1
|
Maldonado-Ruiz P. The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol. Microorganisms 2024; 12:2451. [PMID: 39770654 PMCID: PMC11676601 DOI: 10.3390/microorganisms12122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community. Many bacterial taxa frequently reported in ticks include soil, plant, and animal-associated microbes, suggesting many are environmentally acquired, including members with known entomopathogenic potential, such as Bacillus thuringiensis, Bacillus spp., and Pseudomonas spp. It has been reported that microbial community composition can impact pathogen persistence, dissemination, and fitness in ticks. In the United States, Ixodes scapularis (northeast) and I. pacificus (west) are the predominant vectors of Borrelia burgdorferi, the causal agent of Lyme disease. Amblyomma americanum is another important tick vector in the U.S. and is becoming an increasing concern as it is the leading cause of alpha-gal syndrome (AGS, or red meat allergy). This condition is caused by tick bites containing the galactose alpha 1,3 galactose (alpha-gal) epitope in their saliva. In this paper, we present a summary of the tick microbiome, including the endosymbiotic bacteria and the environmentally acquired (here referred to as the non-endosymbiotic community). We will focus on the non-endosymbiotic bacteria from Ixodes spp. and Amblyomma americanum and discuss their potential for novel biocontrol strategies.
Collapse
Affiliation(s)
- Paulina Maldonado-Ruiz
- Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
2
|
Jiang S, Kang M, Li Z, Han X, Chen C, He S, Hu X, He Y, Wang Y, Li Z, Chen J, Geng P, Chen Q, Ma J, Zhang X, Tai X, Li Y. The impact of bloodmeal and geographic region on the richness, diversity, and function of internal microbial community in Haemaphysalis qinghaiensis from the Qinghai province, China. Heliyon 2024; 10:e35429. [PMID: 39165970 PMCID: PMC11334854 DOI: 10.1016/j.heliyon.2024.e35429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background Ticks are ectoparasites that feed on blood and pose a threat to both the livestock industry and public health due to their ability to transmit pathogens through biting. However, the impact of factors such as bloodmeal and geographic regions on the bacterial microbiota of Haemaphysalis qinghaiensis remains poorly understood. Methods In this study, we used the v3-v4 region of the 16S rRNA gene to sequence the microbiota of Haemaphysalis qinghaiensis from eight groups (HY_M, YS_M, XH_M, LD_M, BM_M, LD_F_F, LD_F, and BM_F_F) in Qinghai Province. Results Significant differences in bacterial richness were observed between LD_F_F, BM_F_F, and LD_F (P < 0.01), and among the five groups (HY_M, YS_M, XH_M, BM_M, and LD_M) (P < 0.05). The bacterial diversity also differed significantly between LD_F_F, LD_F, and BM_F_F (P < 0.01), as well as among the five groups (HY_M, YS_M, XH_M, LD_M, and BM_M) (P < 0.01). The group with the highest number of operational taxonomic units (OTUs) was LD_F, accounting for 23.93 % (419/1751), while BM_F_F accounted for at least 0.80 % (14/1751). At the phylum level, Firmicutes was the most abundant, with relative abundance ranging from 7.44 % to 96.62 %. At the genus level, Staphylococcus had the highest abundance, ranging from 1.67 % to 97.53 %. The endosymbiotic bacteria Coxiella and Rickettsia were predominantly enriched in LD_F_F. Additionally, the 16S gene of Coxiella showed the highest identity of 99.07 % with Coxiella sp. isolated from Xinxiang hl9 (MG9066 71.1), while the 16S gene of Rickettsia had 100 % identity with Candidatus Rickettsia hongyuanensis strains (OK 662395.1). Functional predictions for the prokaryotic microbial community indicated that the main functional categories were Metabolic, Genetic information processing, and Environmental information processing across the eight groups. Conclusion This study provides a theoretical basis for the prevention and treatment of tick-borne diseases, which is of great significance for public health.
Collapse
Affiliation(s)
- Shuo Jiang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ming Kang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Zengkui Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiaoling Han
- Qinghai National Park Research, Monitoring and Evaluation Center, Xining, 810008, Qinghai, China
| | - Changjiang Chen
- Huangyuan Animal Husbandry and Veterinary Station, Xining, 810016, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park, Xining, 810016, Qinghai, China
| | - Xiaoyu Hu
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yongcai He
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yuezhong Wang
- Huangnan Prefecture Animal Disease Prevention and Control Center, Tongren, 811300, Qinghai, China
| | - Zhongyu Li
- Qinghai Xunhua Salar Autonomous County Animal Husbandry and Veterinary Station, Haidong, 811100, Qinghai, China
| | - Jiyong Chen
- Yushu Animal Disease Prevention and Control Center, Yushu, 815099, Qinghai, China
| | - Pengcheng Geng
- Golog Tibetan Autonomous Prefecture Animal Epidemic Disease Prevention Control Center, Golog, 814000, Qinghai, China
| | - Qiang Chen
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Jinghua Ma
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiao Zhang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ximei Tai
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ying Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, 810016, Qinghai, China
| |
Collapse
|
3
|
Martinez-Villegas L, Lado P, Klompen H, Wang S, Cummings C, Pesapane R, Short SM. The microbiota of Amblyomma americanum reflects known westward expansion. PLoS One 2024; 19:e0304959. [PMID: 38857239 PMCID: PMC11164389 DOI: 10.1371/journal.pone.0304959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Paula Lado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
| | - Selena Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Caleb Cummings
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Day CA, Butler RA, Durick HE, Chandler JG, Paulsen DJ, Mordoh SL, Foggin C, Parry R, Moyo I, Russo L, Kennedy MA, Trout Fryxell RT. An ecological and epidemiological single-season survey of Anaplasma and Ehrlichia positive ticks in Victoria Falls National Park, Zimbabwe. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:195-208. [PMID: 36695750 DOI: 10.1111/mve.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/21/2022] [Indexed: 05/18/2023]
Abstract
There is an urgent need for continued research on the ecology of tick-borne diseases in Africa. Our objective was to provide a preliminary description of the ecology and epidemiology of tick species, tick-borne pathogens, and animal hosts in Zimbabwe, focusing efforts at Victoria Falls National Park, for a single season. We tested the hypothesis that tick surveillance and pathogen screening data can be used to model associations among ticks, hosts, and pathogens. We collected ticks from domesticated animals and wildlife in Zimbabwe and screened the ticks for the presence of Anaplasma and Ehrlichia bacteria. Nearly 30% of the screened ticks were PCR-positive; 89% of tick species were PCR-positive, and 88% of animal species carried at least one PCR-positive tick. We sequenced a subset of amplicons that were similar to three Anaplasma species and three Ehrlichia species. The odds of a tick being PCR-positive increased when many ticks were collected from the host or the tick was collected from a cow (domesticated animal). Tick species shared host species more often than expected. We demonstrate that ticks in northwestern Zimbabwe present a One Health problem for nearby wildlife and humans.
