1
|
Xu L, Liu Z, Xu X, Wan Q, Zhen J, Jiang L, Cheung BMY, Li C. Thyroid Autoimmunity is Associated with Dietary Fat Consumption. J Clin Endocrinol Metab 2025; 110:e1902-e1910. [PMID: 39268914 DOI: 10.1210/clinem/dgae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Dietary factors are crucial in the onset and development of autoimmune thyroid disease (AITD), but the relationship between specific fatty acids and AITD remains unexplored. METHODS We analyzed the US National Health and Nutrition Examination Survey 2007 to 2012 data on 3949 men and 3964 women aged 20 years and over with valid data on antithyroid peroxidase antibodies (TPOAb), antithyroglobulin antibodies (TgAb), and details of fat intake using multivariable regression models to examine the relationship of fat intake and specific fatty acid intake with thyroid autoimmunity. RESULTS Of the 7913 participants, 7.5% had TgAb seropositivity and 11.9% had TPOAb seropositivity. The seropositivity of TgAb and TPOAb was more common in low-fat intake participants. In the overall population and men, fats were associated with thyroid autoimmunity before and after full adjustment for age, ethnicity, body mass index, smoking status, and urine iodine concentration [total fat: odds ratio (OR) = 0.64, 95% confidence interval (CI): 0.49-0.83; saturated fatty acid: OR = 0.65, 95% CI: 0.51-0.84; monounsaturated fatty acid: OR = 0.65, 95% CI: 0.50-0.85; polyunsaturated fatty acid: OR = 0.76, 95% CI: 0.57-0.995, after full adjustment in men]. Some specific fatty acids followed a similar pattern. The association between fats and TgAb seropositivity was significant in the overall population and men. The association between fats and TPOAb seropositivity was only found in the overall population. CONCLUSION We found a strong association between fat consumption and thyroid autoimmunity in the overall population and men from the nationally representative population-based survey. Fat and fatty acid consumption may be of benefit to individuals with thyroid autoimmunity.
Collapse
Affiliation(s)
- Lulian Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi 214023, China
| | - Zhenzhen Liu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi 214023, China
| | - Xu Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi 214023, China
| | - Qiwen Wan
- Department of Pediatric Neurosurgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi 214023, China
| | - Juanying Zhen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR
| | - Li Jiang
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi 214023, China
| | - Bernard Man Yung Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Chao Li
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
2
|
Yoneda K, Sendo S, Okano T, Shimizu H, Yamada H, Nishimura K, Ueda Y, Saegusa J. Impact of dysregulated microbiota-derived C18 polyunsaturated fatty acid metabolites on arthritis severity in mice with collagen-induced arthritis. Front Immunol 2025; 15:1444892. [PMID: 39850876 PMCID: PMC11754244 DOI: 10.3389/fimmu.2024.1444892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Objective We aimed to evaluate microbiome and microbiota-derived C18 dietary polyunsaturated fatty acids (PUFAs), such as conjugated linoleic acid (CLA), and to investigate their differences that correlate with arthritis severity in collagen-induced arthritis (CIA) mice. Methods On day 84 after induction, during the chronic phase of arthritis, cecal samples were analyzed using 16S rRNA sequencing, and plasma and cecal digesta were evaluated using liquid chromatography-tandem mass spectrometry. Differences in microbial composition between 10 control (Ctrl) and 29 CIA mice or between the mild and severe subgroups based on arthritis scores were identified. The cecal metabolite profile and its correlation with the microbiome were evaluated with respect to arthritis severity. Results The hydroxy and oxo metabolite levels were higher in CIA mice than in Ctrl mice, some of which, including 10-hydroxy-cis-6-18:1, were positively correlated with arthritis scores. The 9-trans,11-trans CLA levels in CIA mice had a negative linear correlation with arthritis scores. Microbial diversity was lower in severe CIA mice than in mild CIA or Ctrl mice. The abundance of Lactobacillus relatively increased in the severe subgroup of CIA mice compared with that in the mild subgroup and was positively correlated with arthritis severity. Conclusion Alterations in gut microbiota and microbiota-derived C18 PUFA metabolites are associated in CIA mice and correlated with arthritis scores, indicating that plasma or fecal C18 PUFA metabolites can be potential biomarkers for arthritis severity and dysbiosis.
Collapse
Affiliation(s)
- Katsuhiko Yoneda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Nishimura
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Kim J, Lee Y, Chung Y. Control of T-cell immunity by fatty acid metabolism. Ann Pediatr Endocrinol Metab 2024; 29:356-364. [PMID: 39778404 PMCID: PMC11725633 DOI: 10.6065/apem.2448160.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically. These processes affect T-cell activation, differentiation, and function, with implications for diseases such as autoimmune disease and cancer. Based on these insights, fatty acid pathways can potentially be modulated by novel therapeutics, paving the way for novel treatment approaches for immune-mediated disorders and cancer immunotherapy.
