1
|
Menichini D, De Seta F, Mastrolia SA, Cetin I, Carafa A, Santagni S, Foschi C, Cerboneschi M, Smeazzetto S, Neri I, Facchinetti F. Probiotics in pregnancy and group B streptococcus colonization: A multicentric, randomized, placebo-controlled, double-blind study with a focus on vaginal microbioma. Eur J Obstet Gynecol Reprod Biol 2025; 310:113976. [PMID: 40250042 DOI: 10.1016/j.ejogrb.2025.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To evaluate the feasibility and effects of the use of probiotics in pregnancy, starting in the third trimester, on rectovaginal colonization of group B streptococcus (GBS) in women at low obstetric risk. METHODS A multicentre, randomized, placebo-controlled, double-blind, parallel-group study was conducted in three tertiary hospitals in northern Italy and included low-risk pregnant women. The intervention consisted of oral administration of two capsules of probiotics or placebo from 30 weeks of pregnancy until 37 weeks of pregnancy. The primary outcome was GBS colonization, evaluated with rectovaginal swabs. In a subgroup, selected at random, changes in the vaginal microbiome after treatment administration were evaluated using 16S Metagenomic Sequencing Library Preparation sequencing and analysis. RESULTS In total, 267 pregnant women were randomized to receive probiotics (n = 133) or placebo (n = 134). The two groups were similar at baseline. After treatment, no differences were found in the rates of positive rectovaginal swabs (p = 0.24) and antibiotic administration (p = 0.27). Only one case of postpartum fever (>38 °C) was found in the placebo group. Labour and delivery outcomes and neonatal outcomes were similar in both groups. Analysis of the vaginal microbiota showed that the relative abundance of Lactobacillus spp. was not modified significantly by the probiotics, but the relative abundance of Gardnerella spp. decreased significantly (3.6 ± 7.9 vs 5.5 ± 10.2; p = 0.03). Interestingly, the relative abundance of Lactobacillus spp. reduced significantly in women who subsequently presented with partial rupture of membranes (46.9 ± 43.6 vs 77.7 ± 24.9; p = 0.02). CONCLUSION Although the clinical outcomes were unaffected, administration of probiotics led to favourable changes in vaginal microbiota. It remains to be established how this effect could be translated into clinical advantage.
Collapse
Affiliation(s)
- Daniela Menichini
- Obstetrics Unit, Mother-Infant Department, AOU of Modena, Modena, Italy.
| | - Francesco De Seta
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, University Vita and Salute, Milan, Italy
| | - Salvatore Andrea Mastrolia
- Ospedale dei Bambini 'Vittore Buzzi', Milan, Italy; Department of Obstetrics and Gynaecology, Ospedale Madonna delle Grazie, Matera, Italy
| | - Irene Cetin
- Ospedale dei Bambini 'Vittore Buzzi', Milan, Italy
| | | | - Susanna Santagni
- Arcispedale Santa Maria Nuova Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Claudio Foschi
- Microbiology Unit, IRCCS Azienda Ospedaliero - Universitaria of Bologna, Bologna, Italy; Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | | - Isabella Neri
- Obstetrics Unit, Mother-Infant Department, AOU of Modena, Modena, Italy
| | - Fabio Facchinetti
- Obstetrics Unit, Mother-Infant Department, AOU of Modena, Modena, Italy
| |
Collapse
|
2
|
Zhang J, Lei Y, Du H, Li Z, Wang X, Yang D, Gao F, Li J. Exploring urinary microbiome: insights into neurogenic bladder and improving management of urinary tract infections. Front Cell Infect Microbiol 2025; 15:1512891. [PMID: 40235931 PMCID: PMC11996777 DOI: 10.3389/fcimb.2025.1512891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
The traditional view of sterile urine has been challenged by advancements in next-generation sequencing, revealing that the urinary microbiome significantly influences individual health and various urinary system diseases. Urinary tract infections in patients with neurogenic bladder are highly prevalent, recurrent, and lifelong. If frequent urinary tract infections are not adequately managed, they may ultimately lead to chronic renal failure. The excessive use of antibiotics to prevent and treat urinary tract infections may lead to increased bacterial resistance, limiting future therapeutic options. This review summarizes commonly used microbiome research techniques and urine collection methods, compiles current studies on the urinary microbiome in neurogenic bladder patients, and discusses the potential implications of urinary microbiome composition for preventing, diagnosing, and treating urinary tract infections. By summarizing current research findings, we aim to enhance understanding of the urinary microbiome in neurogenic bladder patients and promote the standardization and clinical translation of microbiome research.
Collapse
Affiliation(s)
- Jinming Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yingyun Lei
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Huayong Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xiaoxin Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
3
|
Aggarwal H, Gautam J, Gupta SK, Das B, Kumar Y, Jagavelu K, Dikshit M. Improved metabolic stability in iNOS knockout mice with Lactobacillus supplementation. Nutr Res 2024; 132:95-111. [PMID: 39532058 DOI: 10.1016/j.nutres.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Oxidative and nitrosative stress play pivotal roles in normal physiological processes and the pathogenesis of metabolic disorders. Previous studies from our lab demonstrated insulin resistance (IR), and dyslipidemia in iNOS-/- mice, emphasizing the importance of maintaining optimal redox balance. These mice exhibited altered gut microbiota with decreased Lactobacillus. Therefore, we hypothesized that Lactobacillus supplementation could mitigate metabolic disturbances in iNOS-/- mice. To test this hypothesis, iNOS-/- mice and wild-type (WT) mice were divided into four groups: iNOS-/- with or without Lactobacillus supplementation, WT with or without Lactobacillus supplementation and glucose tolerance, insulin resistance, gluconeogenesis, lipids, gene expression related to glucose and lipid metabolism (qPCR), fecal gut microbiota (16S rRNA sequencing), and serum and caecum metabolomics (LC-MS) were monitored. IR and dyslipidemic iNOS-/- mice exhibited reduced microbial diversity, diminished presence of Lactobacillus, and altered serum metabolites, indicating metabolic dysregulation. Lactobacillus supplementation in iNOS-/- mice effectively reversed glucose intolerance, IR, dyslipidemia, and associated metabolic irregularities compared to WT. These improvements correlated with changes in gene expression related to fatty acid synthesis in liver and adipose tissue, lipid oxidation in liver, and lipid efflux in intestinal tissue as compared to untreated iNOS-/- mice. Despite the positive effects on metabolic markers, Lactobacillus supplementation did not reduce body weight or rectify disrupted energy balance, as evidenced by reduced VCO2 production, heat generation, and metabolic rates in iNOS-/- mice. The results suggest that Lactobacillus supplementation ameliorates metabolic disturbances but did not fully restore disrupted energy balance, highlighting complex interactions between the gut microbiome and metabolism.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Jyoti Gautam
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sonu Kumar Gupta
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Yashwant Kumar
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| |
Collapse
|
4
|
Alhubail M, McBain AJ, O'Neill CA. A survey of multiple candidate probiotic bacteria reveals specificity in the ability to modify the effects of key wound pathogens. Microbiol Spectr 2024; 12:e0034724. [PMID: 38700333 PMCID: PMC11237428 DOI: 10.1128/spectrum.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
We have evaluated the inhibitory effects of supernatants and lysates derived from several candidate probiotics, on the growth and biofilm formation of wound pathogens, and their ability to protect human primary epidermal keratinocytes from the toxic effects of pathogens. Supernatants (neutralized and non-neutralized) and lysates (via sonication) from Lactiplantibacillus plantarum, Limosilactobacillus reuteri, Bifidobacterium longum, Lacticaseibacillus rhamnosus GG, and Escherichia coli Nissle 1917 were tested for their inhibitory effects against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumanni. The supernatants of L. plantarum, L. rhamnosus, B. longum, and L. rhamnosus GG reduced the growth of S. aureus, E. coli, and A. baumanni. B. longum additionally inhibited P. aeruginosa growth. However, neutralized Lactobacillus supernatants did not inhibit growth and in some cases were stimulatory. Lysates of L. plantarum and L. reuteri inhibited S. pyogenes while B. longum lysates inhibited E. coli and S. aureus growth. E. coli Nissle 1917 lysates enhanced the growth of S. pyogenes and P. aeruginosa. Biofilm formation by E. coli was reduced by lysates of L. reuteri and neutralized supernatants of all candidate probiotics. P. aeruginosa biofilm formation was reduced by E. coli Nissle supernatant but increased by L. plantarum, L. reuteri, and Bifidobacterium longum lysates. L. reuteri decreased the toxic effects of S. aureus on keratinocytes while E. coli Nissle 1917 lysates protected keratinocytes from S. pyogenes toxicity. In conclusion, lactobacilli and E. coli Nissle lysates confer inhibitory effects on pathogenic growth independently of acidification and may beneficially alter the outcome of interactions between host cell-pathogen in a species-specific manner.IMPORTANCEOne of the attributes of probiotics is their ability to inhibit pathogens. For this reason, many lactobacilli have been investigated for their effects as potential topical therapeutics against skin pathogens. However, this field is in its infancy. Even though probiotics are known to be safe when taken orally, the potential safety concerns when applied to potentially compromised skin are unknown. For this reason, we believe that extracts of probiotics will offer advantages over the use of live bacteria. In this study, we have surveyed five candidate probiotics, when used as extracts, in terms of their effects against common wound pathogens. Our data demonstrate that some probiotic extracts promote the growth of pathogens and highlight the need for careful selection of species and strains when probiotics are to be used topically.
