1
|
Çetin H, Lafcı İ, Arman Karakaya Y, Er Urgancı B, Koşar Can Ö. Investigation of TIGIT, PVRIG, CD112 and CD155 expression in early and late onset preeclampsia. J Mol Histol 2025; 56:178. [PMID: 40425968 DOI: 10.1007/s10735-025-10459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Preeclampsia is characterized by hypertension and proteinuria after the 20th week of pregnancy. The disease is divided into early and late onset according to the time of diagnosis. Early onset preeclampsia (EOP) develops after the 20th week of pregnancy. The late-onset form usually occurs after the 34th week of pregnancy. TIGIT and PVRIG are immune checkpoint inhibitor receptors. PVRIG binds only to the PVRL2 (nectin-2, CD112). TIGIT binds to both CD112 and CD155. In our study, the control group consisted of placentas from healthy pregnant women, the early onset preeclampsia group (EOP) consisted of patients diagnosed before the 34th week, and the late-onset preeclampsia group (LOP) consisted of placentas from patients diagnosed at or after the 34th week. TIGIT, PVRIG, CD155, and CD112 expression in placental materials was evaluated both immunohistochemically and by RT-PCR. As a result of H scoring of immunohistochemical expression, it was observed that CD112 and CD155 expression decreased and PVRIG expression increased when the EOP and LOP groups were compared with the control group. In the early onset preeclampsia group, CD112, CD155, TIGIT, and PVRIG gene expression increased twofold compared to that in the control group. In the late-onset preeclampsia group, the expression of all the genes decreased to one-third. The results of our study revealed that these genes may serve as biomarkers for early- and late-onset preeclampsia. Detailed studies are required to determine the use of these receptors in the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Hülya Çetin
- Faculty of Medicine Histology and Embryology Departmant, Pamukkale University, Denizli, Turkey
| | - İlknur Lafcı
- Faculty of Medicine Histology and Embryology Departmant, Pamukkale University, Denizli, Turkey
| | - Yeliz Arman Karakaya
- Faculty of Medicine Department of Pathology, Pamukkale University, Denizli, Turkey
| | - Buket Er Urgancı
- Faculty of Medicine Medical Biology Departmant, Pamukkale University, Denizli, Turkey.
| | - Özlem Koşar Can
- Faculty of Medicine Department of Obstetrics and Gynaecology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
2
|
Guan D, Chen Z, Zhang Y, Sun W, Li L, Huang X. Dual Role of Natural Killer Cells in Early Pregnancy: Immunopathological Implications and Therapeutic Potential in Recurrent Spontaneous Abortion and Recurrent Implantation Failure. Cell Prolif 2025:e70037. [PMID: 40325291 DOI: 10.1111/cpr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
Natural killer (NK) cells are critical regulators of immune processes during early pregnancy, playing a key role in maintaining maternal-foetal immune tolerance and supporting successful implantation. In particular, uterine NK cells, a specialised subset of NK cells, facilitate trophoblast invasion, spiral artery remodelling and placental establishment. Dysregulation of NK cell activity, however, has been implicated in pregnancy complications, notably recurrent spontaneous abortion (RSA) and recurrent implantation failure (RIF). Aberrant NK cell functions, such as heightened cytotoxicity or defective immune signalling, can disrupt the balance between immune tolerance and response, leading to impaired placental development, reduced trophoblast activity and compromised uteroplacental blood flow. This review examines the role of NK cells in early pregnancy, emphasising their contributions to immune modulation and placentation. It also investigates the mechanisms by which NK cell dysfunction contributes to RSA and RIF, and explores therapeutic strategies aimed at restoring NK cell balance to improve pregnancy outcomes. A deeper understanding of NK cell interactions during early pregnancy may provide critical insights into the pathogenesis of pregnancy failure and facilitate targeted immunotherapeutic approaches.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhou Chen
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhua Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjie Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lifei Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xia Huang
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Mikhailova V, Grebenkina P, Selkov S, Sokolov D. JEG-3 Trophoblast Cells Influence ILC-like Transformation of NK Cells In Vitro. Int J Mol Sci 2025; 26:3687. [PMID: 40332223 PMCID: PMC12027805 DOI: 10.3390/ijms26083687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
The uterine decidua contains NK cells differing in their characteristics from classical NK cells, as well as other populations of innate lymphoid cells (ILCs). ILC differentiation depends on the active transcription factors: ILC1 is characterized by T-bet expression, ILC2 is defined by RORα and GATA3, ILC3 expresses RORγt and AhR. We analyzed in vitro the expression of transcription factors by NK cells in the presence of trophoblast cells and cytokines and changes in NK cell cytotoxic activity. We used NK-92 and JEG-3 cell lines, which we cocultured in the presence of IFNγ, IL-10, IL-15, and TGFβ. Then, cells were treated with antibodies to AhR, Eomes, GATA-3, RORα, RORγt, and T-bet and were analyzed. We determined NK cell cytotoxicity towards K562 cells. To characterize the functional state of trophoblast cells, we estimated their secretion of TGFβ and βhCG. We showed that in the presence of trophoblasts, the expression of the classical NK cell transcription factors-Eomes, T-bet, as well as RORα, regulating ILC2 differentiation, and AhR, participating in NCR+ ILC3 formation-decreased in NK cells. RORγt expression typical for NCR- ILC3 remained unchanged. IFNγ inhibited AhR expression. IL-10 stimulated an increase in the number of T-bet+ ILC1-like cells. Both IL-10 and IFNγ suppressed RORα expression by NK cells and stimulated TGFβ secretion by trophoblasts. After coculture with trophoblast cells, NK cells reduced their cytotoxicity. These results indicated trophoblast cell influence on the acquisition of ILC1 and ILC3 characteristics by NK cells.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Polina Grebenkina
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Sergey Selkov
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Dmitry Sokolov
- Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology and Reproductology Named After D.O. Ott, 199034 St. Petersburg, Russia (S.S.); (D.S.)
- Department of Immunology, Federal State Budgetary Educational Institution of Higher Education, First St. Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| |
Collapse
|
4
|
Yue S, Meng J. Role of Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia. Am J Reprod Immunol 2025; 93:e70033. [PMID: 39739937 DOI: 10.1111/aji.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance. Furthermore, it explores how disruptions in these mechanisms and changes in the decidual microenvironment alter dNK cell properties, driving the progression of preeclampsia. Understanding the mechanisms of dNK cells and identifying potential therapeutic targets may provide new insights for clinical intervention.