Collapse
Affiliation(s)
- Jaemin Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoosun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Masuoka S, Nishio J, Yamada S, Saito K, Kaneko K, Kaburaki M, Tanaka N, Sato H, Muraoka S, Kawazoe M, Mizutani S, Furukawa K, Ishii-Watabe A, Kawai S, Saito Y, Nanki T. Relationship Between the Lipidome Profile and Disease Activity in Patients with Rheumatoid Arthritis. Inflammation 2024; 47:1444-1458. [PMID: 38401020 DOI: 10.1007/s10753-024-01986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Lipid mediators have been suggested to play important roles in the pathogenesis of rheumatoid arthritis (RA). Lipidomics has recently allowed for the comprehensive analysis of lipids and has revealed the potential of lipids as biomarkers for the early diagnosis of RA and prediction of therapeutic responses. However, the relationship between disease activity and the lipid profile in RA remains unclear. In the present study, we performed a plasma lipidomic analysis of 278 patients with RA during treatment and examined relationships with disease activity using the Disease Activity Score in 28 joints (DAS28)-erythrocyte sedimentation rate (ESR). In all patients, five lipids positively correlated and seven lipids negatively correlated with DAS28-ESR. Stearic acid [FA(18:0)] (r = -0.45) and palmitic acid [FA(16:0)] (r = -0.38) showed strong negative correlations. After adjustments for age, body mass index (BMI), and medications, stearic acid, palmitic acid, bilirubin, and lysophosphatidylcholines negatively correlated with disease activity. Stearic acid inhibited osteoclast differentiation from peripheral blood monocytes in in vitro experiments, suggesting its contribution to RA disease activity by affecting bone metabolism. These results indicate that the lipid profile correlates with the disease activity of RA and also that some lipids may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Shotaro Masuoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Junko Nishio
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
- Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Tokyo, Japan
| | - Soichi Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Makoto Kaburaki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Nahoko Tanaka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Hiroshi Sato
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Satoshi Mizutani
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Karin Furukawa
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shinichi Kawai
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan
- Department of Inflammation and Pain Control Research, Toho University School of Medicine, Tokyo, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
5
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
6
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
7
|
Russo E, Bellando-Randone S, Carboni D, Fioretto BS, Romano E, Baldi S, El Aoufy K, Ramazzotti M, Rosa I, Lepri G, Di Gloria L, Pallecchi M, Bruni C, Melchiorre D, Guiducci S, Manetti M, Bartolucci GL, Matucci-Cerinic M, Amedei A. The differential crosstalk of the skin-gut microbiome axis as a new emerging actor in systemic sclerosis. Rheumatology (Oxford) 2024; 63:226-234. [PMID: 37154625 DOI: 10.1093/rheumatology/kead208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES We characterized the microbiota in SSc, focusing on the skin-oral-gut axis and the serum and faecal free fatty acid (FFA) profile. METHODS Twenty-five SSc patients with ACA or anti-Scl70 autoantibodies were enrolled. The microbiota of faecal, saliva and superficial epidermal samples was assessed through next-generation sequencing analysis. GC-MS was used to quantify faecal and serum FFAs. Gastrointestinal symptoms were investigated with the University of California Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (UCLA GIT-2.0) questionnaire. RESULTS The ACA+ and anti-Scl70+ groups displayed different cutaneous and faecal microbiota profiles. The classes of cutaneous Sphingobacteriia and Alphaproteobacteria, the faecal phylum Lentisphaerae, the levels of the classes Lentisphaeria and Opitutae, and the genus NA-Acidaminococcaceae were significantly higher in faecal samples from the ACA+ patients than in samples from the anti-Scl70+ patients. The cutaneous Sphingobacteria and the faecal Lentisphaerae were significantly correlated (rho = 0.42; P = 0.03). A significant increase in faecal propionic acid was observed in ACA+ patients. Moreover, all levels of faecal medium-chain FFAs and hexanoic acids were significantly higher in the ACA+ group than in the anti-Scl70+ group (P < 0.05 and P < 0.001, respectively). In the ACA+ group, the analysis of the serum FFA levels showed an increasing trend in valeric acid. CONCLUSION Different microbiota signatures and FFA profiles were found for the two groups of patients. Despite being in different body districts, the cutaneous Sphingobacteria and faecal Lentisphaerae appear interdependent.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | - Davide Carboni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | | | - Eloisa Romano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Khadija El Aoufy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Science "Mario Serio", University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Science "Mario Serio", University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
- Rheumatology, University Hospital of Zürich, Zürich, Switzerland
| | - Daniela Melchiorre
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, San Raffaele Hospital, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Gyening YK, Chauhan NK, Tytanic M, Ea V, Brush RS, Agbaga MP. ELOVL4 Mutations That Cause Spinocerebellar Ataxia-34 Differentially Alter Very Long Chain Fatty Acid Biosynthesis. J Lipid Res 2023; 64:100317. [PMID: 36464075 PMCID: PMC9823237 DOI: 10.1016/j.jlr.2022.100317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The FA Elongase-4 (ELOVL4) enzyme mediates biosynthesis of both very long chain (VLC)-PUFAs and VLC-saturated FA (VLC-SFAs). VLC-PUFAs play critical roles in retina and sperm function, whereas VLC-SFAs are predominantly associated with brain function and maintenance of the skin permeability barrier. While some ELOVL4 mutations cause Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3), other ELOVL4 point mutations, such as L168F and W246G, affect the brain and/or skin, leading to Spinocerebellar Ataxia-34 (SCA34) and Erythrokeratodermia variabilis. The mechanisms by which these ELOVL4 mutations alter VLC-PUFA and VLC-SFA biosynthesis to cause the different tissue-specific pathologies are not well understood. To understand how these mutations alter VLC-PUFA and VLC-SFA biosynthesis, we expressed WT-ELOVL4, L168F, and W246G ELOVL4 variants in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. Total lipids were extracted, converted to FA methyl esters, and quantified by gas chromatography. We showed that L168F and W246G mutants were capable of VLC-PUFA biosynthesis. W246G synthesized and accumulated 32:6n3, while L168F exhibited gain of function in VLC-PUFA biosynthesis as it made 38:5n3, which we did not detect in WT-ELOVL4 or W246G-expressing cells. However, compared with WT-ELOVL4, both L168F and W246G mutants were deficient in VLC-SFA biosynthesis, especially the W246G protein, which showed negligible VLC-SFA biosynthesis. These results suggest VLC-PUFA biosynthetic capabilities of L168F and W246G in the retina, which may explain the lack of retinal phenotype in SCA34. Defects in VLC-SFA biosynthesis by these variants may be a contributing factor to the pathogenic mechanism of SCA34 and Erythrokeratodermia variabilis.
Collapse
Affiliation(s)
- Yeboah Kofi Gyening
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Neeraj Kumar Chauhan
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Madison Tytanic
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Vicki Ea
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Richard S Brush
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA; Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Martin-Paul Agbaga
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA; Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
9
|
Ricci F, Russo E, Renzi D, Baldi S, Nannini G, Lami G, Menicatti M, Pallecchi M, Bartolucci G, Niccolai E, Cerboneschi M, Smeazzetto S, Ramazzotti M, Amedei A, Calabrò AS. Characterization of the "gut microbiota-immunity axis" and microbial lipid metabolites in atrophic and potential celiac disease. Front Microbiol 2022; 13:886008. [PMID: 36246269 PMCID: PMC9561818 DOI: 10.3389/fmicb.2022.886008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Potential celiac disease (pCD) is characterized by genetic predisposition, positive anti-endomysial and anti-tissue transglutaminase antibodies, but a normal or almost normal jejunal mucosa (e.g., minor histological abnormalities without villous atrophy). To gain further insights into basic mechanisms involved in the development of intestinal villous atrophy, we evaluated and compared the microbial, lipid, and immunological signatures of pCD and atrophic CD (aCD). MATERIALS AND METHODS This study included 17 aCD patients, 10 pCD patients, and 12 healthy controls (HC). Serum samples from all participants were collected to analyze free fatty acids (FFAs). Duodenal mucosa samples of aCD and pCD patients were taken to evaluate histology, tissue microbiota composition, and mucosal immune response. RESULTS We found no significant differences in the mucosa-associated microbiota composition of pCD and aCD patients. On the other hand, in pCD patients, the overall abundance of serum FFAs showed relevant and significant differences in comparison with aCD patients and HC. In detail, compared to HC, pCD patients displayed higher levels of propionic, butyric, valeric, 2-ethylhexanoic, tetradecanoic, hexadecanoic, and octadecanoic acids. Instead, aCD patients showed increased levels of propionic, isohexanoic, and 2-ethylhexanoic acids, and a lower abundance of isovaleric and 2-methylbutyricacids when compared to HC. In addition, compared to aCD patients, pCD patients showed a higher abundance of isobutyric and octadecanoic acid. Finally, the immunological analysis of duodenal biopsy revealed a lower percentage of CD4+ T lymphocytes in pCD infiltrate compared to that observed in aCD patients. The functional characterization of T cells documented a pro-inflammatory immune response in both aCD and pCD patients, but the pCD patients showed a higher percentage of Th0/Th17 and a lower percentage of Th1/Th17. CONCLUSION The results of the present study show, for the first time, that the duodenal microbiota of patients with pCD does not differ substantially from that of aCD; however, serum FFAs and local T cells displayed a distinctive profile between pCD, aCD, and HC. In conclusion, our result may help to shed new light on the "gut microbiota-immunity axis," lipid metabolites, and duodenal immune response in overt CD and pCD patients, opening new paradigms in understanding the pathogenesis behind CD progression.