Collapse
Affiliation(s)
- Muna Alhubail
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Faculty of Biology, School of Health Sciences, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine A. O'Neill
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
6
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
7
|
Song J, Dong X, Lan Y, Lu Y, Liu X, Kang X, Huang Z, Yue B, Liu Y, Ma W, Zhang L, Yan H, He M, Fan Z, Guo T. Interpretation of vaginal metagenomic characteristics in different types of vaginitis. mSystems 2024; 9:e0137723. [PMID: 38364107 PMCID: PMC10949516 DOI: 10.1128/msystems.01377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Although vaginitis is closely related to vaginal microecology in females, the precise composition and functional potential of different types of vaginitis remain unclear. Here, metagenomic sequencing was applied to analyze the vaginal flora in patients with various forms of vaginitis, including cases with a clue cell proportion ranging from 1% to 20% (Clue1_20), bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC (VVC_BV). Our results identified Prevotella as an important biomarker between BV and Clue1_20. Moreover, a gradual decrease was observed in the relative abundance of shikimic acid metabolism associated with bacteria producing indole as well as a decline in the abundance of Gardnerella vaginalis in patients with BV, Clue1_20, and healthy women. Interestingly, the vaginal flora of patients in the VVC_BV group exhibited structural similarities to that of the VVC group, and its potentially functional characteristics resembled those of the BV and VVC groups. Finally, Lactobacillus crispatus was found in high abundance in healthy samples, greatly contributing to the stability of the vaginal environment. For the further study of L. crispatus, we isolated five strains of L. crispatus from healthy samples and evaluated their capacity to inhibit G. vaginalis biofilms and produce lactic acid in vitro to select the potential probiotic candidate for improving vaginitis in future clinical studies. Overall, we successfully identified bacterial biomarkers of different vaginitis and characterized the dynamic shifts in vaginal flora between patients with BV and healthy females. This research advances our understanding and holds great promise in enhancing clinical approaches for the treatment of vaginitis. IMPORTANCE Vaginitis is one of the most common gynecological diseases, mostly caused by infections of pathogens such as Candida albicans and Gardnerella vaginalis. In recent years, it has been found that the stability of the vaginal flora plays an important role in vaginitis. Furthermore, the abundant Lactobacillus-producing rich lactic acid in the vagina provides a healthy acidic environment such as Lactobacillus crispatus. The metabolites of Lactobacillus can inhibit the colonization of pathogens. Here, we collected the vaginal samples of patients with bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC to discover the differences and relationships among the different kinds of vaginitis by metagenomic sequencing. Furthermore, because of the importance of L. crispatus in promoting vaginal health, we isolated multiple strains from vaginal samples of healthy females and chose the most promising strain with potential probiotic benefits to provide clinical implications for treatment strategies.
Collapse
Affiliation(s)
- Jiarong Song
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xue Dong
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuena Kang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhonglu Huang
- Meishan Women and Children’s Hospital, Meishan, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Wenjin Ma
- Chenghua District Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Libo Zhang
- Renshou County People’s Hospital, Renshou, Sichuan, China
| | - Haijun Yan
- Meishan Traditional Chinese Medicine Hospital, Meishan, Sichuan, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Jirillo E, Palmirotta R, Colella M, Santacroce L. A Bird's-Eye View of the Pathophysiologic Role of the Human Urobiota in Health and Disease: Can We Modulate It? PATHOPHYSIOLOGY 2024; 31:52-67. [PMID: 38390942 PMCID: PMC10885084 DOI: 10.3390/pathophysiology31010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
For a long time, urine has been considered sterile in physiological conditions, thanks to the particular structure of the urinary tract and the production of uromodulin or Tamm-Horsfall protein (THP) by it. More recently, thanks to the development and use of new technologies, i.e., next-generation sequencing and expanded urine culture, the identification of a microbial community in the urine, the so-called urobiota, became possible. Major phyla detected in the urine are represented by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Particularly, the female urobiota is largely represented by Lactobacillus spp., which are very active against urinary pathogenic Escherichia (E.) coli (UPEC) strains via the generation of lactic acid and hydrogen peroxide. Gut dysbiosis accounts for recurrent urinary tract infections (UTIs), so-called gut-bladder axis syndrome with the formation of intracellular bacterial communities in the course of acute cystitis. However, other chronic urinary tract infections are caused by bacterial strains of intestinal derivation. Monomicrobial and polymicrobial infections account for the outcome of acute and chronic UTIs, even including prostatitis and chronic pelvic pain. E. coli isolates have been shown to be more invasive and resistant to antibiotics. Probiotics, fecal microbial transplantation, phage therapy, antimicrobial peptides, and immune-mediated therapies, even including vaccines for the treatment of UTIs, will be described.
