly mandibles under an evolutionary perspective. J R Soc Interface 2017; 14:20161038. [PMID: 28330989 PMCID: PMC5378138 DOI: 10.1098/rsif.2016.1038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/02/2017] [Indexed: 11/12/2022] Open
Abstract
Functional requirements may constrain phenotypic diversification or foster it. For insect mouthparts, the quantification of the relationship between shape and function in an evolutionary framework remained largely unexplored. Here, the question of a functional influence on phenotypic diversification for dragonfly mandibles is assessed with a large-scale biomechanical analysis covering nearly all anisopteran families, using finite element analysis in combination with geometric morphometrics. A constraining effect of phylogeny could be found for shape, the mandibular mechanical advantage (MA), and certain mechanical joint parameters, while stresses and strains, the majority of joint parameters and size are influenced by shared ancestry. Furthermore, joint mechanics are correlated with neither strain nor mandibular MA and size effects have virtually play no role for shape or mechanical variation. The presence of mandibular strengthening ridges shows no phylogenetic signal except for one ridge peculiar to Libelluloidea, and ridge presence is also not correlated with each other. The results suggest that functional traits are more variable at this taxonomic level and that they are not influenced by shared ancestry. At the same time, the results contradict the widespread idea that mandibular morphology mainly reflects functional demands at least at this taxonomic level. The varying functional factors rather lead to the same mandibular performance as expressed by the MA, which suggests a many-to-one mapping of the investigated parameters onto the same narrow mandibular performance space.
Collapse
Affiliation(s)
- Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Helmut Schmitz
- Institute for Zoology, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - Alessandra Patera
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
- Centre d'Imagerie BioMedicale, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Hugo Dutel
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Michael J Fagan
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
27
|
Blanke A, Watson PJ, Holbrey R, Fagan MJ. Computational biomechanics changes our view on insect head evolution. Proc Biol Sci 2017; 284:20162412. [PMID: 28179518 PMCID: PMC5310608 DOI: 10.1098/rspb.2016.2412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution.
Collapse
Affiliation(s)
- Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Peter J Watson
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Richard Holbrey
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Michael J Fagan
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
28
|
David S, Funken J, Potthast W, Blanke A. Musculoskeletal modelling under an evolutionary perspective: deciphering the role of single muscle regions in closely related insects. J R Soc Interface 2016; 13:20160675. [PMID: 27707910 PMCID: PMC5095224 DOI: 10.1098/rsif.2016.0675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 11/12/2022] Open
Abstract
Insects show a remarkable diversity of muscle configurations, yet the factors leading to this functional diversity are poorly understood. Here, we use musculoskeletal modelling to understand the spatio-temporal activity of an insect muscle in several dragonfly species and to reveal potential mechanical factors leading to a particular muscle configuration. Bite characteristics potentially show systematic signal, but absolute bite force is not correlated with size. Muscle configuration and inverse dynamics show that the wider relative area of muscle attachment and the higher activity of subapical muscle groups are responsible for this high bite force. This wider attachment area is, however, not an evolutionary trend within dragonflies. Our inverse dynamic data, furthermore, show that maximum bite forces most probably do not reflect maximal muscle force production capability in all studied species. The thin head capsule and the attachment areas of muscles most probably limit the maximum force output of the mandibular muscles.
Collapse
Affiliation(s)
- Sina David
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Johannes Funken
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany ARCUS Clinics Pforzheim, Rastatter Strasse 17-19, 75179 Pforzheim, Germany
| | - Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
29
|
David S, Funken J, Potthast W, Blanke A. Musculoskeletal modeling of the dragonfly mandible system as an aid to understanding the role of single muscles in an evolutionary context. J Exp Biol 2016; 219:1041-9. [DOI: 10.1242/jeb.132399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022]
Abstract
Insects show a high variety of mouthpart and muscle configurations, however, their mouthpart kinematics and muscle activation patterns are known fragmentary. Understanding the role of muscle groups during movement and comparing them between insect groups could yield insights into evolutionary patterns and functional constraints. Here, we develop a mathematical inverse dynamic model including distinct muscles for an insect head-mandible-muscle complex based on micro computed tomography (µCT) data and bite force measurements. With the advent of µCT it is now possible to obtain precise spatial information about muscle attachment areas and head capsule construction in insects. Our model shows a distinct activation pattern for certain fiber groups potentially related to a geometry dependent optimization. Muscle activation patterns suggest that intramandibular muscles play a minor role for bite force generation which is a potential reason for their loss in several lineages of higher insects. Our model is in agreement with previous studies investigating fast and slow muscle fibers and is able to resolve the spatio-temporal activation patterns of these different muscle types in insects. The model used here has a high potential for comparative large scale analyses on the role of different muscle setups and head capsule designs in the megadiverse insects in order to aid our understanding of insect head capsule and mouthpart evolution under mechanical constraints.
Collapse
Affiliation(s)
- Sina David
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Johannes Funken
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
- ARCUS Clinics Pforzheim, Rastatter Strasse 17-19, 75179 Pforzheim, Germany
| | - Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|