Collapse
Affiliation(s)
- Shuang Yue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Meng X, Luo Y, Cui L, Wang S. Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding. Int J Biol Sci 2025; 21:789-801. [PMID: 39781467 PMCID: PMC11705645 DOI: 10.7150/ijbs.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways. Strikingly, Tim-3 plays a pivotal role in maternal-fetal tolerance by regulating immune cell functions and orchestrating the maternal-fetal cross-talk. In this review, we elaborate on the involvement of Tim-3 in immunology, with a focus on its participation in maternal-fetal tolerance to provide new insights into immunoregulation during pregnancy. Our work will be helpful in further understanding the pathogenesis of pregnancy-related diseases and will inspire new strategies for their diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
6
|
McCulloch TR, Rossi GR, Alim L, Lam PY, Wong JKM, Coleborn E, Kumari S, Keane C, Kueh AJ, Herold MJ, Wilhelm C, Knolle PA, Kane L, Wells TJ, Souza-Fonseca-Guimaraes F. Dichotomous outcomes of TNFR1 and TNFR2 signaling in NK cell-mediated immune responses during inflammation. Nat Commun 2024; 15:9871. [PMID: 39543125 PMCID: PMC11564688 DOI: 10.1038/s41467-024-54232-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Natural killer (NK) cell function is regulated by a balance of activating and inhibitory signals. Tumor necrosis factor (TNF) is an inflammatory cytokine ubiquitous across homeostasis and disease, yet its role in regulation of NK cells remains unclear. Here, we find upregulation of the immune checkpoint protein, T cell immunoglobulin and mucin domain 3 (Tim3), is a biomarker of TNF signaling in NK cells during Salmonella Typhimurium infection. In mice with conditional deficiency of either TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2) in NK cells, we find TNFR1 limits bacterial clearance whereas TNFR2 promotes it. Mechanistically, via single cell RNA sequencing we find that both TNFR1 and TNFR2 induce the upregulation of Tim3, while TNFR1 accelerates NK cell death but TNFR2 promotes NK cell accumulation and effector function. Our study thus highlights the complex interplay of TNF-based regulation of NK cells by the two TNF receptors during inflammation.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction
- Inflammation/immunology
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Salmonella typhimurium/immunology
- Mice, Knockout
- Salmonella Infections/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Male
- Female
Collapse
Affiliation(s)
- Timothy R McCulloch
- Frazer Institute, The University of Queensland, Woolloongabba, Australia.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Gustavo R Rossi
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Louisa Alim
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Pui Yeng Lam
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Joshua K M Wong
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Elaina Coleborn
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lawrence Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
7
|
Zych M, Kniotek M, Roszczyk A, Dąbrowski F, Jędra R, Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int J Mol Sci 2024; 25:9378. [PMID: 39273326 PMCID: PMC11395075 DOI: 10.3390/ijms25179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11-14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/blood
- Adult
- Biomarkers/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immune Checkpoint Proteins/metabolism
- Immune Checkpoint Proteins/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Antigens, CD/metabolism
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Filip Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
- Club35, Polish Society of Obstetricians and Gynecologists PTGiP, Cybernetyki7F/87, 02-677 Warsaw, Poland
| | - Robert Jędra
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
9
|
Ding S, Zhang T, Lei Y, Liu C, Liu Z, Fu R. The role of TIM3 + NK and TIM3 - NK cells in the immune pathogenesis of severe aplastic anemia. J Transl Int Med 2024; 12:96-105. [PMID: 38525441 PMCID: PMC10956726 DOI: 10.2478/jtim-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background Natural killer (NK) cells play important immunoregulatory roles in the immune pathogenesis of severe aplastic anemia (SAA). Our previous research showed that SAA caused a decrease in T cell immunoglobulin mucin-3 (TIM3) expression on NK cells. Here we investigated the expression of surface receptors, and the cytotoxicity of peripheral TIM3+ NK and TIM3- NK cells in patients with SAA. Methods The expressions of surface receptors and cytoplasmic protein of TIM3+ NK and TIM3- NK cells from peripheral blood were detected by FCM. The functions of mDCs, and apoptosis rate of K562 cells after co-culture with TIM3+ NK and TIM3- NK cells were maesured by FCM. Westren-blot was used to detect the changes of TIM3+ NK and TIM3- NK signaling pathway proteins (AKT, P-AKT) and compare the functional activity of the two groups. Results Activating receptors NKG2D and Granzyme B were higher, while inhibiting receptors NKG2A, CD158a and CD158b were lower on TIM3- NK cells compared with TIM3+ NK cells in patients with SAA. In SAA, the expression of CD80 and CD86 on mDCs (Myeloid dendritic cells) was significantly decreased after incubation with TIM3- NK cells. The apoptosis rate (AR) of K562 cells was significantly increased after being incubated with TIM3- NK cells in SAA. The level of signal pathway protein AKT of TIM3- NK cells in SAA was similar to that of TIM3+ NK cells, and the levels of P-AKT and P-AKT/AKT ratio of TIM3- NK cells were significantly higher than those of TIM3+ NK cells. Conclusions Therefore, TIM3 exerts its inhibitory effect on NK cells and participates in the immune pathogenesis of SAA. Low expression of TIM3 contributes to the enhancement of NK cell activity which in turn inhibits the immune activation state of SAA and improves the disease state. Our research may aid the development of new therapeutic strategies based on TIM3-NK cells infusion for the treatment of SAA.
Collapse
Affiliation(s)
- Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Tian Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Yingying Lei
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| |
Collapse
|
10
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
11
|
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology. Biochem Soc Trans 2023; 51:639-653. [PMID: 36929183 DOI: 10.1042/bst20221406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.
Collapse
|
12
|
Shah NK, Xu P, Shan Y, Chen C, Xie M, Li Y, Meng Y, Shu C, Dong S, He J. MDSCs in pregnancy and pregnancy-related complications: an update†. Biol Reprod 2023; 108:382-392. [PMID: 36504233 DOI: 10.1093/biolre/ioac213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Maternal-fetal immune tolerance is a process that involves complex interactions of the immune system, and myeloid-derived suppressor cells have emerged as one of the novel immunomodulator in the maintenance of maternal-fetal immune tolerance. Myeloid-derived suppressor cells are myeloid progenitor cells with immunosuppressive activities on both innate and adaptive cells through various mechanisms. Emerging evidence demonstrates the accumulation of myeloid-derived suppressor cells during healthy pregnancy to establish maternal-fetal immune tolerance, placentation, and fetal-growth process. By contrast, the absence or decreased myeloid-derived suppressor cells in pregnancy complications like preeclampsia, preterm birth, stillbirth, and recurrent spontaneous abortion have been reported. Here, we have summarized the origin, mechanisms, and functions of myeloid-derived suppressor cells during pregnancy along with the recent advancements in this dynamic field. We also shed light on the immunomodulatory activity of myeloid-derived suppressor cells, which can be a foundation for potential therapeutic manipulation in immunological pregnancy complications.