Collapse
Affiliation(s)
- Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| |
Collapse
|
9
|
Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci Anim Resour 2023; 43:1111-1127. [PMID: 37969321 PMCID: PMC10636223 DOI: 10.5851/kosfa.2023.e52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| | - Zoya Afzal
- Department of Poultry Science, Faculty of
Animal Production and Technology, The Cholistan University of Veterinary and
Animal Sciences, Bahawalpur 63100, Pakistan
| | - Fatima Afzal
- Department of Life Sciences, Sogang
University, Seoul 04107, Korea
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of
Animal Husbandry and Veterinary Sciences, The University of Agriculture
Peshawar, Peshawar 25120, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty
of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of
Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huayou Chen
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Dalvand M, Mirhosseini SA, Amini K, Khani S, Mahmoodzadeh Hosseini H, Mansoori K. Evaluation of anti-biofilm activity of Lactobacillus rhamnosus GG and Nisin on the expression of aap, ica-A and ica-D as biofilm-associated genes of Staphylococcus epidermidis. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:550-556. [PMID: 38045711 PMCID: PMC10692973 DOI: 10.18502/ijm.v15i4.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives In the present study, the anti-biofilm activity of Lactobacillus rhamnosus GG and Nisin was investigated on biofilm-forming abilities of Staphylococcus epidermidis strains and the expression of the biofilm-associated genes. Materials and Methods In this study, the standard strain of L. rhamnosus GG (ATCC 53103) and Nisin were used to assess their anti-microbial and anti-biofilm effects on S. epidermidis (RP62A). Results The MIC and MBC analysis showed that Nisin at 256 μg/mL and 512 μg/mL, and L. rhamnosus GG at 1×107 CFU/mL and 1×108 CFU/mL have anti-microbial activity compared to the negative control respectively. L. rhamnosus GG bacteria and Nisin inhibited the biofilm formation of S. epidermidis based on optical density of at 570 nm (P <0.001). The relative mRNA expression of aap, icaA, and icaD genes was significantly reduced compared to the negative control after treating S. epidermidis with sub-MIC of Nisin (0.44, 0.25 and 0.6 fold, respectively) (P>0.05). In addition, the relative expression of aap and icaA genes, but not icaD (P>0.05), was significantly lower than the negative control (0.62 and 0.7 fold, respectively) (P>0.05), after exposure to the sub MIC of L. rhamnosus GG. Conclusion Nisin and L. rhamnosus GG exhibit potent activity against biofilm-forming abilities of S. epidermidis and these agents could be utilized as an anti-biofilm agents against S. epidermidis infections.
Collapse
Affiliation(s)
- Mohammad Dalvand
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiumarss Amini
- Department of Microbiology, Faculty of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Soghra Khani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kowsar Mansoori
- New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li X, Hu B, Zheng J, Pan Z, Cai Y, Zhao M, Jin X, Li ZQ. Probiotics Alleviate Chemotherapy-Associated Intestinal Mucosal Injury via the TLR4-NFκB Signaling Pathway. Drug Des Devel Ther 2023; 17:2183-2192. [PMID: 37521036 PMCID: PMC10386857 DOI: 10.2147/dddt.s403087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Temozolomide (TMZ) induces intestinal mucosa injury that cannot be fully counteracted by supportive treatment. Probiotics regulate gut microbial composition and the host immune system and may alleviate this side effect. We aimed to investigate the potential and mechanism of Lactobacillus rhamnosus GG (LGG) in relieving intestinal mucosal injury induced by TMZ. Methods Glioblastoma mice were divided into four groups: CON (control), LGG (109 CFU/mL, treated for 7 days), TMZ (50 mg/kg·d, treated for 5 days), LGG+TMZ (LGG for 7 days and TMZ subsequently for 5 days). Body weight, food intake, and fecal pH were recorded. Intestinal tissue samples were collected 1 day after the end of TMZ treatment. Degree of damage to intestine, expression of IL1β, IL6, TNFα, and IL10 in jejunum were determined. Levels of tight-junction proteins (ZO1, occludin), TLR4, IKKβ, IκBα, and P65 with their phosphorylation in jejunum were measured. Results Decreases in body weight, food intake, spleen index in the TMZ group were mitigated in the LGG+TMZ group, and the degree of intestinal shortening and damage to jejunum villus were also alleviated. The expression of tight-junction proteins in the LGG+TMZ group was significantly greater than that in the TMZ group. IκBα in intestinal tissue significantly decreased in the TMZ group, phos-IKKβ and phos-P65 increased compared to the CON group, and LGG reversed such changes in IκBα and phos-P65 in the LGG+TMZ group. Intestinal inflammatory cytokines were significantly increased in the TMZ group, but lower in the LGG+TMZ group. Moreover, expression of TLR4 in LGG group was significantly lower than that in the CON group. LGG inhibited the rise of TLR4 after TMZ in the LGG+TMZ group compared to the TMZ group. Conclusion LGG inhibits the activation of the TLR4-NFκB pathway and alleviates intestinal mucosal inflammation induced by TMZ, thereby protect the jejunum villi and mucosal physical barrier.
Collapse
Affiliation(s)
- Xiaochong Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Bowen Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Jiachen Zheng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- The Second Clinical School, Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Zhiyong Pan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Mingjuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
12
|
Zhou K, Sun L, Zhang X, Xu X, Mi K, Ma W, Zhang L, Huang L. Salmonella antimicrobials inherited and the non-inherited resistance: mechanisms and alternative therapeutic strategies. Front Microbiol 2023; 14:1176317. [PMID: 37303797 PMCID: PMC10249997 DOI: 10.3389/fmicb.2023.1176317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella spp. is one of the most important foodborne pathogens. Typhoid fever and enteritis caused by Salmonella enterica are associated with 16-33 million infections and 500,000 to 600,000 deaths annually worldwide. The eradication of Salmonella is becoming increasingly difficult because of its remarkable capacity to counter antimicrobial agents. In addition to the intrinsic and acquired resistance of Salmonella, increasing studies indicated that its non-inherited resistance, which commonly mentioned as biofilms and persister cells, plays a critical role in refractory infections and resistance evolution. These remind the urgent demand for new therapeutic strategies against Salmonella. This review starts with escape mechanisms of Salmonella against antimicrobial agents, with particular emphasis on the roles of the non-inherited resistance in antibiotic failure and resistance evolution. Then, drug design or therapeutic strategies that show impressive effects in overcoming Salmonella resistance and tolerance are summarized completely, such as overcoming the barrier of outer membrane by targeting MlaABC system, reducing persister cells by limiting hydrogen sulfide, and applying probiotics or predatory bacteria. Meanwhile, according to the clinical practice, the advantages and disadvantages of above strategies are discussed. Finally, we further analyze how to deal with this tricky problems, thus can promote above novel strategies to be applied in the clinic as soon as possible. We believed that this review will be helpful in understanding the relationships between tolerance phenotype and resistance of Salmonella as well as the efficient control of antibiotic resistance.
Collapse
Affiliation(s)
- Kaixiang Zhou
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lei Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xuehua Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xiangyue Xu
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Kun Mi
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Wenjin Ma
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lan Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lingli Huang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| |
Collapse
|
13
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
14
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Aljohani AM, El-Chami C, Alhubail M, Ledder RG, O’Neill CA, McBain AJ. Escherichia coli Nissle 1917 inhibits biofilm formation and mitigates virulence in Pseudomonas aeruginosa. Front Microbiol 2023; 14:1108273. [PMID: 36970701 PMCID: PMC10031955 DOI: 10.3389/fmicb.2023.1108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023] Open
Abstract
In the quest for mitigators of bacterial virulence, cell-free supernatants (CFS) from 25 human commensal and associated bacteria were tested for activity against Pseudomonas aeruginosa. Among these, Escherichia coli Nissle 1917 CFS significantly inhibited biofilm formation and dispersed extant pseudomonas biofilms without inhibiting planktonic bacterial growth. eDNA was reduced in biofilms following exposure to E. coli Nissle CFS, as visualized by confocal microscopy. E. coli Nissle CFS also showed a significant protective effect in a Galleria mellonella-based larval virulence assay when administrated 24 h before challenge with the P. aeruginosa. No inhibitory effects against P. aeruginosa were observed for other tested E. coli strains. According to proteomic analysis, E. coli Nissle CFS downregulated the expression of several P. aeruginosa proteins involved in motility (Flagellar secretion chaperone FliSB, B-type flagellin fliC, Type IV pilus assembly ATPase PilB), and quorum sensing (acyl-homoserine lactone synthase lasI and HTH-type quorum-sensing regulator rhlR), which are associated with biofilm formation. Physicochemical characterization of the putative antibiofilm compound(s) indicates the involvement of heat-labile proteinaceous factors of greater than 30 kDa molecular size.