Collapse
Affiliation(s)
- C A Day
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - R A Butler
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - H E Durick
- Center for Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - J G Chandler
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - David J Paulsen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - S L Mordoh
- Center for Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - C Foggin
- Victoria Falls Wildlife Trust, Victoria Falls, Zimbabwe
| | - R Parry
- Victoria Falls Wildlife Trust, Victoria Falls, Zimbabwe
| | - I Moyo
- Victoria Falls Wildlife Trust, Victoria Falls, Zimbabwe
| | - L Russo
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - M A Kennedy
- Center for Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - R T Trout Fryxell
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
5
|
Adegoke A, Kumar D, Budachetri K, Karim S. Hematophagy and tick-borne Rickettsial pathogen shape the microbial community structure and predicted functions within the tick vector, Amblyomma maculatum. Front Cell Infect Microbiol 2022; 12:1037387. [PMID: 36478675 PMCID: PMC9719966 DOI: 10.3389/fcimb.2022.1037387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ticks are the primary vectors of emerging and resurging pathogens of public health significance worldwide. Analyzing tick bacterial composition, diversity, and functionality across developmental stages and tissues is crucial for designing new strategies to control ticks and prevent tick-borne diseases. Materials and methods Here, we explored the microbial communities across the developmental timeline and in different tissues of the Gulf-Coast ticks (Amblyomma maculatum). Using a high-throughput sequencing approach, the influence of blood meal and Rickettsia parkeri, a spotted fever group rickettsiae infection in driving changes in microbiome composition, diversity, and functionality was determined. Results This study shows that the core microbiome of Am. maculatum comprises ten core bacterial genera. The genus Rickettsia, Francisella, and Candidatus_Midichloria are the key players, with positive interactions within each developmental stage and adult tick organ tested. Blood meal and Rickettsia parkeri led to an increase in the bacterial abundance in the tissues. According to functional analysis, the increase in bacterial numbers is positively correlated to highly abundant energy metabolism orthologs with blood meal. Correlation analysis identified an increase in OTUs identified as Candidatus Midichloria and a subsequent decrease in Francisella OTUs in Rickettsia parkeri infected tick stages and tissues. Results demonstrate the abundance of Rickettsia and Francisella predominate in the core microbiome of Am. maculatum, whereas Candidatus_Midichloria and Cutibacterium prevalence increase with R. parkeri-infection. Network analysis and functional annotation suggest that R. parkeri interacts positively with Candidatus_Midichloria and negatively with Francisella. Conclusion We conclude that tick-transmitted pathogens, such as R. parkeri establishes infection by interacting with the core microbiome of the tick vector.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Wu-Chuang A, Obregon D, Estrada-Peña A, Cabezas-Cruz A. Thermostable Keystone Bacteria Maintain the Functional Diversity of the Ixodes scapularis Microbiome Under Heat Stress. MICROBIAL ECOLOGY 2022; 84:1224-1235. [PMID: 34817640 DOI: 10.1007/s00248-021-01929-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 °C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| |
Collapse
|
7
|
Elias L, Hearn AJM, Blazier JC, Rogovska YV, Wang J, Li S, Liu S, Nebogatkin IV, Rogovskyy AS. The Microbiota of Ixodes ricinus and Dermacentor reticulatus Ticks Collected from a Highly Populated City of Eastern Europe. MICROBIAL ECOLOGY 2022; 84:1072-1086. [PMID: 34767049 DOI: 10.1007/s00248-021-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Recent investigations have examined, through sequencing the V6 region of 16S rRNA gene, the microbiota of questing Ixodes ricinus and Dermacentor reticulatus ticks collected from rural areas of Central (Dnipropetrovs'k (region D) and Poltava (region P)) and Northeastern (Kharkiv (region K)) Ukraine. In addition to defining the bacterial microbiota of both tick species, the previous investigations also revealed a high degree of inter-sex and inter-regional variations in the tick microbiota. As a continuation of the two studies, the present investigation has analyzed individual microbiota of questing I. ricinus (n = 50) and D. reticulatus (n = 50) ticks originating from Kyiv, the largest city of Ukraine. The Kyiv tick microbiota were compared between males and females for each tick species. Additionally, a cross-regional analysis was performed to compare the microbiota of Kyiv ticks to those from regions D, K, and P. Numerous statistically significant inter-sex and inter-regional variations were detected when alpha diversity, beta diversity, the bacterial relative and differential abundances were assessed. The overall results demonstrated that the microbiota of Kyiv ticks were statistically different compared to the ticks of the other three regions. Besides existing climatic and geographical differences between the four regions, the authors hypothesize that various anthropogenic factors of the megapolis (e.g., animal species translocation, land management, ecology) could have contributed to the distinct microbiota of Kyiv ticks observed in this study.
Collapse
Affiliation(s)
- Leta Elias
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - Aimee-Joy M Hearn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - John C Blazier
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Yuliya V Rogovska
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangli Wang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| | - Sijia Li
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX, 77843, USA
| | - Shuling Liu
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX, 77843, USA
| | - Igor V Nebogatkin
- I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Kačániová M, Terentjeva M, Kowalczewski PŁ, Babošová M, Porhajašová JI, Hikal WM, Fedoriak M. Bacteriota and Antibiotic Resistance in Spiders. INSECTS 2022; 13:insects13080680. [PMID: 36005303 PMCID: PMC9409187 DOI: 10.3390/insects13080680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary The microbiomes of insects are known for having a great impact on their physiological properties for survival, such as nutrition, behavior, and health. In nature, spiders are one of the main insect predators, and their microbiomes have remained unclear yet. It is important to explore the microbiomes of spiders with the positive effect in the wild to gain an insight into the host–bacterial relationship. The insects have been the primary focus of microbiome studies from all arthropods. Although the research focused on the microbiome of spiders is still scarce, there is a possibility that spiders host diverse assemblages of bacteria, and some of them alter their physiology and behavior. According to our findings, there is a need for holistic microbiome studies across many organisms, which would increase our knowledge of the diversity and evolution of symbiotic relationships. Antimicrobial resistance is one of the most serious global public health threats in this century. Therefore, the knowledge and some information about insects and their ability to act as reservoirs of antibiotic-resistant microorganisms should be determined in order to ensure that they are not transferred to humans. It is important to monitor the microbiome of spiders found in human houses and the transmission of resistant microorganisms, which can be dangerous in relation to human health. Abstract Arthropods are reported to serve as vectors of transmission of pathogenic microorganisms to humans, animals, and the environment. The aims of our study were (i) to identify the external bacteriota of spiders inhabiting a chicken farm and slaughterhouse and (ii) to detect antimicrobial resistance of the isolates. In total, 102 spiders of 14 species were collected from a chicken farm, slaughterhouse, and buildings located in west Slovakia in 2017. Samples were diluted in peptone buffered water, and Tryptone Soya Agar (TSA), Triple Sugar Agar (TSI), Blood Agar (BA), and Anaerobic Agar (AA) were used for inoculation. A total of 28 genera and 56 microbial species were isolated from the samples. The most abundant species were Bacillus pumilus (28 isolates) and B. thuringensis (28 isolates). The least isolated species were Rhodotorula mucilaginosa (one isolate), Kocuria rhizophila (two isolates), Paenibacillus polymyxa (two isolates), and Staphylococcus equorum (two isolates). There were differences in microbial composition between the samples originating from the slaughterhouse, chicken farm, and buildings. The majority of the bacterial isolates resistant to antibiotics were isolated from the chicken farm. The isolation of potentially pathogenic bacteria such as Salmonella, Escherichia, and Salmonella spp., which possess multiple drug resistance, is of public health concern.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
- Correspondence:
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Mária Babošová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Jana Ivanič Porhajašová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.B.); (J.I.P.)