Collapse
Affiliation(s)
- Neelam Kumari Shah
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Peng Xu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Chen
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Min Xie
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Li
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yizi Meng
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chang Shu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuai Dong
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
13
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
15
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
16
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Pro- and Anti-Inflammatory Cytokines in the Context of NK Cell-Trophoblast Interactions. Int J Mol Sci 2022; 23:ijms23042387. [PMID: 35216502 PMCID: PMC8878424 DOI: 10.3390/ijms23042387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
During pregnancy, uterine NK cells interact with trophoblast cells. In addition to contact interactions, uterine NK cells are influenced by cytokines, which are secreted by the cells of the decidua microenvironment. Cytokines can affect the phenotypic characteristics of NK cells and change their functional activity. An imbalance of pro- and anti-inflammatory signals can lead to the development of reproductive pathology. The aim of this study was to assess the effects of cytokines on NK cells in the presence of trophoblast cells in an in vitro model. We used TNFα, IFNγ, TGFβ and IL-10; the NK-92 cell line; and peripheral blood NK cells (pNKs) from healthy, non-pregnant women. For trophoblast cells, the JEG-3 cell line was used. In the monoculture of NK-92 cells, TNFα caused a decrease in CD56 expression. In the coculture of NK cells with JEG-3 cells, TNFα increased the expression of NKG2C and NKG2A by NK-92 cells. Under the influence of TGFβ, the expression of CD56 increased and the expression of NKp30 decreased in the monoculture. After the preliminary cultivation of NK-92 cells in the presence of TGFβ, their cytotoxicity increased. In the case of adding TGFβ to the PBMC culture, as well as coculturing PBMCs and JEG-3 cells, the expression of CD56 and NKp44 by pNK cells was reduced. The differences in the effects of TGFβ in the model using NK-92 cells and pNK cells may be associated with the possible influence of monocytes or other lymphoid cells from the mononuclear fraction.
Collapse
|
19
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
The Role of the Immune Checkpoint Molecules PD-1/PD-L1 and TIM-3/Gal-9 in the Pathogenesis of Preeclampsia—A Narrative Review. Medicina (B Aires) 2022; 58:medicina58020157. [PMID: 35208481 PMCID: PMC8880413 DOI: 10.3390/medicina58020157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Preeclampsia is a pregnancy-specific disease which is characterized by abnormal placentation, endothelial dysfunction, and systemic inflammation. Several studies have shown that the maternal immune system, which is crucial for maintaining the pregnancy by ensuring maternal-fetal-tolerance, is disrupted in preeclamptic patients. Besides different immune cells, immune checkpoint molecules such as the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1 system) and the T-cell immunoglobulin and mucin domain-containing protein 3/Galectin-9 (TIM-3/Gal-9 system) are key players in upholding the balance between pro-inflammatory and anti-inflammatory signals. Therefore, a clear understanding about the role of these immune checkpoint molecules in preeclampsia is essential. This review discusses the role of these two immune checkpoint systems in pregnancy and their alterations in preeclampsia.
Collapse
|
21
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
22
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Differences in Immune Checkpoints Expression (TIM-3 and PD-1) on T Cells in Women with Recurrent Miscarriages-Preliminary Studies. J Clin Med 2021; 10:jcm10184182. [PMID: 34575293 PMCID: PMC8468868 DOI: 10.3390/jcm10184182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Immune checkpoints are molecules that regulate the function of immune cells and control inflammation processes. An important role in this regard is played by TIM-3/Gal-9 and PD-1/PDL-1 interactions. Previous research performed in a mouse model of pregnancy loss confirmed that blocking TIM-3 could induce fetal loss. Similarly, the PD-1 molecule maintains protective interactions between the mother’s immune cells and the fetus. The purpose of this study was to assess the expression of these molecules on a range of T lymphocyte subpopulations from non-pregnant women with recurrent spontaneous abortion (RSA) versus healthy fertile women. Methods: PBMCs were isolated by gradient centrifugation of blood obtained from 12 healthy women and 24 women with RSA and immediately stained for flow cytometry analysis. Standard immunophenotyping of PBMC was performed with the antibodies against classical lymphocyte markers: CD3, CD4, CD8, and CD56. Immune checkpoints were investigated using antibodies against PD-1(CD279) and TIM-3(CD366). Results: We found that expression of TIM-3 was significantly decreased on CD8+ T lymphocytes in the RSA group, and expression of PD-1 was upregulated on CD4+ T lymphocytes in the RSA group in comparison to the healthy controls. Conclusions: Considering our findings, therapeutic intervention towards immune checkpoints may be a promising treatment option for recurrent spontaneous abortion.