Collapse
Affiliation(s)
- Ahmad M. Aljohani
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Ministry of Education, Riyadh, Saudi Arabia
| | - Cecile El-Chami
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Muna Alhubail
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Ruth G. Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Andrew J. McBain,
| |
Collapse
|
16
|
Zagmignan A, Mendes YC, Mesquita GP, dos Santos GDC, Silva LDS, de Souza Sales AC, Castelo Branco SJDS, Junior ARC, Bazán JMN, Alves ER, de Almeida BL, Santos AKM, Firmo WDCA, Silva MRC, Cantanhede Filho AJ, de Miranda RDCM, da Silva LCN. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients 2023; 15:nu15041059. [PMID: 36839417 PMCID: PMC9962425 DOI: 10.3390/nu15041059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Endotoxemia is a condition caused by increasing levels of lipopolysaccharide (LPS) characterized by an impaired systemic response that causes multiple organ dysfunction. Lacticaseibacillus rhamnosus ATCC 9595 is a strain with probiotic potential which shows immunomodulatory properties. The incorporation of this bacterium in food rich in bioactive compounds, such as cupuaçu juice (Theobroma grandiflorum), could result in a product with interesting health properties. This work evaluated the effects of the oral administration of cupuaçu juice fermented with L. rhamnosus on the outcome of LPS-induced endotoxemia in mice. C57BL/6 mice (12/group) received oral doses (100 µL) of saline solution and unfermented or fermented cupuaçu juice (108 CFU/mL). After 5 days, the endotoxemia was induced by an intraperitoneal injection of LPS (10 mg/kg). The endotoxemia severity was evaluated daily using a score based on grooming behavior, mobility, presence of piloerection, and weeping eyes. After 6 h and 120 h, the mice (6/group) were euthanized for analysis of cell counts (in peritoneal lavage and serum) and organ weight. L. rhamnosus grew in cupuaçu juice and produced organic acids without the need for supplementation. The bacteria counts were stable in the juice during storage at 4 °C for 28 days. The fermentation with L. rhamnosus ATCC 9595 changed the metabolites profile of cupuaçu juice due to the biotransformation and enhancement of some compounds. In general, the administration of L. rhamnosus-fermented juice allowed a significant improvement in several characteristics of endotoxemic status (weight loss, hypothermia, severity index, cell migration). In addition, treatment with fermented juice significantly reduced the weight of the spleen, liver, intestine, and kidneys compared to the saline-treated endotoxemic group. Taken together, our data show that short-term intake therapy of cupuaçu juice fermented with L. rhamnosus ATCC 9595 can reduce systemic inflammation in an experimental model of LPS-induced endotoxemia in mice.
Collapse
Affiliation(s)
- Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Laboratório de Microbiologia Ambiental, Universidade CEUMA, São Luís 65075-120, Brazil
- Correspondence:
| | - Yasmim Costa Mendes
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | | | | | - Edinalva Rodrigues Alves
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | - Anne Karoline Maiorana Santos
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | - Wellyson da Cunha Araújo Firmo
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Centro de Ciências da Saúde, Campus Imperatriz, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz 65900-000, MA, Brazil
| | | | - Antônio José Cantanhede Filho
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | | | | |
Collapse
|
17
|
Lactobacillus rhamnosus GG Promotes Recovery of the Colon Barrier in Septic Mice through Accelerating ISCs Regeneration. Nutrients 2023; 15:nu15030672. [PMID: 36771378 PMCID: PMC9921111 DOI: 10.3390/nu15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery effects mediated by the ISCs are related to the gut microbiota. This research found that the survival rate of septic mice was improved with a Lactobacillus rhamnosus GG (LGG) treatment. Furthermore, an increased proliferation and decreased apoptosis in colon epithelial cells were observed in the LGG-treated septic mice. In vitro, we found that a LGG supernatant was effective in maintaining the colonoid morphology and proliferation under the damage of TNF-α. Both in the mice colon and the colonoid, the LGG-induced barrier repair process was accompanied by an increased expression of Lgr5+ and lysozyme+ cells. This may be attributed to the upregulation of the IL-17, retinol metabolism, NF-kappa B and the MAPK signaling pathways, among which, Tnfaip3 and Nfkbia could be used as two potential biomarkers for LGG in intestinal inflammation therapy. In conclusion, our finding suggests that LGG protects a sepsis-injured intestinal barrier by promoting ISCs regeneration, highlighting the protective mechanism of oral probiotic consumption in sepsis.
Collapse
|
18
|
Postbiotics in Human Health: A Narrative Review. Nutrients 2023; 15:nu15020291. [PMID: 36678162 PMCID: PMC9863882 DOI: 10.3390/nu15020291] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In the 21st century, compressive health and functional foods are advocated by increasingly more people in order to eliminate sub-health conditions. Probiotics and postbiotics have gradually become the focus of scientific and nutrition communities. With the maturity and wide application of probiotics, the safety concerns and other disadvantages are non-negligible as we review here. As new-era products, postbiotics continue to have considerable potential as well as plentiful drawbacks to optimize. "Postbiotic" has been defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Here, the evolution of the concept "postbiotics" is reviewed. The underlying mechanisms of postbiotic action are discussed. Current insight suggests that postbiotics exert efficacy through protective modulation, fortifying the epithelial barrier and modulation of immune responses. Finally, we provide an overview of the comparative advantages and the current application in the food industry at pharmaceutical and biomedical levels.
Collapse
|
19
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
20
|
Menichini D, Chiossi G, Monari F, De Seta F, Facchinetti F. Supplementation of Probiotics in Pregnant Women Targeting Group B Streptococcus Colonization: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14214520. [PMID: 36364782 PMCID: PMC9657808 DOI: 10.3390/nu14214520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
This systematic review and meta-analysis aimed to determine if probiotic supplementation in pregnancy reduced maternal Group B streptococcus (GBS) recto-vaginal colonization in pregnant women at 35–37 weeks of gestation. Electronic databases (i.e., PubMed, MEDLINE, ClinicalTrials.gov, ScienceDirect, and the Cochrane Library) were searched from inception up to February 2022. We included RCTs assessing the effects of probiotic supplementation in pregnancy on GBS recto-vaginal colonization. The primary outcome was GBS-positive recto-vaginal cultures performed at 35–37 weeks of gestation. Secondarily, we evaluated obstetric and short-term neonatal outcomes. A total of 132 publications were identified; 9 full-length articles were reviewed to finally include 5 studies. Probiotic supplementation reduced vaginal GBS colonization: the GBS positive culture rate was estimated at 31.9% (96/301) in the intervention group compared to 38.6% (109/282) in the control group (OR = 0.62, 95% CI 0.40–0.94, I2 4.8%, p = 0.38). The treatment started after 30 weeks of gestation and was more effective in reducing GBS colonization (OR 0.41, 95% CI 0.21–0.78, I2 0%, p = 0.55). Probiotic administration during pregnancy, namely in the third trimester, was associated with a reduced GBS recto-vaginal colonization at 35–37 weeks and a safe perinatal profile. Whether this new strategy could reduce the exposition of pregnant women to significant doses of antibiotics in labor needs to be evaluated in other trials.