Collapse
Affiliation(s)
- Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Renzi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gabriele Lami
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Cerboneschi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Smeazzetto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Antonino Salvatore Calabrò
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| |
Collapse
|
10
|
Doğan HO, Şenol O, Karadağ A, Yıldız SN. Metabolomic profiling in ankylosing spondylitis using time-of-flight mass spectrometry. Clin Nutr ESPEN 2022; 50:124-132. [PMID: 35871913 DOI: 10.1016/j.clnesp.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Ankylosing spondylitis (AS) is an inflammatory disease associated with destructive changes in the skeleton and joints. The exact molecular mechanism of the disease has not been fully elucidated. This study aimed to determine metabolic differences between active AS patients and healthy controls to understand the molecular mechanism of AS. PATIENTS AND METHODS The study included 38 subjects, comprising 18 patients with active AS and 20 healthy controls. Metabolic profiling of the plasma was performed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS). Data acquisition, classification, and identification were achieved with the METLIN (https://metlin.scripps.edu/) database and XCMS (https://xcmsonline.scripps.edu). RESULTS Significant alterations were identified in the unsaturated fatty acids (FA), linoleic acid, alpha-linolenic acid, FA degradation, and FA biosynthesis pathways. Down -regulations were observed in phosphatidylcholine (PC) (16:0/0:0), beta-d-Fructose, stearic acid, trimipramine N-Oxide and muconic acid, and up-regulation were detected in PC (18:2/0:0), 3-Methylindole, palmitic acid (PA), alpha-Tocotrienol, and beta-d-glucopyranoside in active AS patients compared to the healthy control subjects. CONCLUSION Pathway analysis revealed that dysregulation in FA metabolism is associated with AS, and therefore, modulation of diet according to PA and PC may be potential therapeutic targets.
Collapse
Affiliation(s)
- Halef Okan Doğan
- Department of Biochemistry, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey.
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Ahmet Karadağ
- Department of Pyhsical Medicine and Rehabilitation, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Seyma Nur Yıldız
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
11
|
Serum Fatty Acid Profiles Are Associated with Disease Activity in Early Rheumatoid Arthritis: Results from the ESPOIR Cohort. Nutrients 2022; 14:nu14142947. [PMID: 35889904 PMCID: PMC9322967 DOI: 10.3390/nu14142947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Long-chain omega-3 and omega-6 fatty acids (n-3, n-6 FAs) may modulate inflammation and affect the risk of developing rheumatoid arthritis (RA). However, whether n-3/n-6 FA status affects RA after disease onset is unknown. This study aimed to assess whether FA profiles are independently associated with disease activity in a large prospective cohort of patients with early RA. Methods: Baseline serum FAs were quantified in 669 patients in the ESPOIR cohort. Principal component analysis identified three serum FA patterns that were rich in n-7–9, n-3 and n-6 FAs (patterns ω7–9, ω3 and ω6), respectively. The association of pattern tertiles with baseline variables and 6-month disease activity was tested using multivariable logistic regression. Results: Pattern ω3 was associated with low baseline and pattern ω6 with high baseline C-reactive protein level and disease activity. Both patterns ω3 and ω6 were associated with reduced odds of active disease after 6 months of follow-up (pattern ω3: odds ratio, tertile three vs. one, 0.49 [95% CI 0.25 to 0.97] and pattern ω6: 0.51 [0.28 to 0.95]; p = 0.04 and 0.03, respectively). Conclusions: In a cohort of early RA patients, a serum lipid profile rich in n-3 FAs was independently associated with persistently reduced disease activity between baseline and 6-month follow-up. An n-6 FA profile was also associated with lower 6-month disease activity.
Collapse
|
12
|
Bartikoski BJ, de Oliveira MS, do Espírito Santo RC, dos Santos LP, dos Santos NG, Xavier RM. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites 2022; 12:394. [PMID: 35629898 PMCID: PMC9146149 DOI: 10.3390/metabo12050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolomic analysis provides a wealth of information that can be predictive of distinctive phenotypes of pathogenic processes and has been applied to better understand disease development. Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In this review, we describe potential metabolic biomarkers that might be helpful in the study of RA pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide) and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles during the early stages of RA and are present systemically, which is a relevant characteristic for biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide important information before disease onset to predict disease activity and treatment response. Regarding therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and can reveal differences between responders and non-responders. In terms of comorbidities, physical impairment represented by higher fatigue scores and muscle wasting has been associated with an increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine samples from RA patients seem to provide critical information about the metabolic profile related to drug response, disease activity and comorbidities.
Collapse
Affiliation(s)
- Bárbara Jonson Bartikoski
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Marianne Schrader de Oliveira
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Rafaela Cavalheiro do Espírito Santo
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Leonardo Peterson dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Natália Garcia dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Ricardo Machado Xavier
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
13
|
Dogan S, Kimyon G, Ozkan H, Kacmaz F, Camdeviren B, Karaaslan I. TNF-alpha, IL-6, IL-10 and fatty acids in rheumatoid arthritis patients receiving cDMARD and bDMARD therapy. Clin Rheumatol 2022; 41:2341-2349. [PMID: 35467309 DOI: 10.1007/s10067-022-06180-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The present study aimed to examine the effects of cDMARD and bDMARD therapy on both gene expressions and protein levels of TNF-α, IL-6, IL-10 and fatty acid levels in patients with RA. METHOD Plasma TNF-α, IL-6, and IL-10 levels were examined by the ELISA method, while TNF-α, IL-6, and IL-10 gene expression levels were examined by RT-qPCR, and fatty acid levels were examined by GC/MS. RESULTS IL-10 gene expression levels significantly increased in RA patients receiving cDMARD treatment compared to those of the control group. Also, eicosadienoic acid, myristoleic acid and capric acid levels were significantly lower in the patient groups compared to those in the control group. CONCLUSION The drugs used in the treatment of RA had no effect on the fatty acid levels whereas had effects on the mRNA and protein levels of the target cytokines.