Collapse
|
24
|
Dong S, Shah NK, He J, Han S, Xie M, Wang Y, Cheng T, Liu Z, Shu C. The abnormal expression of Tim-3 is involved in the regulation of myeloid-derived suppressor cells and its correlation with preeclampsia. Placenta 2021; 114:108-114. [PMID: 34509865 DOI: 10.1016/j.placenta.2021.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Maternal immune system tolerance to the semi-allogeneic fetus is critical to a successful pregnancy. We previously reported that myeloid-derived suppressor cells (MDSC) was associated with maternal immune imbalance. T cell immunoglobulin and mucin-containing protein 3 (Tim-3)/Galectin-9 (Gal-9) pathway modulates function of various immune cells in maternal-fetal interface. However, the regulatory effects of Tim-3/Gal-9 signaling on MDSCs and its role in preeclampsia (PE) remain unclear. METHODS In the current study we investigated the expression of Tim-3 on MDSC in preeclampsia (PE) patients to further explore the pathogenesis of PE. RESULTS The proportion of Tim-3+ M-MDSC (monocytic MDSC) cells was higher in PE patients than in healthy control. Meanwhile, the protein expression of Gal-9, as the ligand of Tim-3, was increased in placenta of PE patients. M-MDSC also expressed a higher level of interferon-γ (IFN-γ) and a lower level of transforming growth factor-β (TGF-β) in PE. Furthermore, our study suggested that blocking Tim-3 could attenuate the inhibitory function of MDSC. DISCUSSION The abnormal expression of Tim-3 on MDSC might be involved in the pathogenesis of PE, and could be a marker to evaluate the immune function in PE.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Neelam Kumari Shah
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Ying Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Tingting Cheng
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Zitao Liu
- Hope Fertility Center, New York, NY10019, USA
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
25
|
Sun JY, Wu R, Xu J, Xue HY, Lu XJ, Ji J. Placental Immune Tolerance and Organ Transplantation: Underlying Interconnections and Clinical Implications. Front Immunol 2021; 12:705950. [PMID: 34413856 PMCID: PMC8370472 DOI: 10.3389/fimmu.2021.705950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The immune system recognizes and attacks non-self antigens, making up the cornerstone of immunity activity against infection. However, during organ transplantation, the immune system also attacks transplanted organs and leads to immune rejection and transplantation failure. Interestingly, although the embryo and placenta are semi-allografts, like transplanted organs, they can induce maternal tolerance and be free of a vigorous immune response. Also, embryo or placenta-related antibodies might adversely affect subsequent organ transplantation despite the immune tolerance during pregnancy. Therefore, the balance between the immune tolerance in maternal-fetal interface and normal infection defense provides a possible desensitization and tolerance strategy to improve transplantation outcomes. A few studies on mechanisms and clinical applications have been performed to explore the relationship between maternal-fetal immune tolerance and organ transplantation. However, up to now, the mechanisms underlying maternal-fetal immune tolerance remain vague. In this review, we provide an overview on the current understanding of immune tolerance mechanisms underlying the maternal-fetal interface, summarize the interconnection between immune tolerance and organ transplantation, and describe the adverse effect of pregnancy alloimmunization on organ transplantation.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hui-Ying Xue
- The Reproductive Center, Huai'an Maternal and Child Health Care Hospital, Xuzhou Medical University, Huai'an, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
26
|
Immune checkpoints and reproductive immunology: Pioneers in the future therapy of infertility related Disorders? Int Immunopharmacol 2021; 99:107935. [PMID: 34304000 DOI: 10.1016/j.intimp.2021.107935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
As co-stimulatory receptors, immune checkpoint molecules are found on the surface of various immune cells and transduce inhibitory signals following ligand binding. The most studied members in this regard include PD-1, TIM-3, and CTLA-4. The physiological part immune checkpoints possess is the prevention of dangerous immune attacks towards self-antigens throughout an immune response, which takes place through the negative regulation of the effector immune cells, through the induction of T-cell exhaustion, for instance. It has recently been suggested that each checkpoint reduces immunoactivation via distinct intracellular mechanisms of signaling. Regulators of immune checkpoints are supposed to participate actively in immune defense mechanisms against infections, preventing autoimmunity, transplantation, and tumor immune evasion. In pregnancy, as an active immunotolerance mechanism which is also natural, the maternal immune system encounters two simultaneous challenges; in addition to accepting the semi-allogeneic fetus, the maternal immune system should also prevent infections. In this regard, the part immune checkpoint molecules possess is particularly interesting. Herein, the current understanding of such part in reproductive immunology is described.
Collapse
|
27
|
Meggyes M, Nagy DU, Balassa T, Godony K, Peterfalvi A, Szereday L, Polgar B. Influence of Galectin-9 Treatment on the Phenotype and Function of NK-92MI Cells in the Presence of Different Serum Supplements. Biomolecules 2021; 11:biom11081066. [PMID: 34439744 PMCID: PMC8391477 DOI: 10.3390/biom11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Galectins are one of the critical players in the tumor microenvironment-tumor crosstalk and the regulation of local immunity. Galectin-9 has been in the limelight in tumor immunology. Galectin-9 possesses its multiplex biological functions both extracellularly and intracellularly, plays a pivotal role in the modulation of adaptive and innate immunity, and induces immune tolerance. NK-92MI cell lines against different malignancies were extensively studied, and recently published trials used genetically chimeric antigen receptor-transfected NK-92MI cells in tumor immunotherapy. Besides the intensive research in tumor immunotherapy, limited information is available on their immune-checkpoint expression and the impact of checkpoint ligands on their effector functions. To uncover the therapeutic potential of modulating Galectin-9-related immunological pathways in NK-cell-based therapy, we investigated the dose-dependent effect of soluble Galectin-9 on the TIM-3 checkpoint receptor and NKG2D, CD69, FasL, and perforin expression of NK-92MI cells. We also examined how their cytotoxicity and cytokine production was altered after Gal-9 treatment and in the presence of different serum supplements using flow cytometric analysis. Our study provides evidence that the Galectin-9/TIM-3 pathway plays an important role in the regulation of NK cell function, and about the modulatory role of Galectin-9 on the cytotoxicity and cytokine production of NK-92MI cells in the presence of different serum supplements. We hope that our results will aid the development of novel NK-cell-based strategies that target Galectin-9/TIM-3 checkpoint in tumors resistant to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence: ; Tel.: +3672-536001/1907
| | - David U Nagy
- Medical Centre, Cochrane Hungary, University of Pecs, 7623 Pecs, Hungary;
| | - Timea Balassa
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, University of Pecs, 17 Edesanyak Street, 7624 Pecs, Hungary;
| | - Agnes Peterfalvi
- Department of Laboratory Medicine, Medical School, University of Pecs, 13 Ifjusag Street, 7624 Pecs, Hungary;
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
28
|
Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front Immunol 2021; 12:663660. [PMID: 34054831 PMCID: PMC8149889 DOI: 10.3389/fimmu.2021.663660] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Decidual natural killer (dNK) cells are the tissue-resident and major subpopulation of NK cells at the maternal-fetal interface. It has been demonstrated that dNK cells play pivotal roles in pregnancy, including keeping maternal-fetal immune tolerance, promoting extravillous trophoblast (EVT) cell invasion, and driving uterine spiral artery remodeling. However, the molecular mechanisms haven't been elucidated until recent years. In this review, we systemically introduce the generation, subsets, and surface or soluble molecules of dNK cells, which are critical for maintaining the functions of dNK cells. Further, new functions of dNK cells including well-controlled cytotoxicity, immunosurveillance and immunotrophism supporting via the cell-cell interaction between dNK cells and EVT cells are mainly focused. The molecular mechanisms involved in these functions are also illustrated. Moreover, pregnancy-associated diseases caused by the dNK cells abnormalities are discussed. It will be important for future investigations about the mechanism of maintenance of pregnancy and parturition and potential clinical applications of dNK cells.