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
- Environmental Parasitology Laboratory, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El–Behouth St., Dokki, Giza 12622, Egypt
| | - Mariia Fedoriak
- Department of Ecology and Biomonitoring, Institute of Biology, Chemistry and Bioresources, Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi Street, 58012 Chernivtsi, Ukraine;
| |
Collapse
|
9
|
Kumar D, Sharma SR, Adegoke A, Kennedy A, Tuten HC, Li AY, Karim S. Recently Evolved Francisella-Like Endosymbiont Outcompetes an Ancient and Evolutionarily Associated Coxiella-Like Endosymbiont in the Lone Star Tick ( Amblyomma americanum) Linked to the Alpha-Gal Syndrome. Front Cell Infect Microbiol 2022; 12:787209. [PMID: 35493735 PMCID: PMC9039623 DOI: 10.3389/fcimb.2022.787209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Ticks are hematophagous arthropods that transmit various bacterial, viral, and protozoan pathogens of public health significance. The lone star tick (Amblyomma americanum) is an aggressive human-biting tick that transmits bacterial and viral pathogens, and its bites are suspected of eliciting the alpha-gal syndrome, a newly emerged delayed hypersensitivity following consumption of red meat in the United States. While ongoing studies have attempted to investigate the contribution of different tick-inherent factors to the induction of alpha-gal syndrome, an otherwise understudied aspect is the contribution of the tick microbiome and specifically obligate endosymbionts to the establishment of the alpha-gal syndrome in humans. Materials and Methods Here we utilized a high-throughput metagenomic sequencing approach to cataloging the entire microbial communities residing within different developmental stages and tissues of unfed and blood-fed ticks from laboratory-maintained ticks and three new geographical locations in the United States. The Quantitative Insights Into Microbial Ecology (QIIME2) pipeline was used to perform data analysis and taxonomic classification. Moreover, using a SparCC (Sparse Correlations for Compositional data) network construction model, we investigated potential interactions between members of the microbial communities from laboratory-maintained and field-collected ticks. Results Overall, Francisellaceae was the most dominant bacteria identified in the microbiome of both laboratory-raised and field-collected Am. americanum across all tissues and developmental stages. Likewise, microbial diversity was seen to be significantly higher in field-collected ticks compared with laboratory-maintained ticks as seen with a higher number of both Operational Taxonomic Units and measures of species richness. Several potential positive and negative correlations were identified from our network analysis. We observed a strong positive correlation between Francisellaceae, Rickettsiaceae, and Midichloriaceae in both developmental stages and tissues from laboratory-maintained ticks, whereas ovarian tissues had a strong positive correlation of bacteria in the family Xanthobacteraceae and Rhizobiaceae. A negative interaction was observed between Coxiellaceae and Francisellaceae in Illinois, and all the bacteria detected from ticks from Delaware were negatively correlated. Conclusion This study is the first to catalog the microbiome of Am. americanum throughout its developmental stages and different tissue niches and report the potential replacement of Coxiellaceae by Francisellaceae across developmental stages and tissues tested except in ovarian tissues. These unique and significant findings advance our knowledge and open a new avenue of research to further understand the role of tick microbiome in tick-borne diseases and develop a holistic strategy to control alpha-gal syndrome.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Surendra Raj Sharma
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ashley Kennedy
- Delaware Division of Fish & Wildlife, Delaware Mosquito Control Sect., Newark, DE, United States
| | - Holly C. Tuten
- Illinois Natural History Survey (INHS), University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Andrew Y. Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
10
|
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100036. [PMID: 35284884 PMCID: PMC8906078 DOI: 10.1016/j.crpvbd.2021.100036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The main importance of ticks resides in their ability to harbor pathogens that can be transmitted to terrestrial vertebrates including humans. Recently, studies have focused on the taxonomic and functional composition of the tick microbiome, its microbial diversity and variation under different factors including tick species, sex, and environment among others. Of special interest are the interactions between the tick, the microbiome and pathogens since tick microbiome can influence pathogen colonization within the tick vector, and potentially, transmission to the vertebrate host. In this review, we tackled a synthesis on the growing field of tick microbiomes. We focus on the current state of tick microbiome research, addressing controversial and hotly debated topics and advances in the precise manipulation of tick microbiome. Furthermore, we discuss the innovative anti-tick microbiota vaccines as a possible tool for microbiome modulation and thus, control of tick-borne diseases. Deciphering tick-microbiome pathogen interactions can spur new strategies to control tick-borne diseases via modulation of tick microbiome. Whether the diversity observed in tick microbiomes concerns the biology or the methodology remains an open question. Tick immunity must play a major role in selecting ‘who stays and who leaves’ the microbiome. Anti-tick microbiota vaccines can target specific bacteria and subsequently modulate tick microbiome.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | | | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Corresponding author.
| |
Collapse
|
11
|
Greay TL, Evasco KL, Evans ML, Oskam CL, Magni PA, Ryan UM, Irwin PJ. Illuminating the bacterial microbiome of Australian ticks with 16S and Rickettsia-specific next-generation sequencing. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100037. [PMID: 35284883 PMCID: PMC8906098 DOI: 10.1016/j.crpvbd.2021.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) studies show that mosquito and tick microbiomes influence the transmission of pathogens, opening new avenues for vector-borne pathogen control. Recent microbiological studies of Australian ticks highlight fundamental knowledge gaps of tick-borne agents. This investigation explored the composition, diversity and prevalence of bacteria in Australian ticks (n = 655) from companion animals (dogs, cats and horses). Bacterial 16S NGS was used to identify most bacterial taxa and a Rickettsia-specific NGS assay was developed to identify Rickettsia species that were indistinguishable at the V1-2 regions of 16S. Sanger sequencing of near full-length 16S was used to confirm whether species detected by 16S NGS were novel. The haemotropic bacterial pathogens Anaplasma platys, Bartonella clarridgeiae, “Candidatus Mycoplasma haematoparvum” and Coxiella burnetii were identified in Rhipicephalus sanguineus (s.l.) from Queensland (QLD), Western Australia, the Northern Territory (NT), and South Australia, Ixodes holocyclus from QLD, Rh. sanguineus (s.l.) from the NT, and I. holocyclus from QLD, respectively. Analysis of the control data showed that cross-talk compromises the detection of rare species as filtering thresholds for less abundant sequences had to be applied to mitigate false positives. A comparison of the taxonomic assignments made with 16S sequence databases revealed inconsistencies. The Rickettsia-specific citrate synthase gene NGS assay enabled the identification of Rickettsia co-infections with potentially novel species and genotypes most similar (97.9–99.1%) to Rickettsia raoultii and Rickettsia gravesii. “Candidatus Rickettsia jingxinensis” was identified for the first time in Australia. Phylogenetic analysis of near full-length 16S sequences confirmed a novel Coxiellaceae genus and species, two novel Francisella species, and two novel Francisella genotypes. Cross-talk raises concerns for the MiSeq platform as a diagnostic tool for clinical samples. This study provides recommendations for adjustments to Illuminaʼs 16S metagenomic sequencing protocol that help track and reduce cross-talk from cross-contamination during library preparation. The inconsistencies in taxonomic assignment emphasise the need for curated and quality-checked sequence databases. Bacterial pathogens identified in ticks from companion animals with 16S NGS. Sanger sequencing confirmed novel Coxiellaceae gen. sp. and Francisella. “Candidatus Rickettsia jingxinensis” was identified with Rickettsia-specific NGS. Comparison of taxonomic assignments in 16S sequence databases revealed errors. Modifications to the 16S metagenomic library protocol (Illumina) are provided.
Collapse
Affiliation(s)
- Telleasha L Greay
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Executive Consultant, EpiSeq, PO Box 357, Kwinana, Western Australia, 6966, Australia
| | - Kimberly L Evasco
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,A/Senior Scientific Officer, Medical Entomology Unit, Department of Health, 1A Brockway Road, Mount Claremont, Western Australia, 6010, Australia
| | - Megan L Evans
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Cardio Respiratory Sleep, Level 1, 52-54 Monash Avenue, Nedlands, Western Australia, 6009, Australia
| | - Charlotte L Oskam
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Paola A Magni
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Murdoch University Singapore, King's Centre, 390 Havelock Road, Singapore, 169662, Republic of Singapore
| | - Una M Ryan
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Peter J Irwin
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
12
|
Rickettsia lusitaniae in Ornithodoros Porcinus Ticks, Zambia. Pathogens 2021; 10:pathogens10101306. [PMID: 34684256 PMCID: PMC8540723 DOI: 10.3390/pathogens10101306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding (Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.