Collapse
Affiliation(s)
- Serdar Dogan
- Department of Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey.
| | - Gezmis Kimyon
- Department of Rheumatology, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Huseyin Ozkan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Filiz Kacmaz
- Department of Molecular Biochemistry and Genetics, Health Science Institute, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Baran Camdeviren
- Department of Molecular Biochemistry and Genetics, Health Science Institute, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Irem Karaaslan
- Research and Application Center for Technology and Research and Development, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| |
Collapse
|
14
|
Tański W, Świątoniowska-Lonc N, Tabin M, Jankowska-Polańska B. The Relationship between Fatty Acids and the Development, Course and Treatment of Rheumatoid Arthritis. Nutrients 2022; 14:nu14051030. [PMID: 35268002 PMCID: PMC8912339 DOI: 10.3390/nu14051030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
For this systematic review, a search of the relevant literature was conducted in the EMBASE and PubMed databases. We used the following terms: ‘rheumatoid arthritis’ in conjunction with ‘fatty acid’. The following inclusion criteria had to be satisfied for the studies to be included in the analysis: an RCT/observational/cohort study published in English. A total of seventy-one studies were analysed. The presented systematic review of the available data indicates that increased consumption of omega-3 fatty acids (FAs) may have a beneficial effect on human health by decreasing pain and disease activity in patients with RA. The beneficial effect of unsaturated FA on the clinical parameters of RA was demonstrated in all 71 studies analysed. The content of omega-3 FAs in the diet and the consumption of fish, which are their main source, may contribute to a reduced incidence of RA. FAs are an essential component in the synthesis of eicosanoids that exhibit anti-inflammatory properties. Due to the documented positive influence of unsaturated FAs on treatment outcomes, the use of a diet rich in long-chain unsaturated FAs should be the standard of care, along with pharmacotherapy, in the treatment of RA patients. An important element in the control of the treatment process should be the routine assessment of the quality of life of RA patients.
Collapse
Affiliation(s)
- Wojciech Tański
- Department of Internal Medicine, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Natalia Świątoniowska-Lonc
- Center for Research and Innovation, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
- Correspondence:
| | - Mateusz Tabin
- Clinical Endocrinology Department, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | | |
Collapse
|
15
|
A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol 2022; 18:47-60. [PMID: 34845360 DOI: 10.1038/s41584-021-00713-z] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common finding on spine imaging that increases in prevalence with age. IVD degeneration is a frequent cause of low back pain, which is a leading cause of disability. The process of IVD degeneration consists of gradual structural change accompanied by severe alterations in metabolic homeostasis. IVD degeneration, like osteoarthritis, is a common comorbidity in patients with obesity and type 2 diabetes mellitus, two metabolic syndrome pathological conditions in which adipokines are important promoters of low-grade inflammation, extracellular matrix degradation and fibrosis. Impairment in white adipose tissue function, due to the abnormal fat accumulation in obesity, is characterized by increased production of specific pro-inflammatory proteins such as adipokines by white adipose tissue and of cytokines such as TNF by immune cells of the stromal compartment. Investigations into the immunometabolic alterations in obesity and type 2 diabetes mellitus and their interconnections with IVD degeneration provide insights into how adipokines might affect the pathogenesis of IVD degeneration and impair IVD function and repair. Toll-like receptor-mediated signalling has also been implicated as a promoter of the inflammatory response in the metabolic alterations associated with IVD and is thus thought to have a role in IVD degeneration. Pathological starvation, obesity and adipokine dysregulation can result in immunometabolic alterations, which could be targeted for the development of new therapeutics.
Collapse
|
16
|
Coras R, Pedersen B, Narasimhan R, Brandy A, Mateo L, Prior-Español A, Kavanaugh A, Armando AM, Jain M, Quehenberger O, Martínez-Morillo M, Guma M. Imbalance Between Omega-6- and Omega-3-Derived Bioactive Lipids in Arthritis in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:415-425. [PMID: 32361743 DOI: 10.1093/gerona/glaa113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Elderly-onset rheumatoid arthritis (EORA) and polymyalgia rheumatica (PMR) are common rheumatic diseases in older adults. Oxylipins are bioactive lipids derived from omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) that serve as activators or suppressors of systemic inflammation. We hypothesized that arthritis symptoms in older adults were related to oxylipin-related perturbations. Arthritis in older adults (ARTIEL) is an observational prospective cohort with 64 patients older than 60 years of age with newly diagnosed arthritis. Patients' blood samples at baseline and 3 months posttreatment were compared with 18 controls. A thorough clinical examination was conducted. Serum oxylipins were determined by mass spectrometry. Data processing and statistical analysis were performed in R. Forty-four patients were diagnosed with EORA and 20 with PMR. At diagnosis, EORA patients had a mean DAS28CRP (Disease Activity Score 28 using C-reactive protein) of 5.77 (SD 1.02). One hundred percent of PMR patients reported shoulder pain and 90% reported pelvic pain. Several n-6- and n-3-derived oxylipin species were significantly different between controls and arthritis patients. The ratio of n-3/n-6 PUFA was significantly downregulated in EORA but not in PMR patients as compared to controls. The top two candidates as biomarkers for differentiating PMR from EORA were 4-HDoHE, a hydroxydocosahexaenoic acid, and 8,15-dihydroxy-eicosatrienoic acid (8,15-diHETE). The levels of n-3-derived anti-inflammatory species increased in EORA after treatment. These results suggest that certain oxylipins may be key effectors in arthrtis in older adults and that the imbalance between n-6- and n-3-derived oxylipins might be related to pathobiology in this population.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego.,Department of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Brian Pedersen
- Department of Medicine, School of Medicine, University of California, San Diego
| | - Rekha Narasimhan
- Department of Medicine, School of Medicine, University of California, San Diego
| | - Anahy Brandy
- Department of Rheumatology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Lourdes Mateo
- Department of Rheumatology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Agueda Prior-Español
- Department of Rheumatology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego
| | - Aaron M Armando
- Department of Pharmacology, School of Medicine, University of California, San Diego
| | - Mohit Jain
- Department of Medicine, School of Medicine, University of California, San Diego.,Department of Pharmacology, School of Medicine, University of California, San Diego
| | - Oswald Quehenberger
- Department of Pharmacology, School of Medicine, University of California, San Diego
| | | | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego.,Department of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
17
|
Gorczyca D, Szponar B, Paściak M, Czajkowska A, Szmyrka M. Serum levels of n-3 and n-6 polyunsaturated fatty acids in patients with systemic lupus erythematosus and their association with disease activity: a pilot study. Scand J Rheumatol 2021; 51:230-236. [PMID: 34169789 DOI: 10.1080/03009742.2021.1923183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: Polyunsaturated fatty acids (PUFAs) may modulate the inflammatory process in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). The aim of this study was to assess the serum concentrations of essential 18-carbon PUFAs and their long-chain derivatives in patients with SLE and healthy controls, and to analyse their associations with laboratory and clinical features of the disease.Method: n-6 and n-3 PUFA composition was assessed in the sera of 30 SLE patients and 20 healthy controls using gas chromatography-mass spectrometry. We investigated the associations between PUFAs and disease activity measured with Systemic Lupus Erythematosus Activity Index (SLEDAI) scores, erythrocyte sedimentation rate, C-reactive protein, complement C3 and C4 concentrations, anti-nuclear antibody (ANA) titre, anti-double-stranded DNA (anti-dsDNA) antibody concentration, and medications.Results: Serum linoleic acid (LA) and α-linolenic acid concentrations were significantly higher in SLE patients compared with healthy controls. LA concentration correlated positively with the ANA titre and corticosteroid doses; eicosapentaenoic acid (EPA) and docosahexaenoic acid correlated inversely with anti-dsDNA antibody concentration. Patients treated with immunosuppressants had significantly lower concentrations of LA, arachidonic acid, and EPA.Conclusion: Both n-6 and n-3 PUFA precursors can participate in the inflammatory process in SLE patients. The mechanism of the PUFA metabolism disturbance needs further exploration.