Collapse
Affiliation(s)
- Yuefang Liu
- Department of Clinical Genetics, the Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Shujun Gao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
| | - Qiong Pan
- Department of Clinical Genetics, the Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Zhenjiang, China
- Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
29
|
Li T, Cui L, Xu X, Zhang H, Jiang Y, Ren L, Yang C, Liu X, Hu X. The Role of Tim-3 on dNK Cells Dysfunction During Abnormal Pregnancy With Toxoplasma gondii Infection. Front Cell Infect Microbiol 2021; 11:587150. [PMID: 33718261 PMCID: PMC7953497 DOI: 10.3389/fcimb.2021.587150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
Vertical transmission of Toxoplasma gondii (T. gondii) infection during gestation can result in severe complications such as abortion, congenital malformation, fetal teratogenesis, etc. Immune inhibitory molecule Tim-3 was discovered to be expressed on some decidual immune cells and participates in the maintenance of maternal-fetal tolerance. Dysregulation of Tim-3 expression on decidual NK (dNK) cells was observed in several cases of pregnancy complications, whereas the role of Tim-3 on dNK cells during T. gondii infection remains unclear. In the present study, T. gondii infected Tim-3-/- pregnant mice, and anti-Tim-3 neutralizing antibody treated and infected human dNK cells were successfully established to explore the role of Tim-3 in dysfunction of dNK cells during abnormal pregnancy. Our results illustrated that Tim-3-/- pregnant mice displayed more worse pregnancy outcomes with T. gondii infection compared to infected WT pregnant mice. Also, it demonstrated that Tim-3 expression on dNK cells was significantly down-regulated following T. gondii infection. Data suggested a remarkable activation of dNK cells in Tim-3-/- mice and anti-Tim-3 neutralizing antibody treated and infected groups, with higher ratios of activating receptor NKG2D to inhibitory receptor NKG2A or KIR2DL4, IFN-γ/IL-10, and increased granule production compared with that of the infected group. Mechanism analysis proved that T. gondii-induced Tim-3 down-regulation significantly activated the phosphatidylinositol-3-kinase (PI3K)-AKT and JAK-STAT signaling pathway, by which the GranzymeB, Perforin, IFN-γ, and IL-10 production were further up-regulated. Our research demonstrated that the decrease of Tim-3 on dNK cells caused by T. gondii infection further led to dNK cells function disorder, which finally contributed to the development of abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Teng Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Lijun Cui
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Liqin Ren
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Chunyan Yang
- School of Stomatology, Binzhou Medical University, Yantai, China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
30
|
Ganjalikhani Hakemi M, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O, Bazhin AV. The Role of TIM-3 in Hepatocellular Carcinoma: A Promising Target for Immunotherapy? Front Oncol 2020; 10:601661. [PMID: 33425759 PMCID: PMC7793963 DOI: 10.3389/fonc.2020.601661] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
One of the most common tumors in the world is hepatocellular carcinoma (HCC), and its mortality rates are still on the rise, so addressing it is considered an important challenge for universal health. Despite the various treatments that have been developed over the past decades, the prognosis for advanced liver cancer is still poor. Recently, tumor immunotherapy has opened new opportunities for suppression of tumor progression, recurrence, and metastasis. Besides this, investigation into this malignancy due to high immune checkpoint expression and the change of immunometabolic programming in immune cells and tumor cells is highly considered. Because anti-cytotoxic T lymphocyte-associated protein (CTLA)-4 antibodies and anti-programmed cell death protein (PD)-1 antibodies have shown therapeutic effects in various cancers, studies have shown that T cell immunoglobulin mucin-3 (TIM-3), a new immune checkpoint molecule, plays an important role in the development of HCC. In this review, we summarize the recent findings on signal transduction events of TIM-3, its role as a checkpoint target for HCC therapy, and the immunometabolic situation in the progression of HCC.
Collapse
Affiliation(s)
| | - Morteza Jafarinia
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Rezaeepoor
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Orkhan Isayev
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
- Genetic Resources Institute, Azerbaijan National Academy of Scince, Baku, Azerbaijan
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
31
|
Eastman AJ, Vrana EN, Grimaldo MT, Jones AD, Rogers LM, Alcendor DJ, Aronoff DM. Cytotrophoblasts suppress macrophage-mediated inflammation through a contact-dependent mechanism. Am J Reprod Immunol 2020; 85:e13352. [PMID: 32969101 DOI: 10.1111/aji.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Gestational membrane (GM) infection provokes inflammation and can result in preterm prelabor rupture of membranes (PPROM). The choriodecidual layer of the GM includes decidual stromal cells (DSC), cytotrophoblasts (CTB), and macrophages (Mφ). Our laboratory has previously shown that DSCs suppress Mφ TNF-α production through secreted prostaglandin E2 . We hypothesized that CTBs would also inhibit Mφ cytokine expression through secreted mediators. METHOD OF STUDY THP.1 Mφ-like cells with an NF-κB reporter construct or human blood monocyte-derived Mφ were co-cultured with the Jeg3 CTB cell line or primary human CTBs and challenged with group B streptococcus (GBS) or Toll-like receptor (TLR) agonists. Conditioned medium generated from CTB cultures was applied to Mφ cultures before infection or treatment. Alternatively, CTBs were co-incubated with, but physically separated from, Mφ and GBS or TLR-stimulated. NF-κB was assessed via alkaline phosphatase assay, and proinflammatory mediators were assessed by qRT-PCR and ELISA. RESULTS CTBs suppressed GBS- or TLR-stimulated Mφ NF-κB activity, and TNF-α and MMP9 production. Direct physical contact between CTBs and Mφ was required for full immunosuppression. Immunosuppression could be overcome by increasing the ratio of Mφ to CTB. CONCLUSIONS CTBs limit Mφ NF-κB activation and production of TNF-α and MMP9 through an as-yet unknown, cell-to-cell contact-mediated mechanism. This suppression is distinct from the PGE2 -mediated Mφ TNF-α suppression by DSC, suggesting that DSCs and CTBs regulate Mφ inflammation through distinct mechanisms. How Mφ integrates these signals in an intact GM will be paramount to determining causes and prevention of PPROM.
Collapse
Affiliation(s)
- Alison J Eastman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin N Vrana
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN, USA
| | - Maria T Grimaldo
- Texas A&M University, College of Agriculture and Life Sciences, College Station, TX, USA
| | - Amanda D Jones
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David M Aronoff
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
32
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Guerrero B, Hassouneh F, Delgado E, Casado JG, Tarazona R. Natural killer cells in recurrent miscarriage: An overview. J Reprod Immunol 2020; 142:103209. [PMID: 32992208 DOI: 10.1016/j.jri.2020.103209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Recurrent Miscarriage is an early pregnancy complication which affects about 1-3 % of child-bearing couples. The mechanisms involved in the occurrence of recurrent miscarriages are not clearly understood. In the last decade Natural Killer cells have been studied in peripheral blood and uterus in order to determine if there are specific characteristics of Natural Killer cells associated with miscarriage. Different authors have described an increased number of uterine and peripheral blood Natural Killer cells in women with recurrent miscarriages compared to control women. However, its relationship with miscarriage has not been confirmed. In patients with recurrent miscarriage a lack of inhibition of decidua Natural Killer cells can be observed, which leads to a more activated state characterized by higher levels of proinflammatory cytokines. In peripheral blood, it has been also reported a dysfunctional cytokine production by Natural Killer cells, with an increase of interferon-γ levels and a decrease of Interleukin-4. Significant progress has been made in the last decade in understanding the biology of Natural Killer cells, including the identification of new receptors that also contribute to the activation and regulation of Natural Killer cells. In this review, we summarize the current progress in the study of Natural Killer cells in recurrent miscarriage.