Collapse
|
13
|
Vasconcelos EJR, Roy C, Geiger JA, Oney KM, Koo M, Ren S, Oakley BB, Diniz PPVP. Data analysis workflow for the detection of canine vector-borne pathogens using 16 S rRNA Next-Generation Sequencing. BMC Vet Res 2021; 17:262. [PMID: 34332568 PMCID: PMC8325813 DOI: 10.1186/s12917-021-02969-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vector-borne diseases (VBDs) impact both human and veterinary medicine and pose special public health challenges. The main bacterial vector-borne pathogens (VBPs) of importance in veterinary medicine include Anaplasma spp., Bartonella spp., Ehrlichia spp., and Spotted Fever Group Rickettsia. Taxon-targeted PCR assays are the current gold standard for VBP diagnostics but limitations on the detection of genetically diverse organisms support a novel approach for broader detection of VBPs. We present a methodology for genetic characterization of VBPs using Next-Generation Sequencing (NGS) and computational approaches. A major advantage of NGS is the ability to detect multiple organisms present in the same clinical sample in an unsupervised (i.e. non-targeted) and semi-quantitative way. The Standard Operating Procedure (SOP) presented here combines industry-standard microbiome analysis tools with our ad-hoc bioinformatic scripts to form a complete analysis pipeline accessible to veterinary scientists and freely available for download and use at https://github.com/eltonjrv/microbiome.westernu/tree/SOP . RESULTS We tested and validated our SOP by mimicking single, double, and triple infections in genomic canine DNA using serial dilutions of plasmids containing the entire 16 S rRNA gene sequence of (A) phagocytophilum, (B) v. berkhoffii, and E. canis. NGS with broad-range 16 S rRNA primers followed by our bioinformatics SOP was capable of detecting these pathogens in biological replicates of different dilutions. These results illustrate the ability of NGS to detect and genetically characterize multi-infections with different amounts of pathogens in a single sample. CONCLUSIONS Bloodborne microbiomics & metagenomics approaches may help expand the molecular diagnostic toolbox in veterinary and human medicine. In this paper, we present both in vitro and in silico detailed protocols that can be combined into a single workflow that may provide a significant improvement in VBP diagnostics and also facilitate future applications of microbiome research in veterinary medicine.
Collapse
Affiliation(s)
- Elton J. R. Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
- Leeds Omics, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Chayan Roy
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Joseph A. Geiger
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Kristina M. Oney
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Melody Koo
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| | - Pedro Paulo V. P. Diniz
- College of Veterinary Medicine, Western University of Health Sciences, 309 East 2nd Street, CA 91766 − 1854 Pomona, USA
| |
Collapse
|
14
|
Tokarz R, Lipkin WI. Discovery and Surveillance of Tick-Borne Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1525-1535. [PMID: 33313662 PMCID: PMC8285023 DOI: 10.1093/jme/tjaa269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Corresponding author, e-mail:
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
15
|
Lejal E, Chiquet J, Aubert J, Robin S, Estrada-Peña A, Rue O, Midoux C, Mariadassou M, Bailly X, Cougoul A, Gasqui P, Cosson JF, Chalvet-Monfray K, Vayssier-Taussat M, Pollet T. Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions. MICROBIOME 2021; 9:153. [PMID: 34217365 PMCID: PMC8254910 DOI: 10.1186/s40168-021-01051-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions. METHODS Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community. RESULTS Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia. Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia, Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus. CONCLUSIONS We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases. Video abstract.
Collapse
Affiliation(s)
- E Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - J Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - J Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - S Robin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - A Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - O Rue
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - C Midoux
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, Antony, France
| | - M Mariadassou
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - X Bailly
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - A Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - P Gasqui
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - J F Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - K Chalvet-Monfray
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | | | - T Pollet
- UMR ASTRE, CIRAD, INRAE, Campus de Baillarguet, Montpellier, France.
| |
Collapse
|
16
|
Choubdar N, Karimian F, Koosha M, Oshaghi MA. An integrated overview of the bacterial flora composition of Hyalomma anatolicum, the main vector of CCHF. PLoS Negl Trop Dis 2021; 15:e0009480. [PMID: 34106924 PMCID: PMC8216544 DOI: 10.1371/journal.pntd.0009480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/21/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022] Open
Abstract
The microbial flora associated with Hyalomma anatolicum ticks was investigated using culture-dependent (CD) and independent (next generation sequencing, NGS) methods. The bacterial profiles of different organs, development stages, sexes, and of host cattle skins were analyzed using the CD method. The egg and female gut microbiota were investigated using NGS. Fourteen distinct bacterial strains were identified using the CD method, of which Bacillus subtilis predominated in eggs, larval guts and in adult female and male guts, suggesting probable transovarial transmission. Bacillus velezensis and B. subtilis were identified in cattle skin and tick samples, suggesting that skin is the origin of tick bacteria. H.anatolicum males harbour lower bacterial diversity and composition than females. The NGS analysis revealed five different bacterial phyla across all samples, Proteobacteria contributing to >95% of the bacteria. In all, 56611sequences were generated representing 6,023 OTUs per female gut and 421 OTUs per egg. Francisellaceae family and Francisella make up the vast majority of the OTUs. Our findings are consistent with interference between Francisella and Rickettsia. The CD method identified bacteria, such B. subtilis that are candidates for vector control intervention approaches such paratransgenesis whereas NGS revealed high Francisella spp. prevalence, indicating that integrated methods are more accurate to characterize microbial community and diversity.
Collapse
Affiliation(s)
- Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Gomard Y, Flores O, Vittecoq M, Blanchon T, Toty C, Duron O, Mavingui P, Tortosa P, McCoy KD. Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). MICROBIAL ECOLOGY 2021; 81:770-783. [PMID: 33025063 DOI: 10.1007/s00248-020-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Olivier Flores
- Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), CIRAD, Saint-Pierre, La Réunion, France
| | - Marion Vittecoq
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Thomas Blanchon
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Céline Toty
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
18
|
Tick Microbiomes in Neotropical Forest Fragments Are Best Explained by Tick-Associated and Environmental Factors Rather than Host Blood Source. Appl Environ Microbiol 2021; 87:AEM.02668-20. [PMID: 33514519 DOI: 10.1128/aem.02668-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023] Open
Abstract
The composition of tick microbiomes varies both within and among tick species. Whether this variation is intrinsic (related to tick characteristics) or extrinsic (related to vertebrate host and habitat) is poorly understood but important, as microbiota can influence the reproductive success and vector competence of ticks. We aimed to uncover what intrinsic and extrinsic factors best explain the microbial composition and taxon richness of 11 species of neotropical ticks collected from eight species of small mammals in 18 forest fragments across central Panama. Microbial richness varied among tick species, life stages, and collection sites but was not related to host blood source. Microbiome composition was best explained by tick life stage, with bacterial assemblages of larvae being a subset of those of nymphs. Collection site explained most of the bacterial taxa with differential abundance across intrinsic and extrinsic factors. Francisella and Rickettsia were highly prevalent, but their proportional abundance differed greatly among tick species, and we found both positive and negative cooccurrence between members of these two genera. Other tick endosymbionts (e.g., Coxiella and Rickettsiella) were associated with specific tick species. In addition, we detected Anaplasma and Bartonella in several tick species. Our results indicate that the microbial composition and richness of neotropical ticks are principally related to intrinsic factors (tick species and life stage) and collection site. Taken together, our analysis informs how tick microbiomes are structured and can help anchor our understanding of tick microbiomes from tropical environments more broadly.IMPORTANCE Blood-feeding arthropod microbiomes often play important roles in disease transmission, yet the factors that structure tick microbial communities in the Neotropics are unknown. Utilizing ticks collected from live animals in neotropical forest fragments, this study teases apart the contributions of intrinsic and extrinsic tick-associated factors on tick microbial composition as well as which specific microbes contribute to differences across tick species, tick life stages, the mammals they fed on, and the locations from where they were sampled. Furthermore, this study provides revelations of how notable tick-associated bacterial genera are interacting with other tick-associated microbes as well as the forest animals they encounter.