Collapse
Affiliation(s)
- Daniela Menichini
- Department of Biomedical, Metabolic and Neural Sciences, International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-0594225826
| | - Giuseppe Chiossi
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Monari
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesco De Seta
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, 34137 Trieste, Italy
| | - Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
21
|
Mahalak KK, Firrman J, Bobokalonov J, Narrowe AB, Bittinger K, Daniel S, Tanes C, Mattei LM, Zeng WB, Soares JW, Kobori M, Lemons JMS, Tomasula PM, Liu L. Persistence of the Probiotic Lacticaseibacillus rhamnosus Strain GG (LGG) in an In Vitro Model of the Gut Microbiome. Int J Mol Sci 2022; 23:12973. [PMID: 36361763 PMCID: PMC9657340 DOI: 10.3390/ijms232112973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
The consumption of probiotics is widely encouraged due to reports of their positive effects on human health. In particular, Lacticaseibacillus rhamnosus strain GG (LGG) is an approved probiotic that has been reported to improve health outcomes, especially for gastrointestinal disorders. However, how LGG cooperates with the gut microbiome has not been fully explored. To understand the interaction between LGG and its ability to survive and grow within the gut microbiome, this study introduced LGG into established microbial communities using an in vitro model of the colon. LGG was inoculated into the simulated ascending colon and its persistence in, and transit through the subsequent transverse and descending colon regions was monitored over two weeks. The impact of LGG on the existing bacterial communities was investigated using 16S rRNA sequencing and short-chain fatty acid analysis. LGG was able to engraft and proliferate in the ascending region for at least 10 days but was diminished in the transverse and descending colon regions with little effect on short-chain fatty acid abundance. These data suggest that the health benefits of the probiotic LGG rely on its ability to transiently engraft and modulate the host microbial community.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Scott Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa M. Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wei-Bin Zeng
- Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
| | - Jason W. Soares
- Bioprocessing and Bioengineering Group, US Army Combat Capabilities Development Command Soldier Center (CCDC-SC), Natick, MA 01760, USA
| | - Masuko Kobori
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba 305-8642, Ibaraki, Japan
| | - Johanna M. S. Lemons
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Peggy M. Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
22
|
Li Z, Zhou Q, Qingsong Q, Liao Y, Yang F, Sheng M, Feng L, Shi X. Effect of Maifan Stone on the Growth of Probiotics and Regulation of Gut Microbiota. Lett Appl Microbiol 2022; 75:1423-1432. [PMID: 35975465 DOI: 10.1111/lam.13809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Maifan stone is a kind of mineral medicine in Chinese medicine, which has good adsorption, dissolution, mineralization, and biological activity. It has an excellent therapeutic effect on livestock, poultry, and aquatic animals suffering from intestinal diseases. This study explored the effect of Maifan stone on the growth ability of Lacticaseibacillus rhamnosus GG (L. rhamnosus GG) and the effect of Maifan stone-L. rhamnosus GG fermented product on the intestinal inflammation and gut microbiota. We find that Maifan stone can adsorb L. rhamnosus GG to form a carrier bacteria. Maifan stone has the characteristics of acid tolerance and bile salt tolerance and can also improve the activity of L. rhamnosus GG in artificial gastrointestinal juice. The fermented product can reduce the degree of diarrhea and colon pathology in rats to a certain extent and significantly improve intestinal inflammatory factors and gut microbiota. This study improves the application effect of L. rhamnosus GG in the prevention and treatment of diarrhea animals and provide a scientific basis for the rational development of Maifan stone resources.
Collapse
Affiliation(s)
- ZhiXun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qu Qingsong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lei Feng
- Inner Mongolia Yougaoya Health Technology Co., Ltd., Inner Mongolia, 028399, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.,Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| |
Collapse
|
23
|
Vidal-Veuthey B, González D, Cárdenas JP. Role of microbial secreted proteins in gut microbiota-host interactions. Front Cell Infect Microbiol 2022; 12:964710. [PMID: 35967863 PMCID: PMC9373040 DOI: 10.3389/fcimb.2022.964710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian gut microbiota comprises a variety of commensals including potential probiotics and pathobionts, influencing the host itself. Members of the microbiota can intervene with host physiology by several mechanisms, including the secretion of a relatively well-reported set of metabolic products. Another microbiota influence mechanism is the use of secreted proteins (i.e., the secretome), impacting both the host and other community members. While widely reported and studied in pathogens, this mechanism remains understood to a lesser extent in commensals, and this knowledge is increasing in recent years. In the following minireview, we assess the current literature covering different studies, concerning the functions of secretable proteins from members of the gut microbiota (including commensals, pathobionts, and probiotics). Their effect on host physiology and health, and how these effects can be harnessed by postbiotic products, are also discussed.
Collapse
Affiliation(s)
- Boris Vidal-Veuthey
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- *Correspondence: Juan P. Cárdenas,
| |
Collapse
|
24
|
Göksel Ş, Akçelik N, Özdemir C, Akçelik M. The Effects of Lactic Acid Bacteria on Salmonella Biofilms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
26
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. The Urinary Microbiome and Biological Therapeutics: Novel Therapies For Urinary Tract Infections. Microbiol Res 2022; 259:127010. [DOI: 10.1016/j.micres.2022.127010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
|
27
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
28
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
29
|
Ding C, Yu Y, Zhou Q. Bacterial Vaginosis: Effects on reproduction and its therapeutics. J Gynecol Obstet Hum Reprod 2021; 50:102174. [PMID: 34087449 DOI: 10.1016/j.jogoh.2021.102174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023]
Abstract
Bacterial Vaginosis (BV) is the most common vaginal infection. A large amount of evidence shows that the anatomical scope of BV's pathogenic effect is far beyond the lower reproductive tract. BV is closely related to adverse reproductive outcomes, which may be due to the infection of the vaginal flora ascending to the upper genital tract. In addition, the incidence of BV is relatively high in infertile women. The vaginal microbiome also plays an important role in women's health and diseases. For most women, the normal vaginal microbiota is dominated by Lactobacillus, which can maintain a healthy vaginal environment by producing lactic acid, H2O2 and bacteriocin, etc. BV is characterized by the imbalanced vaginal flora. It changes the acidic environment that is normally dominated by Lactobacillus, and causes an overgrowth of anaerobic and facultative anaerobic bacteria such as Gardnerella vaginalis and Atopobium vaginae. Studies have shown that bacterial infections in the vagina can spread to upper genital tract and cause adverse fertility outcome. Therefore, early diagnosis and therapeutics of symptomatic BV is helpful to improve the outcome of poor fertility.