Collapse
Affiliation(s)
| | | | - Elena Delgado
- Clínica Norba, Ginecología y Reproducción, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | |
Collapse
|
34
|
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front Immunol 2020; 11:1864. [PMID: 33013837 PMCID: PMC7462000 DOI: 10.3389/fimmu.2020.01864] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Collapse
Affiliation(s)
- Ingrid Aneman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatjana P. Simic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Amjadi F, Zandieh Z, Mehdizadeh M, Aghajanpour S, Raoufi E, Aghamajidi A, Aflatoonian R. The uterine immunological changes may be responsible for repeated implantation failure. J Reprod Immunol 2020; 138:103080. [DOI: 10.1016/j.jri.2020.103080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
36
|
Bruno V, Corrado G, Baci D, Chiofalo B, Carosi MA, Ronchetti L, Piccione E, Albini A, Noonan DM, Piaggio G, Vizza E. Endometrial Cancer Immune Escape Mechanisms: Let Us Learn From the Fetal-Maternal Interface. Front Oncol 2020; 10:156. [PMID: 32226771 PMCID: PMC7080858 DOI: 10.3389/fonc.2020.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
The immune escape mechanisms at the base of tumor progression in endometrial cancer mimic immune tolerance mechanisms occurring at the maternal-fetal interface. The biological and immunological processes behind the maternal-fetal interface are finely tuned in time and space during embryo implantation and subsequent pregnancy stages; conversely, those behind cancer progression are often aberrant. The environment composition at the maternal-fetal interface parallels the pro-tumor microenvironment identified in many cancers, pointing to the possibility for the use of the maternal-fetal interface as a model to depict immune therapeutic targets in cancer. The framework of cancer environment signatures involved in immune adaptations, precisely timed in cancer progression, could reveal a specific "immune clock" in endometrial cancer, which might guide clinicians in patient risk class assessment, diagnostic workup, management, surgical and therapeutic approach, and surveillance strategies. Here, we review studies approaching this hypothesis, focusing on what is known so far about oncofetal similarities in immunity with the idea to individualize personalized immunotherapy targets, through the downregulation of the immune escape stage or the reactivation of the pro-inflammatory processes suppressed by the tumor.
Collapse
Affiliation(s)
- Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Women and Children Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Antonia Carosi
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Livia Ronchetti
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Section of Gynecology, Academic Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
37
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Milyutina YP, Mikhailova VA, Pyatygina KM, Demidova ES, Malygina DA, Tertychnaia TE, Arutjunyan AV, Sokolov DI, Selkov SA. Role of Caspases in the Cytotoxicity of NK-92 Cells in Various Models of Coculturing with Trophoblasts. BIOCHEMISTRY (MOSCOW) 2019; 84:1186-1196. [PMID: 31694514 DOI: 10.1134/s0006297919100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Studies of interactions between natural killer (NK) cells and trophoblasts and identification of conditions for the NK cells to perform their cytotoxic function are of fundamental and practical importance for understanding their role in the development of pathological processes and complications during pregnancy. In this study, we examined changes in the content of caspases and studied activation of these enzymes in Jeg-3 trophoblasts in various models of their coculturing with NK-92 cells and demonstrated the necessity of direct contact between these cell populations for the activation of caspase-8 and caspase-3 in the trophoblasts. Contact coculturing of the two cell lines resulted in the appearance of the cytotoxic protein granzyme B in Jeg-3 cells that was accompanied by a decrease in the content of this enzyme in NK-92 cells. Distant coculturing of NK-92 and Jeg-3 cells did not trigger initiator and effector caspases characteristic for the apoptosis development in Jeg-3 cells. The observed decrease in the content of procaspases in the trophoblasts may be associated with alternative non-apoptotic functions of these enzymes.
Collapse
Affiliation(s)
- Yu P Milyutina
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia.
| | - V A Mikhailova
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - K M Pyatygina
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - E S Demidova
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - D A Malygina
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - T E Tertychnaia
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - A V Arutjunyan
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - D I Sokolov
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - S A Selkov
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| |
Collapse
|
39
|
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), a member of the TIM family, was originally identified as a receptor expressed on interferon-γ-producing CD4+ and CD8+ T cells. Initial data indicated that TIM3 functioned as a 'co-inhibitory' or 'checkpoint' receptor, but due to the lack of a definable inhibitory signalling motif, it was also suggested that TIM3 might act as a co-stimulatory receptor. Recent studies have shown that TIM3 is part of a module that contains multiple co-inhibitory receptors (checkpoint receptors), which are co-expressed and co-regulated on dysfunctional or 'exhausted' T cells in chronic viral infections and cancer. Furthermore, co-blockade of TIM3 and programmed cell death 1 (PD1) can result in tumour regression in preclinical models and can improve anticancer T cell responses in patients with advanced cancers. Here, we highlight the developments in understanding TIM3 biology, including novel ligand identification and the discovery of loss-of-function mutations associated with human disease. In addition, we summarize emerging data from human clinical trials showing that TIM3 indeed acts as a 'checkpoint' receptor and that inhibition of TIM3 enhances the antitumour effect of PD1 blockade.
Collapse
|
40
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
PD-1 is expressed by and regulates human group 3 innate lymphoid cells in human decidua. Mucosal Immunol 2019; 12:624-631. [PMID: 30755717 DOI: 10.1038/s41385-019-0141-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/22/2018] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) have been detected in both murine and human decidual tissues where they are thought to play a relevant role in the induction and maintenance of pregnancy. However, limited information exists on the molecular mechanisms that regulate these cells, including immune checkpoints. Here, we show that ILC3 express the inhibitory checkpoints programmed cell death (PD-1) and T cell immunoglobulin and mucin domain containing protein 3 (TIM-3) during the first trimester of pregnancy and that these receptors could regulate production of cytokines, including IL-22, IL-8, and TNF-α, induced by IL-23. We also show that the intermediate extravillous trophoblast (iEVT) expresses high levels of the PD-1-ligand PD-L1, suggesting that PD-1/PD-L1 interaction may regulate ILC3 function at the feto-maternal interface. Our present data provide the first evidence that human decidual ILC3 express a functional PD-1. It is possible that an altered expression or function of PD-1 may break the immune-tolerance resulting in pregnancy failure.