Collapse
Affiliation(s)
- D Gorczyca
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - B Szponar
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Paściak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - A Czajkowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Szmyrka
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Abdel Jaleel GA, Azab SS, El-Bakly WM, Hassan A. 'Methyl palmitate attenuates adjuvant induced arthritis in rats by decrease of CD68 synovial macrophages. Biomed Pharmacother 2021; 137:111347. [PMID: 33550047 DOI: 10.1016/j.biopha.2021.111347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
The study was designed to investigate the potential anti-arthritic effects of methyl palmitate in an adjuvant arthritis model in rats that shares many histopathological similarities with human RA. The underlying mechanism and its effect on CD68 macrophages were investigated, as a further argument to its possible efficacy in RA treatment. A normal control group was injected only with saline, arthritic group, and three treatment groups with CFA induced arthritis received methyl palmitate (MP) at three different doses (75, 150, 300 mg/kg/week for 3 weeks, intraperitoneal). The degree of ipsilateral paw swelling, ankle diameter, spleen index, thymus index and the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β were measured. In addition, the underlying molecular mechanism was investigated using CD68 expression. Methyl palpitate significantly and dose dependently decreased the arthritic symptoms as measured by ipsilateral paw volume and ankle diameter. It showed no effect on body weight but significantly decreased splenic, thymus index, serum TNF-α and IL-1β. CD68 macrophages expression and the overall synovial inflammatory cellularity were halted. Methyl palmitate exhibits significant anti-inflammatory and exerts a potential anti-arthritic effect in a rat model of adjuvant induced arthritis. Furthermore, it inhibits expression of synovial CD68 macrophage that validate its therapeutic potential adjuvant arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Dose-Response Relationship, Drug
- Hindlimb/drug effects
- Hindlimb/metabolism
- Hindlimb/pathology
- Interleukin-1beta/blood
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Oxidative Stress/drug effects
- Palmitates/pharmacology
- Palmitates/therapeutic use
- Rats, Wistar
- Synovial Membrane/drug effects
- Thymus Gland/drug effects
- Tumor Necrosis Factor-alpha/blood
- Rats
Collapse
Affiliation(s)
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
20
|
Beyer K, Lie SA, Bjørndal B, Berge RK, Svardal A, Brun JG, Bolstad AI. Lipid, fatty acid, carnitine- and choline derivative profiles in rheumatoid arthritis outpatients with different degrees of periodontal inflammation. Sci Rep 2021; 11:5332. [PMID: 33674638 PMCID: PMC7935865 DOI: 10.1038/s41598-021-84122-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases with several pathogenic pathways in common. Evidence supports an association between the diseases, but the exact underlying mechanisms behind the connection are still under investigation. Lipid, fatty acid (FA) and metabolic profile alterations have been associated with several chronic inflammatory diseases, including RA and periodontitis. Mitochondria have a central role in regulating cellular bioenergetic and whole-body metabolic homeostasis, and mitochondrial dysfunction has been proposed as a possible link between the two disorders. The aim of this cross-sectional study was to explore whole-blood FA, serum lipid composition, and carnitine- and choline derivatives in 78 RA outpatients with different degrees of periodontal inflammation. The main findings were alterations in lipid, FA, and carnitine- and choline derivative profiles. More specifically, higher total FA and total cholesterol concentrations were found in active RA. Elevated phospholipid concentrations with concomitant lower choline, elevated medium-chain acylcarnitines (MC-AC), and decreased ratios of MC-AC and long-chain (LC)-AC were associated with prednisolone medication. This may indicate an altered mitochondrial function in relation to the increased inflammatory status in RA disease. Our findings may support the need for interdisciplinary collaboration within the field of medicine and dentistry in patient stratification to improve personalized treatment. Longitudinal studies should be conducted to further assess the potential impact of mitochondrial dysfunction on RA and periodontitis.
Collapse
Affiliation(s)
- Kathrin Beyer
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| | - Stein Atle Lie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Asbjørn Svardal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johan G Brun
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| |
Collapse
|
21
|
Ferreira HB, Melo T, Paiva A, Domingues MDR. Insights in the Role of Lipids, Oxidative Stress and Inflammation in Rheumatoid Arthritis Unveiled by New Trends in Lipidomic Investigations. Antioxidants (Basel) 2021; 10:antiox10010045. [PMID: 33401700 PMCID: PMC7824304 DOI: 10.3390/antiox10010045] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.M.); (M.d.R.D.); Tel.: +351-234-370-698 (M.d.R.D.)