Collapse
|
19
|
Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol 2020; 43:e12813. [PMID: 33314216 DOI: 10.1111/pim.12813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The recent development of high-throughput NGS technologies, (ie, next-generation sequencing) has highlighted the complexity of tick microbial communities-which include pathogens, symbionts, and commensals-and also their dynamic variability. Symbionts and commensals can confer crucial and diverse benefits to their hosts, playing nutritional roles or affecting fitness, development, nutrition, reproduction, defence against environmental stress and immunity. Nonpathogenic tick bacteria may also play a role in modifying tick-borne pathogen colonization and transmission, as relationships between microorganisms existing together in one environment can be competitive, exclusive, facilitating or absent, with many potential implications for both human and animal health. Consequently, ticks represent a compelling yet challenging system in which to investigate the composition and both the functional and ecological implications of tick bacterial communities, and thus merits greater attention. Ultimately, deciphering the relationships between microorganisms carried by ticks as well as symbiont-tick interactions will garner invaluable information, which may aid in some future arthropod-pest and vector-borne pathogen transmission control strategies. This review outlines recent research on tick microbiome composition and dynamics, highlights elements favouring the reciprocal influence of the tick microbiome and tick-borne agents and finally discusses how ticks and tick-borne diseases might potentially be controlled through tick microbiome manipulation in the future.
Collapse
Affiliation(s)
- Sarah Irène Bonnet
- UMR BIPAR 0956, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
20
|
Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020; 8:microorganisms8111639. [PMID: 33114018 PMCID: PMC7690693 DOI: 10.3390/microorganisms8111639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
Collapse
|
21
|
Adegoke A, Kumar D, Bobo C, Rashid MI, Durrani AZ, Sajid MS, Karim S. Tick-Borne Pathogens Shape the Native Microbiome Within Tick Vectors. Microorganisms 2020; 8:E1299. [PMID: 32854447 PMCID: PMC7563471 DOI: 10.3390/microorganisms8091299] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Ticks are blood-feeding arthropods and transmit a variety of medically important viral, bacterial, protozoan pathogens to animals and humans. Ticks also harbor a diverse community of microbes linked to their biological processes, such as hematophagy, and hence affect vector competence. The interactions between bacterial and/or protozoan pathogens and the tick microbiome is a black-box, and therefore we tested the hypothesis that the presence of a protozoan or bacterial pathogen will alter the microbial composition within a tick. Hence, this study was designed to define the microbial composition of two tick species, Hyalomma (H.) anatolicum and Rhipicephalus (R.) microplus. We used a combination of PCR based pathogen (Anaplasma marginale and Theileria species) and symbiont (Wolbachia species) identification followed by metagenomic sequencing and comparison of the microbial communities in PCR positive and negative ticks. A total of 1786 operational taxonomic units was identified representing 25 phyla, 50 classes, and 342 genera. The phylum Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota were the most represented bacteria group. Alpha and beta diversity were not significantly affected in the presence or absence of Theileria sp. and A. marginale as see with H. anatolicum ticks. Interestingly, bacterial communities were significantly reduced in Theileria sp. infected R. microplus ticks, while also exhibiting a significant reduction in microbial richness and evenness. Putting these observations together, we referred to the effect the presence of Theileria sp. has on R. microplus a "pathogen-induced dysbiosis". We also identify the presence of Plasmodium falciparum, the causative agent of human malaria from the microbiome of both H. anatolicum and R. microplus ticks. These findings support the presence of a "pathogen-induced dysbiosis" within the tick and further validation experiments are required to investigate how they are important in the vector competence of ticks. Understanding the mechanism of "pathogen-induced dysbiosis" on tick microbial composition may aid the discovery of intervention strategies for the control of emerging tick-borne infections.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (A.A.); (D.K.); (C.B.)
| | - Deepak Kumar
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (A.A.); (D.K.); (C.B.)
| | - Cailyn Bobo
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (A.A.); (D.K.); (C.B.)
| | - Muhammad Imran Rashid
- Department of Parasitology, Faculty of Veterinary Science, The University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Aneela Zameer Durrani
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, The University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Shahid Karim
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (A.A.); (D.K.); (C.B.)
| |
Collapse
|
22
|
Biotic Factors Influence Microbiota of Nymph Ticks from Vegetation in Sydney, Australia. Pathogens 2020; 9:pathogens9070566. [PMID: 32668699 PMCID: PMC7400589 DOI: 10.3390/pathogens9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
Ticks are haematophagous ectoparasites of medical and veterinary significance due to their excellent vector capacity. Modern sequencing techniques enabled the rapid sequencing of bacterial pathogens and symbionts. This study’s aims were two-fold; to determine the nymph diversity in Sydney, and to determine whether external biotic factors affect the microbiota. Tick DNA was isolated, and the molecular identity was determined for nymphs at the cox1 level. The tick DNA was subjected to high throughput DNA sequencing to determine the bacterial profile and the impact of biotic factors on the microbiota. Four nymph tick species were recovered from Sydney, NSW: Haemaphysalis bancrofti, Ixodes holocyclus, Ixodes trichosuri and Ixodes tasmani. Biotic factors, notably tick species and geography, were found to have a significance influence on the microbiota. The microbial analyses revealed that Sydney ticks display a core microbiota. The dominating endosymbionts among all tick species were Candidatus Midichloria sp. Ixholo1 and Candidatus Midichloria sp. Ixholo2. A novel Candidatus Midichloria sp. OTU_2090 was only found in I. holocyclus ticks (nymph: 96.3%, adult: 75.6%). Candidatus Neoehrlichia australis and Candidatus Neoehrlichia arcana was recovered from I. holocyclus and one I. trichosuri nymph ticks. Borrelia spp. was absent from all ticks. This study has shown that nymph and adult ticks carry different bacteria, and a tick bite in Sydney, Australia will result in different bacterial transfer depending on tick life stage, tick species and geography.
Collapse
|
23
|
Lado P, Luan B, Allerdice MEJ, Paddock CD, Karpathy SE, Klompen H. Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis. PeerJ 2020; 8:e9367. [PMID: 32704442 PMCID: PMC7350919 DOI: 10.7717/peerj.9367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisciplinary approaches are required. In recent years, the microbiome of vectors has received much attention, mainly because associations between native microbes and pathogens may provide a new promising path towards the disruption of pathogen transmission. However, we still do not fully understand how host genetics and environmental factors interact to shape the microbiome of organisms, or how pathogenic microorganisms affect the microbiome and vice versa. The integration of different lines of evidence may be the key to improve our understanding of TBDs ecology. In that context, we generated microbiome and pathogen presence data for Dermacentor variabilis, and integrated those data sets with population genetic data, and metadata for the same individual tick specimens. Clustering and multivariate statistical methods were used to combine, analyze, and visualize data sets. Interpretation of the results is challenging, likely due to the low levels of genetic diversity and the high abundance of a few taxa in the microbiome. Francisella was dominant in almost all ticks, regardless of geography or sex. Nevertheless, our results showed that, overall, ticks from different geographic regions differ in their microbiome composition. Additionally, DNA of Rickettsia rhipicephali, R. montanensis, R. bellii, and Anaplasma spp., was detected in D. variabilis specimens. This is the first study that successfully generated microbiome, population genetics, and pathogen presence data from the same individual ticks, and that attempted to combine the different lines of evidence. The approaches and pre-processing steps used can be applied to a variety of taxa, and help better understand ecological processes in biological systems.