Collapse
Affiliation(s)
- Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Su S, Zhang ZF, Wang X, Wang YM, Wang BM. Mechanism of Lactobacillus rhamnosus in treatment of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2021; 29:366-371. [DOI: 10.11569/wcjd.v29.i7.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a clinically common functional gastrointestinal disease, which affects the quality of life of patients. Therefore, it is of great significance to explore effective treatment methods for IBS. Probiotics can improve the symptoms of IBS patients and their quality of life. Lactobacillus rhamnosus is one of the most studied probiotics and has attracted much attention. . Lactobacillus rhamnosus has been used to treat IBS, and much progress has been made in recent years. Lactobacillus rhamnosus can improve the symptoms of IBS by regulating the imbalance of the intestinal flora, protecting the intestinal barrier function, exerting anti-inflammatory activity, regulating the intestinal immunity, improving visceral hypersensitivity, and inhibiting bacteria. This review aims to elucidate the possible mechanism of Lactobacillus rhamnosus in the treatment of IBS.
Collapse
Affiliation(s)
- Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhi-Fang Zhang
- Department of Neurology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
31
|
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18:649-667. [PMID: 33948025 PMCID: PMC8387231 DOI: 10.1038/s41575-021-00440-6] [Citation(s) in RCA: 917] [Impact Index Per Article: 229.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term 'postbiotics' is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products.
Collapse
Affiliation(s)
- Seppo Salminen
- grid.1374.10000 0001 2097 1371Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- grid.419051.80000 0001 1945 7738Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Akihito Endo
- grid.410772.70000 0001 0807 3368Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Colin Hill
- grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO USA
| | - Raanan Shamir
- grid.414231.10000 0004 0575 3167Institute of Pediatric Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach Tikva, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hania Szajewska
- grid.13339.3b0000000113287408Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Gabriel Vinderola
- grid.10798.370000 0001 2172 9456Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
32
|
Shi CW, Cheng MY, Yang X, Lu YY, Yin HD, Zeng Y, Wang RY, Jiang YL, Yang WT, Wang JZ, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. Probiotic Lactobacillus rhamnosus GG Promotes Mouse Gut Microbiota Diversity and T Cell Differentiation. Front Microbiol 2020; 11:607735. [PMID: 33391230 PMCID: PMC7773731 DOI: 10.3389/fmicb.2020.607735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 01/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are the primary genera of the intestinal flora and have many probiotic functions. In the present study, Lactobacillus rhamnosus GG (LGG) ATCC 53103 was used to treat BALB/c mice. After LGG intervention, both low and high LGG doses were shown to improve the observed OTU, Chao1, ACE, and Shannon indices, while the Simpson index decreased, demonstrating that LGG can promote intestinal microbiota abundance and diversity. Furthermore, LGG treatment increased the abundances of intestinal Firmicutes, Bacteroides and Actinomycetes while reducing that of Proteobacteria. In addition to its effect on gut the microbiota, LGG could also regulate the host immune system. In the present study, we showed that LGG could affect the percentage of CD3+ T lymphocytes in the spleens (SPLs), mesenteric lymph nodes (MLNs), Peyer’s patches (PPs) and lamina propria lymphocytes (LPLs) of mice, including total CD3+ T, CD3+CD4+ T, and CD3+CD8+ T lymphocytes. Furthermore, LGG could effectively increase the expression of Th1-type cytokines (IFN-γ) and Th2 cytokines (IL-4) in CD4+ T cells, indicating that the proportion of Th1 and Th2 cells in mice with LGG treatment was in a high equilibrium state compared to the control group. In addition, the IFN-γ/IL-4 ratio was greater than 1 in mice with LGG intervention, suggesting that LGG tends to mediate the Th1 immune response. The results of the present study also showed that LGG upregulated the expression of IL-17 in CD4+ T cells and regulated the percentage of CD4+CD25+Foxp3+ Treg cells in various secondary immunological organs, indicating that LGG may promote the balance of Th-17 and Treg cells.
Collapse
Affiliation(s)
- Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hong-Duo Yin
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
33
|
Kalusche S, Vanshylla K, Kleipass F, Gruell H, Müller B, Zeng Z, Koch K, Stein S, Marcotte H, Klein F, Dietrich U. Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis? Vaccines (Basel) 2020; 8:E758. [PMID: 33322227 PMCID: PMC7768517 DOI: 10.3390/vaccines8040758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
In the absence of an active prophylactic vaccine against HIV-1, passively administered, broadly neutralizing antibodies (bnAbs) identified in some chronically infected persons were shown to prevent HIV-1 infection in animal models. However, passive administration of bnAbs may not be suited to prevent sexual HIV-1 transmission in high-risk cohorts, as a continuous high level of active bnAbs may be difficult to achieve at the primary site of sexual transmission, the human vagina with its acidic pH. Therefore, we used Lactobacillus, a natural commensal in the healthy vaginal microbiome, to express bn nanobodies (VHH) against HIV-1 that we reported previously. After demonstrating that recombinant VHHA6 expressed in E. coli was able to protect humanized mice from mucosal infection by HIV-1Bal, we expressed VHHA6 in a soluble or in a cell-wall-anchored form in Lactobacillus rhamnosus DSM14870. This strain is already clinically applied for treatment of bacterial vaginosis. Both forms of VHHA6 neutralized a set of primary epidemiologically relevant HIV-1 strains in vitro. Furthermore, VHHA6 was still active at an acidic pH. Thus, lactobacilli expressing bn VHH potentially represent an attractive vector for the passive immunization of women in cohorts at high risk of HIV-1 transmission.
Collapse
Affiliation(s)
- Sarah Kalusche
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Franziska Kleipass
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Barbara Müller
- Department of Infectious Diseases, Virology Centre for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Zhu Zeng
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Kathrin Koch
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Stefan Stein
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Ursula Dietrich
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| |
Collapse
|
34
|
Spacova I, Van Beeck W, Seys S, Devos F, Vanoirbeek J, Vanderleyden J, Ceuppens J, Petrova M, Lebeer S. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes 2020; 11:1729-1744. [PMID: 32522072 PMCID: PMC7524350 DOI: 10.1080/19490976.2020.1766345] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/03/2023] Open
Abstract
Allergic asthma is a highly prevalent inflammatory disease of the lower airways, clinically characterized by airway hyperreactivity and deterioration of airway function. Immunomodulatory probiotic bacteria are increasingly being explored to prevent asthma development, alone or in combination with other treatments. In this study, wild-type and recombinant probiotic Lactobacillus rhamnosus GR-1 were tested as preventive treatment of experimental allergic asthma in mice. Recombinant L. rhamnosus GR-1 was designed to produce the major birch pollen allergen Bet v 1, to promote allergen-specific immunomodulation. Administration of wild-type and recombinant L. rhamnosus GR-1 prevented the development of airway hyperreactivity. Recombinant L. rhamnosus GR-1 also prevented elevation of airway total cell counts, lymphocyte counts and lung IL-1β levels, while wild-type L. rhamnosus GR-1 inhibited airway eosinophilia. Of note, a shift in gut microbiome composition was observed after asthma development, which correlated with the severity of airway inflammation and airway hyperreactivity. In the groups that received L. rhamnosus GR-1, this asthma-associated shift in gut microbiome composition was not observed, indicating microbiome-modulating effects of this probiotic. These data demonstrate that L. rhamnosus GR-1 can prevent airway function deterioration in allergic asthma. Bet v 1 expression by L. rhamnosus GR-1 further contributed to lower airway inflammation, although not solely through the expected reduction in T helper 2-associated responses, suggesting involvement of additional mechanisms. The beneficial effects of L. rhamnosus GR-1 correlate with increased gut microbiome resilience, which in turn is linked to protection of airway function, and thus further adds support to the existence of a gut-lung axis.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Wannes Van Beeck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sven Seys