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Maria do Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.M.); (M.d.R.D.); Tel.: +351-234-370-698 (M.d.R.D.)
| |
Collapse
|
22
|
Rodríguez-Carrio J, Coras R, Alperi-López M, López P, Ulloa C, Ballina-García FJ, Armando AM, Quehenberger O, Guma M, Suárez A. Profiling of Serum Oxylipins During the Earliest Stages of Rheumatoid Arthritis. Arthritis Rheumatol 2020; 73:401-413. [PMID: 33001576 DOI: 10.1002/art.41537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Eicosanoids modulate inflammation via complex networks involving different pathways and downstream mediators, including oxylipins. Although altered eicosanoids are linked to rheumatoid arthritis (RA), suggesting that metabolization is enhanced, the role of oxylipins in disease stratification remains unexplored. This study was undertaken to characterize oxylipin networks during the earliest stages of RA and evaluate their associations with clinical features and treatment outcomes. METHODS In total, 60 patients with early RA (according to the American College of Rheumatology/European League Against Rheumatism 2010 criteria), 11 individuals with clinically suspect arthralgia (CSA), and 28 healthy control subjects were recruited. Serum samples were collected at the time of onset. In the early RA group, 50 patients who had not been exposed to disease-modifying antirheumatic drug (DMARD) or glucocorticoid treatment at the time of recruitment were prospectively followed up at 6 and 12 months after having received conventional synthetic DMARDs. A total of 75 oxylipins, mostly derived from arachidonic, eicosapentanoic, and linoleic acids, were identified in the serum by liquid chromatography tandem mass spectrometry. RESULTS Univariate analyses demonstrated differences in expression patterns of 14 oxylipins across the RA, CSA, and healthy control groups, with each exhibiting a different trajectory. Network analyses revealed a strong grouping pattern of oxylipins in RA patients, whereas in individuals with CSA, a fuzzy network of oxylipins with higher degree and closeness was found. Partial least-squares discriminant analyses yielded variable important projection scores of >1 for 22 oxylipins, which allowed the identification of 2 clusters. Cluster usage differed among the groups (P = 0.003), and showed associations with disease severity and low rates of remission at 6 and 12 months in RA patients who were initially treatment-naive. Pathway enrichment analyses revealed different precursors and pathways between the groups, highlighting the relevance of the arachidonic acid pathway in individuals with CSA and the lipooxygenase pathway in patients with early RA. In applying distinct oxylipin signatures, subsets of seropositive and seronegative RA could be identified. CONCLUSION Oxylipin networks differ across stages during the earliest phases of RA. These distinct oxylipin networks could potentially elucidate pathways with clinical relevance for disease progression, clinical heterogeneity, and treatment response.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Universidad de Oviedo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, and Instituto Reina Sofía de Investigación Nefrológica, REDinREN del Instituto de Salud Carlos III, Oviedo, Spain
| | - Roxana Coras
- University of California School of Medicine, San Diego, and Autonomous University of Barcelona, Barcelona, Spain
| | - Mercedes Alperi-López
- Instituto de Investigación Sanitaria del Principado de Asturias and Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Instituto de Investigación Sanitaria del Principado de Asturias and Universidad de Oviedo, Oviedo, Spain
| | - Catalina Ulloa
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Reina Sofía de Investigación Nefrológica, REDinREN del Instituto de Salud Carlos III, and Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Francisco Javier Ballina-García
- Instituto de Investigación Sanitaria del Principado de Asturias and Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Mónica Guma
- University of California School of Medicine, San Diego, and Autonomous University of Barcelona, Barcelona, Spain
| | - Ana Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias and Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
23
|
Li C, Chen B, Fang Z, Leng YF, Wang DW, Chen FQ, Xu X, Sun ZL. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Joint Bone Spine 2020; 87:425-430. [PMID: 32473419 DOI: 10.1016/j.jbspin.2020.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE A systematic review and analysis of data from several rheumatoid arthritis metabolomics studies attempts to determine which metabolites can be used as potential biomarkers for the diagnosis of rheumatoid arthritis and to explore the pathogenesis of rheumatoid arthritis. METHODS We searched all the subject-related documents published by EMBASE, PubMed, Web of Science, and Cochrane Library from the database to the September 2019 publication. Two researchers independently screened the literature and extracted the data. QUADOMICS tool was used to assess the quality of studies included in this systematic review. RESULTS A total of 10 studies met the inclusion criteria of systematic review, including 502 patients with rheumatoid arthritis and 373 healthy people. Among them, the biological samples utilised for metabolomic analysis include: serum (n=8), urine (n=1) and synovial fluid (n=1). Some metabolites play an important role in rheumatoid arthritis: glucose, lactic acid, citric acid, leucine, methionine, isoleucine, valine, phenylalanine, threonine, serine, proline, glutamate, histidine, alanine, cholesterol, glycerol, and ribose. CONCLUSIONS Metabolomics provides important new opportunities for further research in rheumatoid arthritis and is expected to elucidate the pathogenesis of rheumatoid arthritis that has not been fully understood before.
Collapse
Affiliation(s)
- Cheng Li
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Chen
- Department of nursing, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Zhen Fang
- Medical Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Yu-Fei Leng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Dan-Wen Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Feng-Qin Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao Xu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Zhi-Ling Sun
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
24
|
Coras R, Murillo-Saich JD, Guma M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells 2020; 9:E827. [PMID: 32235564 PMCID: PMC7226773 DOI: 10.3390/cells9040827] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
25
|
Blackmore D, Li L, Wang N, Maksymowych W, Yacyshyn E, Siddiqi ZA. Metabolomic profile overlap in prototypical autoimmune humoral disease: a comparison of myasthenia gravis and rheumatoid arthritis. Metabolomics 2020; 16:10. [PMID: 31902059 DOI: 10.1007/s11306-019-1625-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Myasthenia gravis (MG) and rheumatoid arthritis (RA) are examples of antibody-mediated chronic, progressive autoimmune diseases. Phenotypically dissimilar, MG and RA share common immunological features. However, the immunometabolomic features common to humoral autoimmune diseases remain largely unexplored. OBJECTIVES The aim of this study was to reveal and illustrate the metabolomic profile overlap found between these two diseases and describe the immunometabolomic significance. METHODS Metabolic analyses using acid- and dansyl-labelled was performed on serum from adult patients with seropositive MG (n = 46), RA (n = 23) and healthy controls (n = 49) presenting to the University of Alberta Hospital specialty clinics. Chemical isotope labelling liquid chromatography mass spectrometry (CIL LC-MS) methods were utilized to assess the serum metabolome in patients; 12C/13C-dansyl chloride (DnsCl) was used to label amine/phenol metabolites and 12C/13C-p-dimethylaminophenacyl bromide (DmPA) was used for carboxylic acids. Metabolites matching our criteria for significance were selected if they were present in both groups. Multivariate statistical analysis [including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA)] and biochemical pathway analysis was then conducted to gain understanding of the principal pathways involved in antibody-mediated pathogenesis. RESULTS We found 20 metabolites dysregulated in both MG and RA when compared to healthy controls. Most prominently, observed changes were related to pathways associated with phenylalanine metabolism, tyrosine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and pyruvate metabolism. CONCLUSION From these results it is evident that many metabolites are common to humoral disease and exhibit significant immunometabolomic properties. This observation may lead to an enhanced understanding of the metabolic underpinnings common to antibody-mediated autoimmune disease. Further, contextualizing these findings within a larger clinical and systems biology context could provide new insights into the pathogenesis and management of these diseases.