Collapse
Affiliation(s)
- Paula Lado
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bo Luan
- Statistics, The Ohio State University, Columbus, OH, United States of America
| | - Michelle E J Allerdice
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Hans Klompen
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
24
|
Brinkerhoff RJ, Clark C, Ocasio K, Gauthier DT, Hynes WL. Factors affecting the microbiome of Ixodes scapularis and Amblyomma americanum. PLoS One 2020; 15:e0232398. [PMID: 32413031 PMCID: PMC7228056 DOI: 10.1371/journal.pone.0232398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
The microbial community composition of disease vectors can impact pathogen establishment and transmission as well as on vector behavior and fitness. While data on vector microbiota are accumulating quickly, determinants of the variation in disease vector microbial communities are incompletely understood. We explored the microbiome of two human-biting tick species abundant in eastern North America (Amblyomma americanum and Ixodes scapularis) to identify the relative contribution of tick species, tick life stage, tick sex, environmental context and vertical transmission to the richness, diversity, and species composition of the tick microbiome. We sampled 89 adult and nymphal Ixodes scapularis (N = 49) and Amblyomma americanum (N = 40) from two field sites and characterized the microbiome of each individual using the v3-v4 hypervariable region of the 16S rRNA gene. We identified significant variation in microbial community composition due to tick species and life stage with lesser impact of sampling site. Compared to unfed nymphs and males, the microbiome of engorged adult female I. scapularis, as well as the egg masses they produced, were low in bacterial richness and diversity and were dominated by Rickettsia, suggesting strong vertical transmission of this genus. Likewise, microbiota of A. americanum nymphs and males were more diverse than those of adult females. Among bacteria of public health importance, we detected several different Rickettsia sequence types, several of which were distinct from known species. Borrelia was relatively common in I. scapularis but did not show the same level of sequence variation as Rickettsia. Several bacterial genera were significantly over-represented in Borrelia-infected I. scapularis, suggesting a potential interaction of facilitative relationship between these taxa; no OTUs were under-represented in Borrelia-infected ticks. The systematic sampling we conducted for this study allowed us to partition the variation in tick microbial composition as a function of tick- and environmentally-related factors. Upon more complete understanding of the forces that shape the tick microbiome it will be possible to design targeted experimental studies to test the impacts of individual taxa and suites of microbes on vector-borne pathogen transmission and on vector biology.
Collapse
Affiliation(s)
- R. Jory Brinkerhoff
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- * E-mail:
| | - Chris Clark
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Kelly Ocasio
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - David T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Wayne L. Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
25
|
Gondard M, Delannoy S, Pinarello V, Aprelon R, Devillers E, Galon C, Pradel J, Vayssier-Taussat M, Albina E, Moutailler S. Upscaling the Surveillance of Tick-borne Pathogens in the French Caribbean Islands. Pathogens 2020; 9:pathogens9030176. [PMID: 32121571 PMCID: PMC7157729 DOI: 10.3390/pathogens9030176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area-Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis-but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94700 Paris, France; (M.G.); (E.D.); (C.G.); (M.V.-T.)
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, 97170 Guadeloupe, France; (V.P.); (R.A.); (J.P.); (E.A.)
| | - Sabine Delannoy
- IdentyPath Platform, Laboratory for Food Safety, ANSES, Maisons-Alfort, 94700 Paris, France;
| | - Valérie Pinarello
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, 97170 Guadeloupe, France; (V.P.); (R.A.); (J.P.); (E.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, 97170 Guadeloupe, France; (V.P.); (R.A.); (J.P.); (E.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94700 Paris, France; (M.G.); (E.D.); (C.G.); (M.V.-T.)
| | - Clémence Galon
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94700 Paris, France; (M.G.); (E.D.); (C.G.); (M.V.-T.)
| | - Jennifer Pradel
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, 97170 Guadeloupe, France; (V.P.); (R.A.); (J.P.); (E.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94700 Paris, France; (M.G.); (E.D.); (C.G.); (M.V.-T.)
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, 97170 Guadeloupe, France; (V.P.); (R.A.); (J.P.); (E.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94700 Paris, France; (M.G.); (E.D.); (C.G.); (M.V.-T.)
- Correspondence: ; Tel.: +33-1-49-77-46-50
| |
Collapse
|
26
|
Kieran TJ, Arnold KMH, Thomas JC, Varian CP, Saldaña A, Calzada JE, Glenn TC, Gottdenker NL. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors 2019; 12:504. [PMID: 31665056 PMCID: PMC6821009 DOI: 10.1186/s13071-019-3761-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. Methods We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. Results We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. Conclusions We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kaylee M H Arnold
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jesse C Thomas
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nicole L Gottdenker
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Couper LI, Kwan JY, Ma J, Swei A. Drivers and patterns of microbial community assembly in a Lyme disease vector. Ecol Evol 2019; 9:7768-7779. [PMID: 31346439 PMCID: PMC6635933 DOI: 10.1002/ece3.5361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022] Open
Abstract
Vector-borne diseases constitute a major global health burden and are increasing in geographic range and prevalence. Mounting evidence has demonstrated that the vector microbiome can impact pathogen dynamics, making the microbiome a focal point in vector-borne disease ecology. However, efforts to generalize preliminary findings across studies and systems and translate these findings into disease control strategies are hindered by a lack of fundamental understanding of the processes shaping the vector microbiome and the interactions therein. Here, we use 16S rRNA sequencing and apply a community ecology framework to analyze microbiome community assembly and interactions in Ixodes pacificus, the Lyme disease vector in the western United States. We find that vertical transmission routes drive population-level patterns in I. pacificus microbial diversity and composition, but that microbial function and overall abundance do not vary over time or between clutches. Further, we find that the I. pacificus microbiome is not strongly structured based on competition but assembles nonrandomly, potentially due to vector-specific filtering processes which largely eliminate all but the dominant endosymbiont, Rickettsia. At the scale of the individual I. pacificus, we find support for a highly limited internal microbial community, and hypothesize that the tick endosymbiont may be the most important component of the vector microbiome in influencing pathogen dynamics.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of BiologyStanford UniversityStanfordCalifornia
| | - Jessica Y. Kwan
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| | - Joyce Ma
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| | - Andrea Swei
- Department of BiologySan Francisco State UniversitySan FranciscoCalifornia
| |
Collapse
|
28
|
Thapa S, Zhang Y, Allen MS. Bacterial microbiomes of Ixodes scapularis ticks collected from Massachusetts and Texas, USA. BMC Microbiol 2019; 19:138. [PMID: 31234774 PMCID: PMC6591839 DOI: 10.1186/s12866-019-1514-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease spirochete Borrelia burgdorferi in North America. Though the tick is found across the eastern United States, Lyme disease is endemic to the northeast and upper midwest and rare or absent in the southern portion of the vector’s range. In an effort to better understand the tick microbiome from diverse geographic and climatic regions, we analysed the bacterial community of 115 I. scapularis adults collected from vegetation in Texas and Massachusetts, representing extreme ends of the vector’s range, by massively parallel sequencing of the 16S V4 rRNA gene. In addition, 7 female I. scapularis collected from dogs in Texas were included in the study. Results Male I. scapularis ticks had a more diverse bacterial microbiome in comparison to the female ticks. Rickettsia spp. dominated the microbiomes of field-collected female I. scapularis from both regions, as well as half of the males from Texas. In addition, the male and female ticks captured from Massachusetts contained high proportions of the pathogens Anaplasma and Borrelia, as well as the arthropod endosymbiont Wolbachia. None of these were found in libraries generated from ticks collected in Texas. Pseudomonas, Acinetobacter and Mycobacterium were significantly differently abundant (p < 0.05) between the male ticks from Massachusetts and Texas. Anaplasma and Borrelia were found in 15 and 63% of the 62 Massachusetts ticks, respectively, with a co-infection rate of 11%. Female ticks collected from Texas dogs were particularly diverse, and contained several genera including Rickettsia, Pseudomonas, Bradyrhizobium, Sediminibacterium, and Ralstonia. Conclusions Our results indicate that the bacterial microbiomes of I. scapularis ticks vary by sex and geography, with significantly more diversity in male microbiomes compared to females. We found that sex plays a larger role than geography in shaping the composition/diversity of the I. scapularis microbiome, but that geography affects what additional taxa are represented (beyond Rickettsia) and whether pathogens are found. Furthermore, recent feeding may have a role in shaping the tick microbiome, as evident from a more complex bacterial community in female ticks from dogs compared to the wild-caught questing females. These findings may provide further insight into the differences in the ability of the ticks to acquire, maintain and transmit pathogens. Future studies on possible causes and consequences of these differences will shed additional light on tick microbiome biology and vector competence. Electronic supplementary material The online version of this article (10.1186/s12866-019-1514-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santosh Thapa
- Tick Borne Disease Research Laboratory, Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.,Present Address: Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Present Address: Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Yan Zhang
- Tick Borne Disease Research Laboratory, Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Michael S Allen
- Tick Borne Disease Research Laboratory, Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
29
|
Binetruy F, Dupraz M, Buysse M, Duron O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit Vectors 2019; 12:268. [PMID: 31138324 PMCID: PMC6537145 DOI: 10.1186/s13071-019-3517-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/19/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ticks are obligate blood feeders transmitting major pathogens worldwide. Over the past few years, considerable research efforts have focused on the diversity, distribution and impact of gut and intracellular bacterial symbionts on tick development and tick-borne pathogen transmission. The study of this internal microbiome requires the use of a sterilization method to remove external (i.e. cuticular) microbes present on the tick's surface and to avoid any further contamination. Several sterilization methods exist, including ethanol- or bleach-based treatments that are both effective in killing microbes but with different potential effects on DNA denaturation. METHODS We examined how these different sterilization methods impact the measure of internal microbial diversity hosted by the Cayenne tick Amblyomma cajennense (sensu stricto). Bacterial barcoding investigations based on 16S rRNA gene sequences were conducted on two batches of 50 individuals each: Ticks of the first batch were sterilized with bleach diluted at 1% and the second batch with 70% ethanol. Tick external microbiome was also determined from cuticle smearing and water samples used for tick washing. RESULTS Bacterial barcoding investigations showed major differences between ethanol- and bleach-treated specimens. Both methods led to the detection of major intracellular bacteria associated with A. cajennense (s.s.) but ethanol-treated ticks always harbored a higher bacterial diversity than bleach-treated ticks. Further examinations of tick gut and tick external microbiome revealed that ethanol-based surface sterilization method is inefficient to eliminate the DNA of external bacteria. CONCLUSIONS We herein provide evidence that studies investigating the internal microbiome of ticks should consider bleach as the gold standard to efficiently remove cuticular bacterial DNA. Indeed, this method does not impact the internal bacterial diversity hosted by ticks and is thus a better method than the ethanol-based one for studying the internal microbiome.