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Fien Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jozef Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Jan Ceuppens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Mariya Petrova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Lockyer S, Aguirre M, Durrant L, Pot B, Suzuki K. The role of probiotics on the roadmap to a healthy microbiota: a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e2. [PMID: 39296722 PMCID: PMC11406418 DOI: 10.1017/gmb.2020.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 09/21/2024]
Abstract
The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage-probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of "omics" methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe B.V., Almere, The Netherlands
| | | |
Collapse
|
37
|
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf 2020; 19:3390-3415. [PMID: 33337065 DOI: 10.1111/1541-4337.12613] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Brazil
| | - Nurten Yılmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Anita Lotfi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
38
|
van de Wijgert JHHM, Verwijs MC, Agaba SK, Bronowski C, Mwambarangwe L, Uwineza M, Lievens E, Nivoliez A, Ravel J, Darby AC. Intermittent Lactobacilli-containing Vaginal Probiotic or Metronidazole Use to Prevent Bacterial Vaginosis Recurrence: A Pilot Study Incorporating Microscopy and Sequencing. Sci Rep 2020; 10:3884. [PMID: 32127550 PMCID: PMC7054572 DOI: 10.1038/s41598-020-60671-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with HIV acquisition and adverse pregnancy outcomes. Recurrence after metronidazole treatment is high. HIV-negative, non-pregnant Rwandan BV patients were randomized to four groups (n = 17/group) after seven-day oral metronidazole treatment: behavioral counseling only (control), or counseling plus intermittent use of oral metronidazole, Ecologic Femi+ vaginal capsule (containing multiple Lactobacillus and one Bifidobacterium species), or Gynophilus LP vaginal tablet (L. rhamnosus 35) for two months. Vaginal microbiota assessments at all visits included Gram stain Nugent scoring and 16S rRNA gene qPCR and HiSeq sequencing. All interventions were safe. BV (Nugent 7-10) incidence was 10.18 per person-year at risk in the control group, and lower in the metronidazole (1.41/person-year; p = 0.004), Ecologic Femi+ (3.58/person-year; p = 0.043), and Gynophilus LP groups (5.36/person-year; p = 0.220). In mixed effects models adjusted for hormonal contraception/pregnancy, sexual risk-taking, and age, metronidazole and Ecologic Femi+ users, each compared to controls, had higher Lactobacillus and lower BV-anaerobes estimated concentrations and/or relative abundances, and were less likely to have a dysbiotic vaginal microbiota type by sequencing. Inter-individual variability was high and effects disappeared soon after intervention cessation. Lactobacilli-based vaginal probiotics warrant further evaluation because, in contrast to antibiotics, they are not expected to negatively affect gut microbiota or cause antimicrobial resistance.
Collapse
Affiliation(s)
- Janneke H H M van de Wijgert
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Marijn C Verwijs
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Stephen K Agaba
- Rinda Ubuzima, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lambert Mwambarangwe
- Rinda Ubuzima, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Mireille Uwineza
- Rinda Ubuzima, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | | - Jacques Ravel
- Institute of Genome Sciences, University of Maryland, Baltimore, USA
| | - Alistair C Darby
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
39
|
Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY, Zununi Vahed S. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect Drug Resist 2020; 13:659-672. [PMID: 32161474 PMCID: PMC7049744 DOI: 10.2147/idr.s232982] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm-related infections have been a major clinical problem and include chronic infections, device-related infections and malfunction of medical devices. Since biofilms are not fully available for the human immune system and antibiotics, they are difficult to eradicate and control; therefore, imposing a global threat to human health. There have been avenues to tackle biofilms largely based on the disruption of their adhesion and maturation. Nowadays, the use of probiotics and their derivatives has gained a growing interest in battling against pathogenic biofilms. In the present review, we have a close look at probiotics with the ultimate objective of inhibiting biofilm formation and maturation. Overall, insights into the mechanisms by which probiotics and their derivatives can be used in the management of biofilm infections would be warranted.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Azad University, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
40
|
Pelyuntha W, Chaiyasut C, Kantachote D, Sirilun S. Organic acids and 2,4-Di- tert-butylphenol: major compounds of Weissella confusa WM36 cell-free supernatant against growth, survival and virulence of Salmonella Typhi. PeerJ 2020; 8:e8410. [PMID: 31998561 PMCID: PMC6977521 DOI: 10.7717/peerj.8410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes serious systemic disease in humans. Antibiotic treatment is required for the S. Typhi infection, while the inappropriate use of antibiotics causes increased drug-resistant S. Typhi. Hence, alternative therapies through non-antibiotic approaches are urgently needed. The use of beneficial lactic acid bacterium and/or its metabolites to control typhoid fever represent a promising approach, as it may exert protective actions through various mechanisms. Method In this study, the cell-free culture supernatant (CFCS) of Weissella confusa WM36 was evaluated via the antibacterial activity, and its metabolites were identified. In addition, the effects of CFCS on Salmonella virulence behaviors were also investigated. Result Based on strong inhibition the growth of S. Typhi DMST 22842, organic acids (lactic acid and acetic acid) and 2,4-Di-tert-butylphenol (2,4 DTBP), were the main antibacterial metabolites presented in CFCS of strain WM36. Minimum inhibitory concentration (MIC) at 40% WM36–CFCS dramatically reduced the S. Typhi population to more than 99.99% at 4 h and completely inhibited biofilm formation, while sub-MIC at 20% (v/v) and MIC could reduce 100% of motility. Additionally, sub-MIC at only 10% (v/v) WM36–CFCS did down-regulate the expression of virulence genes which are responsible for the type-III secretion system, effector proteins, and quorum sensing system in this pathogen. Conclusion W. confusa WM36 and its metabolites are shown to be a promising candidates, and an effective approach against typhoid Salmonella burden.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
41
|
Mantziari A, Tölkkö S, Ouwehand AC, Löyttyniemi E, Isolauri E, Salminen S, Rautava S. The Effect of Donor Human Milk Fortification on The Adhesion of Probiotics In Vitro. Nutrients 2020; 12:nu12010182. [PMID: 31936487 PMCID: PMC7019708 DOI: 10.3390/nu12010182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Preterm delivery complications are the primary cause of death among children under the age of five. Preventive strategies include the use of pasteurized donor human milk (DHM), its fortification with human milk fortifiers (protein supplements), and supplementation with probiotics. Our aim was to examine the impact of DHM and fortified DHM (FDHM) on the mucus adhesion properties of two widely used probiotics. The study covered two forms of human milk fortifier, liquid and powdered, with or without probiotics and storage at 4 °C for 24 h. To test the adhesion properties of the probiotic strains, DHM+probiotics and FDHM+probiotics were prepared and added to immobilized mucus isolated from the stool of healthy Finnish infants. The probiotic adhesion was then measured by liquid scintillation. Our results suggest that addition of liquid or powdered human milk fortifier in donor human milk had no impact on probiotic adhesion. In addition, given the increased adhesion of probiotics suspended in buffer, other matrices should be further studied. These factors need to be considered when designing future intervention strategies using probiotics in preterm infants.
Collapse
Affiliation(s)
- Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland; (S.T.); (S.S.)
- Correspondence: ; Tel.: +35-829-450-3820
| | - Satu Tölkkö
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland; (S.T.); (S.S.)
| | - Artur C. Ouwehand
- DuPont Nutrition and Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland;
| | - Eliisa Löyttyniemi
- Unit of Biostatistics, Department of Clinical Medicine University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland;
| | - Erika Isolauri
- Department of Pediatrics, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland; (E.I.); (S.R.)