Collapse
Affiliation(s)
- Derrick Blackmore
- Division of Neurology, University of Alberta, 7th Floor, Clinical Sciences Building, 11350 - 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Chemistry Centre Room W3-39C, Edmonton, AB, T6G 2G2, Canada
| | - Nan Wang
- Department of Chemistry, University of Alberta, Chemistry Centre Room W3-39C, Edmonton, AB, T6G 2G2, Canada
| | - Walter Maksymowych
- 568A Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Elaine Yacyshyn
- Division of Rheumatology, University of Alberta, 8-130 Clinical Sciences Building, 11350 - 83 Ave NW, Edmonton, AB, Canada
| | - Zaeem A Siddiqi
- Division of Neurology, University of Alberta, 7th Floor, Clinical Sciences Building, 11350 - 83 Ave NW, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
26
|
Martínez-Zaldívar C, Azaryah H, García-Santos JA, Demmelmair H, Altmäe S, Reischl E, Rzehak P, Koletzko B, Campoy C. Early nutrition in combination with polymorphisms in fatty acid desaturase gene cluster modulate fatty acid composition of cheek cells' glycerophospholipids in school-age children. Br J Nutr 2019; 122:S68-S79. [PMID: 31638497 DOI: 10.1017/s0007114518002623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Variants in the human genes of fatty acid (FA) desaturase 1 (FADS1), 2 (FADS2) and 3 (FADS3) are associated with PUFA blood levels. We explored if maternal prenatal supplementation and children's genetic variation in seventeen SNP of the FADS1, FADS2 and FADS3 gene cluster influence twenty-one of the most relevant cheek cells' derived FA in glycerophospholipids (GPL-FA). The study was conducted in 147 Spanish and German mother-children pairs participating in the Nutraceuticals for a Healthier Life (NUHEAL) study at 8, 9 and 9·5 years. Linear and mixed model longitudinal regression analyses were performed. Maternal fish-oil (FO) or FO+5-methyltetrahydrofolate (5-MTHF) supplementation during pregnancy was associated with a significant decrease of arachidonic acid (AA) concentrations in cheek cell GPL in the offspring, from 8 to 9·5 years; furthermore, maternal FO+5-MTHF supplementation was associated with higher n-6 docosapentaenoic acid concentrations in their children at age 8 years. FADS1 rs174556 polymorphism and different FADS2 genotypes were associated with higher concentrations of linoleic and α-linolenic acids in children; moreover, some FADS2 genotypes determined lower AA concentrations in children's cheek cells. It is suggested an interaction between type of prenatal supplementation and the offspring genetic background driving GPL-FA levels at school age. Prenatal FO supplementation, and/or with 5-MTHF, seems to stimulate n-3 and n-6 FA desaturation in the offspring, increasing long-chain PUFA concentrations at school age, but depending on children's FADS1 and FADS2 genotypes. These findings suggest potential early nutrition programming of FA metabolic pathways, but interacting with children's FADS polymorphisms.
Collapse
Affiliation(s)
- Cristina Martínez-Zaldívar
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
| | - Hatim Azaryah
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
| | - José A García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Centre, Lindwurmstr, 4, D-80337 Munich, Germany
| | - Signe Altmäe
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18016, Granada, Spain
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Munich, Germany
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Centre, Lindwurmstr, 4, D-80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Centre, Lindwurmstr, 4, D-80337 Munich, Germany
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
- Department of Paediatrics, University of Granada, Avda de la Investigación 11, 18016, Granada, Spain
- Network of Biomedical Research Centres on Epidemiology and Public Health (CIBERESP), Institute Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 2019; 68:915-932. [PMID: 31363792 PMCID: PMC6813288 DOI: 10.1007/s00011-019-01273-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Palmitic acid is a saturated fatty acid whose blood concentration is elevated in obese patients. This causes inflammatory responses, where toll-like receptors (TLR), TLR2 and TLR4, play an important role. Nevertheless, palmitic acid is not only a TLR agonist. In the cell, this fatty acid is converted into phospholipids, diacylglycerol and ceramides. They trigger the activation of various signaling pathways that are common for LPS-mediated TLR4 activation. In particular, metabolic products of palmitic acid affect the activation of various PKCs, ER stress and cause an increase in ROS generation. Thanks to this, palmitic acid also strengthens the TLR4-induced signaling. In this review, we discuss the mechanisms of inflammatory response induced by palmitic acid. In particular, we focus on describing its effect on ER stress and IRE1α, and the mechanisms of NF-κB activation. We also present the mechanisms of inflammasome NLRP3 activation and the effect of palmitic acid on enhanced inflammatory response by increasing the expression of FABP4/aP2. Finally, we focus on the consequences of inflammatory responses, in particular, the effect of TNF-α, IL-1β and IL-6 on insulin resistance. Due to the high importance of macrophages and the production of proinflammatory cytokines by them, this work mainly focuses on these cells.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland.
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland
| |
Collapse
|
28
|
Di Cara F, Bülow MH, Simmonds AJ, Rachubinski RA. Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy. Mol Biol Cell 2018; 29:2766-2783. [PMID: 30188767 PMCID: PMC6249834 DOI: 10.1091/mbc.e18-07-0434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gut has a central role in digestion and nutrient absorption, but it also serves in defending against pathogens, engages in mutually beneficial interactions with commensals, and is a major source of endocrine signals. Gut homeostasis is necessary for organismal health and changes to the gut are associated with conditions like obesity and diabetes and inflammatory illnesses like Crohn's disease. We report that peroxisomes, organelles involved in lipid metabolism and redox balance, are required to maintain gut epithelium homeostasis and renewal in Drosophila and for survival and development of the organism. Dysfunctional peroxisomes in gut epithelial cells activate Tor kinase-dependent autophagy that increases cell death and epithelial instability, which ultimately alter the composition of the intestinal microbiota, compromise immune pathways in the gut in response to infection, and affect organismal survival. Peroxisomes in the gut effectively function as hubs that coordinate responses from stress, metabolic, and immune signaling pathways to maintain enteric health and the functionality of the gut-microbe interface.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Margret H Bülow
- Development, Genetics and Molecular Physiology, LIMES (Life and Medical Sciences), University of Bonn, D-53115 Bonn, Germany
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
29
|
Abstract
Since the 1950's nutrition recommendations have focussed on the replacement of saturated fats in the diet with polyunsaturated fats, a strategy that continues to this day. Despite supporting evidence from clinical trials for the advantages of Mediterranean diets, there has been less attention paid to the role of monounsaturated fats. It has been known for many years that diets high in linoleic acid (LA) compete for the incorporation of omega 3 fatty acids into tissues. What is also clear is that diets rich in LA are not free from concerns and the discovery of oxlams, oxygenated derivatives of LA, having potent inflammatory effects may help us question the dogma of LA rich diets. Given that dietary oleic acid a prime constituent of Mediterranean diets can be metabolised to Mead acid (ETrA) has in the past been a cause for concern, but new data showing the anti-inflammatory effects of ETrA suggest that there is a need for further research about the benefits of monounsaturated oils on human health. Finally, there is a need to re-examine how dietary fats are monitored in clinical studies. The current method of focussing on esterified fatty acids may be too insensitive to detect clinically important changes.