Collapse
Affiliation(s)
- Florian Binetruy
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), Montpellier, France.
| | - Marlène Dupraz
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), Montpellier, France
| | - Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), Montpellier, France
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
30
|
Lee S, Kim JY, Yi MH, Lee IY, Fyumagwa R, Yong TS. Comparative microbiomes of ticks collected from a black rhino and its surrounding environment. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:239-243. [PMID: 31198683 PMCID: PMC6556756 DOI: 10.1016/j.ijppaw.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 11/04/2022]
Abstract
‘Eliska,’ an endangered black rhino (Diceros bicornis), died suddenly in Mkomazi National Park in Tanzania in 2016. Three Amblyomma gemma ticks were collected from Eliska's body, and four ticks were collected from the surrounding field. We conducted 16S rRNA targeted high-throughput sequencing to evaluate the overall composition of bacteria in the ticks' microbiomes and investigate whether the ticks could be the cause of Eliska's death. The ticks collected from Eliska's body and the field were found to differ in their bacterial composition. Bacillus chungangensis and B. pumilus were the most commonly found bacteria in the ticks collected from the field, and B. cereus and Lysinibacillus sphaericus were the most commonly found in the ticks collected from Eliska's body. The abundance was higher in the ticks collected from the field. In contrast, the equity was higher in the ticks collected from Eliska's body. No known pathogenic bacteria that could explain Eliska's sudden death were found in any of the ticks. The differences between the microbiome of ticks collected from Eliska's body and from the field indicate that the microbiome of ticks' changes through the consumption of blood. Ticks were collected from a dead Black rhino of the endangered species Diceros bicorn. Ticks collected from the body and the surrounding field had different microbiome patterns. Bacillus chungangensis and B. pumilus were commonly found in the ticks collected from the field, and B. cereus and Lysinibacillus sphaericus were commonly found in the ticks collected from Black rhino.
Collapse
Affiliation(s)
- Seogwon Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - In-Yong Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
31
|
Ross BD, Hayes B, Radey MC, Lee X, Josek T, Bjork J, Neitzel D, Paskewitz S, Chou S, Mougous JD. Ixodes scapularis does not harbor a stable midgut microbiome. THE ISME JOURNAL 2018; 12:2596-2607. [PMID: 29946195 PMCID: PMC6194123 DOI: 10.1038/s41396-018-0161-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
Abstract
Hard ticks of the order Ixodidae serve as vectors for numerous human pathogens, including the causative agent of Lyme Disease Borrelia burgdorferi. Tick-associated microbes can influence pathogen colonization, offering the potential to inhibit disease transmission through engineering of the tick microbiota. Here, we investigate whether B. burgdorferi encounters abundant bacteria within the midgut of wild adult Ixodes scapularis, its primary vector. Through the use of controlled sequencing methods and confocal microscopy, we find that the majority of field-collected adult I. scapularis harbor limited internal microbial communities that are dominated by endosymbionts. A minority of I. scapularis ticks harbor abundant midgut bacteria and lack B. burgdorferi. We find that the lack of a stable resident midgut microbiota is not restricted to I. scapularis since extension of our studies to I. pacificus, Amblyomma maculatum, and Dermacentor spp showed similar patterns. Finally, bioinformatic examination of the B. burgdorferi genome revealed the absence of genes encoding known interbacterial interaction pathways, a feature unique to the Borrelia genus within the phylum Spirochaetes. Our results suggest that reduced selective pressure from limited microbial populations within ticks may have facilitated the evolutionary loss of genes encoding interbacterial competition pathways from Borrelia.
Collapse
Affiliation(s)
- Benjamin D Ross
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Beth Hayes
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xia Lee
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Tanya Josek
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jenna Bjork
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN, 55164, USA
| | - David Neitzel
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN, 55164, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
32
|
Cross ST, Kapuscinski ML, Perino J, Maertens BL, Weger-Lucarelli J, Ebel GD, Stenglein MD. Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms. Viruses 2018; 10:E388. [PMID: 30037148 PMCID: PMC6071216 DOI: 10.3390/v10070388] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Ixodes scapularis ticks harbor a variety of microorganisms, including eukaryotes, bacteria and viruses. Some of these can be transmitted to and cause disease in humans and other vertebrates. Others are not pathogenic, but may impact the ability of the tick to harbor and transmit pathogens. A growing number of studies have examined the influence of bacteria on tick vector competence but the influence of the tick virome remains less clear, despite a surge in the discovery of tick-associated viruses. In this study, we performed shotgun RNA sequencing on 112 individual adult I. scapularis collected in Wisconsin, USA. We characterized the abundance, prevalence and co-infection rates of viruses, bacteria and eukaryotic microorganisms. We identified pairs of tick-infecting microorganisms whose observed co-infection rates were higher or lower than would be expected, or whose RNA levels were positively correlated in co-infected ticks. Many of these co-occurrence and correlation relationships involved two bunyaviruses, South Bay virus and blacklegged tick phlebovirus-1. These viruses were also the most prevalent microorganisms in the ticks we sampled, and had the highest average RNA levels. Evidence of associations between microbes included a positive correlation between RNA levels of South Bay virus and Borrelia burgdorferi, the Lyme disease agent. These findings contribute to the rationale for experimental studies on the impact of viruses on tick biology and vector competence.