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland; (S.T.); (S.S.)
| | - Samuli Rautava
- Department of Pediatrics, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland; (E.I.); (S.R.)
| |
Collapse
|
42
|
Gavrilova E, Anisimova E, Gabdelkhadieva A, Nikitina E, Vafina A, Yarullina D, Bogachev M, Kayumov A. Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BMC Microbiol 2019; 19:248. [PMID: 31703621 PMCID: PMC6839075 DOI: 10.1186/s12866-019-1618-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Background Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. Results Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. Conclusions The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation.
Collapse
Affiliation(s)
| | | | - Alsu Gabdelkhadieva
- Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Elena Nikitina
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.,Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Adel Vafina
- Kazan National Research Technological University, 68 Karl Marx Str, 420015, Kazan, Russia
| | - Dina Yarullina
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia
| | - Mikhail Bogachev
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.,Saint-Petersburg Electrotechnical University, 5 Professor Popov str, 197376, St. Petersburg, Russia
| | - Airat Kayumov
- Kazan Federal University, 18 Kremlevskaya Str, 420008, Kazan, Russia.
| |
Collapse
|
43
|
Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology 2019; 146:1743-1754. [PMID: 31603063 PMCID: PMC6939169 DOI: 10.1017/s0031182019001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.
Collapse
|
44
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
45
|
Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res Int 2019; 123:258-265. [DOI: 10.1016/j.foodres.2019.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/20/2023]
|
46
|
Pelyuntha W, Chaiyasut C, Kantachote D, Sirilun S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019; 7:e7555. [PMID: 31523511 PMCID: PMC6715067 DOI: 10.7717/peerj.7555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Salmonella Typhi and Salmonella Typhimurium are the causative pathogens of salmonellosis, and they are mostly found in animal source foods (ASF). The inappropriate use of antibiotics enhances the possibility for the emergence of antibiotic resistance in pathogens and antibiotic residue in ASF. One promising alternative to antibiotics in animal farming is the use of lactic acid bacteria (LAB). Methods The present study was carried out the cells and/or the cell-free culture supernatants (CFCS) from beneficial LAB against S. Typhi and S. Typhimurium. The antibacterial mechanisms of LAB-CFCS as biocontrol agents against both Salmonella serovars were investigated through the analysis of anti-salmonella growth activity, biofilm inhibition and quorum quenching activity. Results Among 146 LAB strains isolated from 110 fermented food samples, the 2 strong inhibitory effect strains (WM33 and WM36) from fermented grapes against both Salmonella serovars were selected. Out of the selected strains, WM36 was the most effective inhibitor, which indicated S. Typhi by showing 95.68% biofilm inhibition at 20% biofilm inhibition concentration (BIC) and reduced 99.84% of AI-2 signaling interference. The WM33 was the best to control S. Typhimurium by producing 66.46% biofilm inhibition at only 15% BIC and 99.99% AI-2 signaling a reduction. The 16S rDNA was amplified by a polymerase chain reaction (PCR). The selected isolates were identified as Weissella viridescens WM33 and Weissella confusa WM36 based on nucleotide homology and phylogenetic analysis. Conclusion The metabolic extracts from Weissella spp. inhibit Salmonella serovars with the potential to be used as biocontrol agents to improve microbiological safety in the production of ASF.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
47
|
Wijgert JHHM, Verwijs MC. Lactobacilli‐containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG 2019; 127:287-299. [DOI: 10.1111/1471-0528.15870] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- JHHM Wijgert
- Institute of Infection and Global Health University of Liverpool Liverpool UK
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht University Utrecht the Netherlands
| | - MC Verwijs
- Institute of Infection and Global Health University of Liverpool Liverpool UK
| |
Collapse
|
48
|
Song H, Zhang J, Qu J, Liu J, Yin P, Zhang G, Shang D. Lactobacillus rhamnosus GG microcapsules inhibit Escherichia coli biofilm formation in coculture. Biotechnol Lett 2019; 41:1007-1014. [DOI: 10.1007/s10529-019-02694-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
49
|
Rossi F, Amadoro C, Colavita G. Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms 2019; 7:E126. [PMID: 31083452 PMCID: PMC6560513 DOI: 10.3390/microorganisms7050126] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Microorganisms belonging to the Lactobacillus genus complex (LGC) are naturally associated or deliberately added to fermented food products and are widely used as probiotic food supplements. Moreover, these bacteria normally colonize the mouth, gastrointestinal (GI) tract, and female genitourinary tract of humans. They exert multiple beneficial effects and are regarded as safe microorganisms. However, infections caused by lactobacilli, mainly endocarditis, bacteremia, and pleuropneumonia, occasionally occur. The relevance of Lactobacillus spp. and other members of the LGC as opportunistic pathogens in humans and related risk factors and predisposing conditions are illustrated in this review article with more emphasis on the species L. rhamnosus that has been more often involved in infection cases. The methods used to identify this species in clinical samples, to distinguish strains and to evaluate traits that can be associated to pathogenicity, as well as future perspectives for improving the identification of potentially pathogenic strains, are outlined.
Collapse
Affiliation(s)
- Franca Rossi
- Diagnostica Specialistica, Sezione di Isernia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", C.da Breccelle Snc, 86170 Isernia, Italy.
| | - Carmela Amadoro
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| | - Giampaolo Colavita
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| |
Collapse
|
50
|
Zhang W, Wu Q, Zhu Y, Yang G, Yu J, Wang J, Ji H. Probiotic Lactobacillus rhamnosus GG Induces Alterations in Ileal Microbiota With Associated CD3 -CD19 -T-bet +IFNγ +/- Cell Subset Homeostasis in Pigs Challenged With Salmonella enterica Serovar 4,[5],12:i:. Front Microbiol 2019; 10:977. [PMID: 31134022 PMCID: PMC6516042 DOI: 10.3389/fmicb.2019.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:- (S. 4,[5],12:i:-) is an emerging foodborne pathogen causing salmonellosis in humans and animals. Probiotic Lactobacillus rhamnosus GG (LGG) is an effective strategy for controlling enteric infections through maintaining gut microbiota homeostasis and regulating the intestinal innate immune response. Here, LGG was orally administrated to newly weaned piglets for 1 week before S. 4,[5],12:i:- challenge. S. 4,[5],12:i:- challenge led to disturbed gut microbiota, characterized by increased levels of Psychrobacter, Chryseobacterium indoltheticum, and uncultured Corynebacteriaceae populations, as well as an aberrant correlation network in Prevotellaceae NK3B31 group-centric species. The beneficial effect of LGG correlated with attenuating the expansion of Prevotellaceae NK3B31 group. Fusobacterium only found in the pigs treated with LGG was positively correlated with Lactobacillus animalis and Propionibacterium. Administration of LGG induced the expansion of CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cell subsets in the peripheral blood at 24 h after a challenge of S. 4,[5],12:i:-. S. 4,[5],12:i:- infection increased the population of intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum; however, this increase was attenuated via LGG administration. Correlation analysis revealed that LGG enriched Flavobacterium frigidarium and Facklamia populations, which were negatively correlated with intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum. The present data suggest that probiotic LGG alters gut microbiota with associated CD3-CD19-T-bet+IFNγ+/- cell subset homeostasis in pigs challenged with S. enterica 4,[5],12:i:-. LGG may be used in potential gut microbiota-targeted therapy regimens to regulate the specific immune cell function and, consequently, control enteric infections.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|