Collapse
Affiliation(s)
- Robert A Gibson
- South Australian Health and Medical Research Institute, FOODplus Research Centre, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
30
|
Biomarker-guided stratification of autoimmune patients for biologic therapy. Curr Opin Immunol 2017; 49:56-63. [DOI: 10.1016/j.coi.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
|
31
|
Hewawasam E, Liu G, Jeffery DW, Muhlhausler BS, Gibson RA. A validated method for analyzing polyunsaturated free fatty acids from dried blood spots using LC-MS/MS. Prostaglandins Leukot Essent Fatty Acids 2017; 125:1-7. [PMID: 28987716 DOI: 10.1016/j.plefa.2017.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
Abstract
Omega-3 and omega-6 polyunsaturated free fatty acids (PUFA-FFA) are precursors to potent downstream lipid mediators that are regulators of inflammation. We describe the development and validation of a novel and sensitive method for quantification of individual PUFA-FFA in a dried blood spot using liquid chromatography tandem mass spectrometry (LC-MS/MS). Lipids were extracted from dried blood spot and six individual PUFA-FFA were quantified by LC-MS/MS using stable isotope dilution analysis with deuterated internal standards. PUFA-FFA concentrations in blood samples from 30 subjects were measured using the new method and compared to the traditional approach of thin layer chromatography followed by gas chromatography with flame ionization detection (TLC-GC). Responses for each PUFA-FFA were linear throughout a range of concentrations expected in clinical samples. Intra-day and inter-day variations for all PUFA-FFA were ≤ 16%. The concentrations of all PUFA-FFA measured by LC-MS/MS were positively correlated with measures of the same PUFA-FFA obtained by a traditional TLC-GC method. This novel method for the quantification of PUFA-FFA extracted from dried blood is sensitive and precise, and accurately measures levels of biologically important PUFA-FFA in blood.
Collapse
Affiliation(s)
- Erandi Hewawasam
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Ge Liu
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - David W Jeffery
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Robert A Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
32
|
Rodríguez-Carrio J, Salazar N, Margolles A, González S, Gueimonde M, de Los Reyes-Gavilán CG, Suárez A. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Front Immunol 2017; 8:823. [PMID: 28791008 PMCID: PMC5522850 DOI: 10.3389/fimmu.2017.00823] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence highlights the relevance of free fatty acids (FFA) for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA) production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1) in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Sonia González
- Area of Physiology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
33
|
Dahan S, Segal Y, Shoenfeld Y. Dietary factors in rheumatic autoimmune diseases: a recipe for therapy? Nat Rev Rheumatol 2017; 13:348-358. [PMID: 28405001 DOI: 10.1038/nrrheum.2017.42] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Today, we are facing a new era of digitization in the health care system, and with increased access to health care information has come a growing demand for safe, cost-effective and easy to administer therapies. Dietary habits have a crucial influence on human health, affecting an individual's risk for hypertension, heart disease and stroke, as well as influencing the risk of developing of cancer. Moreover, an individual's lifestyle choices can greatly influence the progression and manifestation of chronic autoimmune rheumatic diseases. In light of these effects, it makes sense that the search for additional therapies to attenuate such diseases would include investigations into lifestyle modifications. When considering the complex web of factors that influence autoimmunity, it is not surprising to find that several dietary elements are involved in disease progression or prevention. In this Review, several common nutritional components of the human diet are presented, and the evidence for their effects on rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Shani Dahan
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Yahel Segal
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Rodríguez-Carrio J, López P, Sánchez B, González S, Gueimonde M, Margolles A, de Los Reyes-Gavilán CG, Suárez A. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Front Immunol 2017; 8:23. [PMID: 28167944 PMCID: PMC5253653 DOI: 10.3389/fimmu.2017.00023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Sonia González
- Area of Physiology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa, Asturias , Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo , Oviedo, Asturias , Spain
| |
Collapse
|
35
|
Li R, Guo LX, Li Y, Chang WQ, Liu JQ, Liu LF, Xin GZ. Dose-response characteristics of Clematis triterpenoid saponins and clematichinenoside AR in rheumatoid arthritis rats by liquid chromatography/mass spectrometry-based serum and urine metabolomics. J Pharm Biomed Anal 2016; 136:81-91. [PMID: 28064091 DOI: 10.1016/j.jpba.2016.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Clematidis Radix et Rhizoma is a traditional Chinese medicine widely used for treating arthritic disease. Clematis triterpenoid saponins (TS) and clematichinenoside AR (C-AR) have been considered to be responsible for its antiarthritic effects. However, the underling mechanism is still unclear because of their low bioavailability. To address of this issue, metabolomics tools were performed to determine metabolic variations associated with rheumatoid arthritis (RA) and responses to Clematis TS, C-AR and positive drug (Triptolide, TP) treatments. This metabolomics investigation of RA was conducted in collagen-induced arthritis (CIA) rats. Liquid chromatography/mass spectrometry and multivariate statistical tools were used to identify the alteration of serum and urine metabolites associated with RA and responses to drug treatment. As a result, 45 potential metabolites associated with RA were identified. After treatment, a total of 24 biomarkers were regulated to normal like levels. Among these, PC(18:0/20:4), 9,11-octadecadienoic acid, arachidonic acid, 1-methyladenosine, valine, hippuric acid and pantothenic acid etc, were reversed in Clematis TS and C-AR groups. Tetrahydrocortisol was regulated to normal levels in Clematis TS and TP groups, while 3,7,12-trihydroxycholan-24-oic acid was regulated in C-AR and TP groups. Biomarkers like citric acid, p-cresol glucuronide, creatinine, cortolone were reversed in TP group.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Lin-Xiu Guo
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Qi Chang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang 330004, Jiangxi Province, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|