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Marylee L Kapuscinski
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jacquelyn Perino
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernadette L Maertens
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
33
|
Varela-Stokes AS, Park SH, Stokes JV, Gavron NA, Lee SI, Moraru GM, Ricke SC. Tick microbial communities within enriched extracts of Amblyomma maculatum. Ticks Tick Borne Dis 2018. [PMID: 29530467 DOI: 10.1016/j.ttbdis.2018.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our objective of this study was to explore the bacterial microbiome in fresh or fresh-frozen adult Amblyomma maculatum (Gulf Coast ticks) using extracts enriched for microbial DNA. We collected 100 questing adult A. maculatum, surface disinfected them, and extracted DNA from individual ticks collected the same day or after storage at -80 °C. Because only extracts with microbial DNA concentrations above 2 ng/μL were considered suitable for individual analysis, we expected fewer samples to meet these requirements. Of individual ticks extracted, 48 extracts met this minimum concentration. We pooled 20 additional extracts that had lower concentrations to obtain seven additional pools that met the minimum DNA concentration. Libraries created from these 55 samples were sequenced using an Illumina MiSeq platform, and data sets were analyzed using QIIME to identify relative abundance of microorganisms by phylum down to genus levels. Proteobacteria were in greatest abundance, followed by Actinobacteria, Firmicutes, and Bacteroidetes, at levels between 1.9% and 6.4% average relative abundance. Consistent with the Francisella-like endosymbiont known to be present in A. maculatum, the genus Francisella was detected at highest relative abundance (72.9%; SE 0.02%) for all samples. Among the top ten genera identified (relative abundance ≥ 0.5%) were potential extraction kit contaminants, Sphingomonas and Methylobacterium, the soil bacterium Actinomycetospora, and the known A. maculatum-associated genus, Rickettsia. Four samples had Rickettsia at greater than 1% relative abundance, while nine additional samples had Rickettsia at low (0.01-0.04%) relative abundance. In this study, we used the entire microbe-enriched DNA extract for whole ticks for microbiome analysis. A direct comparison of the microbiome in microbe-enriched DNA and total genomic DNA extracts from halves of the same tick would be useful to determine the utility of this extraction method in this system. We anticipate that future tick microbiome studies will be valuable to explore the influence of microbial diversity on pathogen maintenance and transmission, and to evaluate niche-specific microbiomes within individual tick tissues.
Collapse
Affiliation(s)
- A S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, United States.
| | - S H Park
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, United States
| | - J V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, United States
| | - N A Gavron
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, United States
| | - S I Lee
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, United States; Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, 72701, United States
| | - G M Moraru
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, United States
| | - S C Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, United States; Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, 72701, United States
| |
Collapse
|
34
|
Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit Vectors 2018; 11:12. [PMID: 29301588 PMCID: PMC5755153 DOI: 10.1186/s13071-017-2550-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
The tick microbiome comprises communities of microorganisms, including viruses, bacteria and eukaryotes, and is being elucidated through modern molecular techniques. The advent of next-generation sequencing (NGS) technologies has enabled the genes and genomes within these microbial communities to be explored in a rapid and cost-effective manner. The advantages of using NGS to investigate microbiomes surpass the traditional non-molecular methods that are limited in their sensitivity, and conventional molecular approaches that are limited in their scalability. In recent years the number of studies using NGS to investigate the microbial diversity and composition of ticks has expanded. Here, we provide a review of NGS strategies for tick microbiome studies and discuss the recent findings from tick NGS investigations, including the bacterial diversity and composition, influential factors, and implications of the tick microbiome.
Collapse
Affiliation(s)
- Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - Alexander W Gofton
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Charlotte L Oskam
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Peter J Irwin
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
35
|
Grabowski JM, Hill CA. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era. Front Cell Infect Microbiol 2017; 7:519. [PMID: 29312896 PMCID: PMC5744076 DOI: 10.3389/fcimb.2017.00519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
36
|
Zhang L, Zhang G, Yun Y, Peng Y. Bacterial community of a spider, Marpiss magister (Salticidae). 3 Biotech 2017; 7:371. [PMID: 29071168 PMCID: PMC5639805 DOI: 10.1007/s13205-017-0994-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/23/2017] [Indexed: 12/11/2022] Open
Abstract
Arthropods are associated with various microorganisms which confer benefits to their hosts. Recently, research has been conducted on bacterial communities of insects to provide an insight into the potential interactions of the symbiotic bacteria and their hosts. Spiders are interesting to study as they are perceived to be natural enemies of pests. The effect of endosymbionts on spiders has been reported, but little is known about the overall bacterial communities present in spiders. Here, we report on the characterization of bacterial communities present in the whole body of the spider Marpiss magister using Illumina sequencing of 16S rRNA amplicons. Our study shows that the most abundant phyla of bacteria included Proteobacteria, Tenericutes, Bacteroidetes and Actinobacteria. At the genus level, the most abundant genera included Rickettsia, Wolbachia, Spiroplasma, and Cardinium. Besides these dominant endosymbionts, our study also showed the existence of bacteria in the genera Arthrobacter, Novosphingobium, Acinetobacter, Pseudomonas, Aquabacterium and Sphingomonas at an abundance ranging from 0.65 to 0.84%, and the existence of bacterial in genera Lactobacillus, Sphingobium, Methylobacterium, Bradyrhizobium, Propionibacterium, Brevundimonas, Achromobacter, Microbacterium, Corynebacterium, and Flavobacterium at a slightly lower abundance ranging from 0.1 to 0.5%. Therefore, our finding indicates that endosymbionts are not the only microbiota present in the spider M. magister, and other bacterial taxa also exist in its bacterial community.
Collapse
Affiliation(s)
- Lihua Zhang
- Centre for Behavioral Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
| | - Guimin Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
| | - Yueli Yun
- Centre for Behavioral Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
| | - Yu Peng
- Centre for Behavioral Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
37
|
Varela-Stokes AS, Park SH, Kim SA, Ricke SC. Microbial Communities in North American Ixodid Ticks of Veterinary and Medical Importance. Front Vet Sci 2017; 4:179. [PMID: 29104867 PMCID: PMC5654947 DOI: 10.3389/fvets.2017.00179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023] Open
Abstract
Interest in microbial communities, or microbiota, of blood-feeding arthropods such as ticks (order Parasitiformes, suborder Ixodida) is increasing. Studies on tick microorganisms historically emphasized pathogens of high medical or veterinary importance. Current techniques allow for simultaneous detection of pathogens of interest, non-pathogenic symbionts, like Coxiella-LE and Francisella-LE, and microorganisms of unknown pathogenic potential. While each generation of ticks begins with a maternally acquired repertoire of microorganisms, microhabitats off and on vertebrate hosts can alter the microbiome during the life cycle. Further, blood-feeding may allow for horizontal exchange of various pathogenic microbiota that may or may not also be capable of vertical transmission. Thus, the tick microbiome may be in constant flux. The geographical spread of tick vector populations has resulted in a broader appreciation of tick-borne diseases and tick-associated microorganisms. Over the last decade, next-generation sequencing technology targeting the 16S rRNA gene led to documented snapshots of bacterial communities among life stages of laboratory and field-collected ticks, ticks in various feeding states, and tick tissues. Characterizing tick bacterial communities at population and individual tissue levels may lead to identification of markers for pathogen maintenance, and thus, indicators of disease “potential” rather than disease state. Defining the role of microbiota within the tick may lead to novel control measures targeting tick-bacterial interactions. Here, we review our current understanding of microbial communities for some vectors in the family Ixodidae (hard ticks) in North America, and interpret published findings for audiences in veterinary and medical fields with an appreciation of tick-borne disease.
Collapse
Affiliation(s)
- Andrea S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Si Hong Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Steven C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
38
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
39
|
Trout Fryxell RT, DeBruyn JM. Correction: The Microbiome of Ehrlichia-Infected and Uninfected Lone Star Ticks (Amblyomma americanum). PLoS One 2016; 11:e0155559. [PMID: 27158898 PMCID: PMC4861255 DOI: 10.1371/journal.pone.0155559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Khoo JJ, Chen F, Kho KL, Ahmad Shanizza AI, Lim FS, Tan KK, Chang LY, AbuBakar S. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia. Ticks Tick Borne Dis 2016; 7:929-937. [PMID: 27132518 DOI: 10.1016/j.ttbdis.2016.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation.
Collapse
Affiliation(s)
- Jing-Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Fezshin Chen
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Azzy Iyzati Ahmad Shanizza
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Fang-Shiang Lim
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Li-Yen Chang
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|