Collapse
|
42
|
Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Immune Checkpoint Molecules in Reproductive Immunology. Front Immunol 2019; 10:846. [PMID: 31057559 PMCID: PMC6482223 DOI: 10.3389/fimmu.2019.00846] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint molecules, like CTLA-4, TIM-3, PD-1, are negative regulators of immune responses to avoid immune injury. Checkpoint regulators are thought to actively participate in the immune defense of infections, prevention of autoimmunity, transplantation, and tumor immune evasion. Maternal-fetal immunotolerance represents a real immunological challenge for the immune system of the mother: beside acceptance of the semiallogeneic fetus, the maternal immune system has to be prepared for immune defense mostly against infections. In this particular situation, the role of immune checkpoint molecules could be of special interest. In this review, we describe current knowledge on the role of immune checkpoint molecules in reproductive immunology.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Katalin Doba
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| |
Collapse
|
43
|
Li ZH, Wang LL, Liu H, Muyayalo KP, Huang XB, Mor G, Liao AH. Galectin-9 Alleviates LPS-Induced Preeclampsia-Like Impairment in Rats via Switching Decidual Macrophage Polarization to M2 Subtype. Front Immunol 2019; 9:3142. [PMID: 30687334 PMCID: PMC6335255 DOI: 10.3389/fimmu.2018.03142] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of decidual macrophages (DMs) is considered a critical event in the pathogenesis of pre-eclampsia (PE). T cell immunoglobulin mucin 3 (Tim-3) is an important negative regulatory molecule that induces immune tolerance by interacting with its ligand Galectin-9 (Gal-9) and thus modulating function of various immune cells, including macrophages. However, the regulatory effects of Tim-3/Gal-9 signaling on DMs polarization and its role in PE remain unclear. In this study, we established a PE-like rat model by administering 1.0 μg/kg lipopolysaccharide (LPS) to normal pregnant Sprague-Dawley rats via the tail vein at embryonic day 5 (E5). Apart from the pre-eclamptic manifestations, increased M1 subtype and decreased M2 subtype were observed at the maternal-fetal interface, as well as increased pro-inflammatory cytokines (TNF-α and IL-1β) and reduced anti-inflammatory cytokines (TGF-β and IL-10). Moreover, the expression of Tim-3 in DMs and that of Gal-9 at the maternal-fetal interface were reduced. After administration of recombinant Galectin-9 (rGal-9) protein, we found that liver and renal injuries and maternofetal placental functional deficiency, including inadequate trophoblast cells invasion, impaired spiral artery remodeling and fetal capillary development, were reversed. In addition, the polarization of DMs was inclined to M2 subtype, which was similar to the polarization of DMs in the control rats but contrary to the PE-like rats. Interestingly, at E9, the expression of Tim-3 in DMs and that of Gal-9 at the maternal-fetal interface were significantly increased in the rGal-9 protein intervention group. Taken together, our findings show that administration of rGal-9 protein can alleviate the PE-like rat manifestations induced by LPS. This finding may be related to the activation of the Tim-3/Gal-9 signaling pathway, which promotes DMs polarization dominantly shifting to M2 subtype. Moreover, upregulation of Tim-3 in DMs and Gal-9 at the maternal-fetal interface at E9 suggests that Tim-3/Gal-9 pathway may play some important roles in early pregnancy and even embryo development.
Collapse
Affiliation(s)
- Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, United States
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Piao LX, Cheng JH, Aosai F, Zhao XD, Norose K, Jin XJ. Cellular immunopathogenesis in primary Toxoplasma gondii
infection during pregnancy. Parasite Immunol 2018; 40:e12570. [DOI: 10.1111/pim.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lian Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Jia Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Fumie Aosai
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Infection and Host Defense; Graduate School of Medicine; Shinshu University; Matsumoto Japan
| | - Xu Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Kazumi Norose
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Xue Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| |
Collapse
|
45
|
Fan DX, Zhou WJ, Jin LP, Li MQ, Xu XH, Xu CJ. Trophoblast-Derived CXCL16 Decreased Granzyme B Production of Decidual γδ T Cells and Promoted Bcl-xL Expression of Trophoblasts. Reprod Sci 2018; 26:532-542. [PMID: 29909746 DOI: 10.1177/1933719118777638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decidual γδ T cells are known to regulate the function of trophoblasts at the maternal-fetal interface; however, little is known about the molecular mechanisms of cross talk between trophoblast cells and decidual γδ T cells. METHODS Expression of chemokine C-X-C motif ligand 6 (CXCL16) and its receptor CXCR6 was evaluated in first-trimester human villus and decidual tissues by immunohistochemistry. γδ T cells were isolated from first-trimester human deciduae and cocultured with JEG3 trophoblast cells. Cell proliferation and apoptosis-related molecules, together with cytotoxicity factor and cytokine production, were measured by flow cytometry analysis. RESULTS Expression of CXCL16 and CXCR6 was reduced at the maternal-fetal interface in patients who experienced unexplained recurrent spontaneous abortion as compared to healthy pregnancy women. With the administration of pregnancy-related hormones or coculture with JEG3 cells, CXCR6 expression was upregulated on decidual γδ T cells. CXCL16 derived from JEG3 cells caused a decrease in granzyme B production of decidual γδ T cells. In addition, decidual γδ T cells educated by JEG3-derived CXCL16 upregulated the expression of Bcl-xL in JEG3 cells. CONCLUSION This study suggested that the CXCL16/CXCR6 axis may contribute to maintaining normal pregnancy by reducing the secretion of cytotoxic factor granzyme B of decidual γδ T cells and promoting the expression of antiapoptotic marker Bcl-xL of trophoblasts.
Collapse
Affiliation(s)
- Deng-Xuan Fan
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li-Ping Jin
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ming-Qing Li
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiang-Hong Xu
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Cong-Jian Xu
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,3 Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,4 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
The Role of Galectins as Modulators of Metabolism and Inflammation. Mediators Inflamm 2018; 2018:9186940. [PMID: 29950926 PMCID: PMC5987346 DOI: 10.1155/2018/9186940] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
Galectins are β-galcotosid-binding lectins. The function of galectins varies with their tissue-specific and subcellular location, and their binding to carbohydrates makes them key players in several intra- and extracellular processes where they bind to glycosylated proteins and lipids. In humans, there are 12 identified galectins, some with tissue-specific distribution. Galectins are found inside cells and in the nucleus, cytosol, and organelles, as well as extracellularly. Galectin-1, -2, -3, -4, -7, -8, -9, and -12 can all induce T-cell apoptosis and modulate inflammation. In the context of metabolic control and loss of the same in, for example, diabetes, galectin-1, -2, -3, -9, and -12 are especially interesting. This review presents information on galectins relevant to the control of inflammation and metabolism and the potential to target galectins for therapeutic purposes.
Collapse
|
47
|
Lajko A, Meggyes M, Polgar B, Szereday L. The immunological effect of Galectin-9/TIM-3 pathway after low dose Mifepristone treatment in mice at 14.5 day of pregnancy. PLoS One 2018; 13:e0194870. [PMID: 29566059 PMCID: PMC5864070 DOI: 10.1371/journal.pone.0194870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
The abortifacient Mifepristone (RU486) has proven to be a safe, effective, acceptable option for millions of women seeking abortion during the first and second trimester of pregnancy although its precise mechanism of action is not well understood. The main objective of this study was to investigate the impact of low dose Mifepristone administration on placental Galectin-9 (Gal-9) expression, as well as its effect on the cell surface expression of Gal-9, TIM-3 and CD107a molecules by different T and NK cell subsets. A model of Mifepristone-induced immunological changes was established in syngeneic pregnant BALB/c mice. RU486-induced alteration in placental Gal-9 expression was determined by immunohistochemistry. For immunophenotypic analysis, mid-pregnancy decidual lymphocytes and peripheral mononuclear cells were obtained from Mifepristone treated and control mice at the 14.5 day of gestation. TIM-3 and Gal-9 expression by peripheral and decidual immune cells were examined by flow cytometry. Our results revealed a dramatically decreased intracellular Gal-9 expression in the spongiotrophoblast layer of the haemochorial placenta in Mifepristone treated pregnant mice. Although low dose RU486 treatment did not cause considerable change in the phenotypic distribution of decidual and peripheral immune cells, it altered the Gal-9 and TIM-3 expression by different NK and T cell subsets. In addition, the treatment significantly decreased the CD107a expression by decidual TIM-3+ NK cells, but increased its expression by decidual NKT cell compared to the peripheral counterparts. These findings suggest that low dose Mifepristone administration might induce immune alterations in both progesterone dependent and independent way.
Collapse
Affiliation(s)
- Adrienn Lajko
- University of Pecs, Medical School, Department of Medical Microbiology and Immunology, Pecs, Hungary
| | - Matyas Meggyes
- University of Pecs, Medical School, Department of Medical Microbiology and Immunology, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Beata Polgar
- University of Pecs, Medical School, Department of Medical Microbiology and Immunology, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
| | - Laszlo Szereday
- University of Pecs, Medical School, Department of Medical Microbiology and Immunology, Pecs, Hungary
- Janos Szentagothai Research Centre, Pecs, Hungary
- * E-mail:
| |
Collapse
|
48
|
Enninga EAL, Harrington SM, Creedon DJ, Ruano R, Markovic SN, Dong H, Dronca RS. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol 2017; 79. [PMID: 29205636 PMCID: PMC5814874 DOI: 10.1111/aji.12795] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
PROBLEM Pregnancy requires balance between tolerance to the haploidentical fetus and the mother's ability to mount immune responses. There are parallels to this phenomenon that occur in metastatic cancer. We assessed soluble program death ligand-1 soluble PD-L1 (sPD-L1) and galectin-9 in the blood of pregnant women during gestation as these molecules are highly involved in immune suppression during cancer. METHOD OF STUDY Maternal blood was collected from 30 primigravida women at monthly intervals during pregnancy, delivery and 6-week post-partum. Blood was analyzed for sPD-L1 and galectin-9 concentrations by ELISA. Term placentas were collected in formalin and IHC was completed for PD-L1 and galectin-9 expression. RESULTS Maternal blood levels of sPD-L1 (0.438 ng/mL) and galectin-9 (1976 pg/mL) were elevated early in normal pregnancies compared to non-pregnant controls (0.242 ng/mL and 773 pg/mL, respectively). sPD-L1 increased throughout gestation, whereas galectin-9 remained elevated until parturition; both proteins returned to control levels post-partum. Women carrying male fetuses had significantly higher galectin-9 levels, but not sPD-L1, than those carrying females (2263 pg/mL vs 1874 pg/mL; P = .0005). Trophoblast cells of the term placenta coexpress galectin-9 and PD-L1. CONCLUSION Immune-regulatory molecules galectin-9 and sPD-L1 increased during pregnancy and may play a role in immune tolerance that is critical for the fetus.
Collapse
Affiliation(s)
| | | | - Douglas J Creedon
- Department of Obstetrics and Gynecology, Baylor College of Medicine at the Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | | | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Roxana S Dronca
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Li F, Dang J, Jiang M, He M, Yang M, Li J, Hao H, Zhou Y, Zuo W, Xie Y, Deng D. Upregulation of Tim-3 expression at feto-maternal interface may explain embryo survival in the CBAxDBA/2 model of abortion. Am J Reprod Immunol 2017; 79. [PMID: 29083087 DOI: 10.1111/aji.12775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
PROBLEM To understand the mechanisms of action of Tim-3 at the maternal-fetal interface and explore how Tim-3 might be involved in the pathogenesis of abortion by constructing an in vitro trophoblast-lymphocyte system. METHODS OF STUDY Female CBA/J × male DBA/2 matings were used as the abortion-prone model and CBA/J × male BALB/c matings as control. The expression of Tim-3 at the maternal-fetal interface and in the peripheral blood lymphocytes was measured by immunohistochemistry and Western blotting. The proliferation index of lymphocytes and levels of Th1/Th2-derived cytokines in peripheral blood and in the co-culture system were determined using CCK-8 assay and ELISA, respectively. RESULTS The expression level of Tim-3 was higher in abortion-prone matings than that of control (P < .05). A preponderance of Th1 was observed in the co-culture system in the abortion-prone mating group. Recombinant Tim-3 Ig reversed the imbalance of Th1/Th2 immunity of abortion-prone matings by suppressing the secretion of IFN-γ and IL-2 but had no direct effect on the generation of IL-4. CONCLUSION Tim-3 might contribute to successful pregnancy by restraining Th1 bias, and the maternal immune system might develop a strategy including upregulation of Tim-3 at the maternal-fetal interface and in peripheral blood so as to maintain moderate inflammatory responses against miscarriage.
Collapse
Affiliation(s)
- Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Dang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Jiang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Jiangsu, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meitao Yang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Reproductive Medical Center of the Third Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Hao
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Zhou
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Reproductive Medical Center, Tangdu Hospital, The Fourth Military Medical University, xi'an, China
| | - Wei Zuo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Department of Orthopedics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
50
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|