1
|
Bodman-Harris O, Rollier CS, Iqbal M. Approaches to Enhance the Potency of Vaccines in Chickens. Vaccines (Basel) 2024; 12:1337. [PMID: 39771998 PMCID: PMC11680195 DOI: 10.3390/vaccines12121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Outbreaks of avian pathogens such as Newcastle disease virus, avian influenza virus, and salmonella have a major impact on economies and food security worldwide. Some pathogens also pose a significant zoonotic potential, especially avian influenza viruses. Vaccination plays a key role in controlling many poultry diseases, and there are many vaccines licenced in the United Kingdom for diseases of poultry caused by viruses, bacteria, and parasites. However, these vaccines often do not provide complete protection and can cause unwanted side effects. Several factors affect the potency of poultry vaccines, including the type of vaccination used, the mechanism of delivery, and the use of adjuvants. Advancements in technology have led to the study and development of novel vaccines and vaccine adjuvants for use in poultry. These induce stronger immune responses compared with current vaccine technology and have the potential to protect against multiple poultry diseases. This review aims to discuss the existing poultry vaccine technology; the effect of delivery mechanisms on vaccine efficacy; the use of current and novel adjuvants; the ability to target antigens to antigen-presenting cells; and the use of probiotics, multivalent vaccines, and nanotechnology to enhance the potency of poultry vaccines.
Collapse
Affiliation(s)
- Oenone Bodman-Harris
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Ash Road, Woking GU 24 0NF, UK;
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford GU2 7XH, UK;
| | - Christine S. Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford GU2 7XH, UK;
| | - Munir Iqbal
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Ash Road, Woking GU 24 0NF, UK;
| |
Collapse
|
2
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
5
|
Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice. Vet Microbiol 2022; 264:109306. [DOI: 10.1016/j.vetmic.2021.109306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
|
6
|
Hu J, Peng P, Li J, Zhang Q, Li R, Wang X, Gu M, Hu Z, Hu S, Liu X, Jiao X, Peng D, Liu X. Single Dose of Bivalent H5 and H7 Influenza Virus-Like Particle Protects Chickens Against Highly Pathogenic H5N1 and H7N9 Avian Influenza Viruses. Front Vet Sci 2021; 8:774630. [PMID: 34859093 PMCID: PMC8632145 DOI: 10.3389/fvets.2021.774630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Both H5N1 and H7N9 subtype avian influenza viruses cause enormous economic losses and pose considerable threats to public health. Bivalent vaccines against both two subtypes are more effective in control of H5N1 and H7N9 viruses in poultry and novel egg-independent vaccines are needed. Herein, H5 and H7 virus like particle (VLP) were generated in a baculovirus expression system and a bivalent H5+H7 VLP vaccine candidate was prepared by combining these two antigens. Single immunization of the bivalent VLP or commercial inactivated vaccines elicited effective antibody immune responses, including hemagglutination inhibition, virus neutralizing and HA-specific IgG antibodies. All vaccinated birds survived lethal challenge with highly pathogenic H5N1 and H7N9 viruses. Furthermore, the bivalent VLP significantly reduced viral shedding and virus replication in chickens, which was comparable to that observed for the commercial inactivated vaccine. However, the bivalent VLP was better than the commercial vaccine in terms of alleviating pulmonary lesions caused by H7N9 virus infection in chickens. Therefore, our study suggests that the bivalent H5+H7 VLP vaccine candidate can serve as a critical alternative for the traditional egg-based inactivated vaccines against H5N1 and H7N9 avian influenza virus infection in poultry.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Rumeng Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
LI G, LIU L, XU B, HU J, KUANG H, WANG X, WANG L, CUI X, SUN H, RONG J. Displaying epitope B and epitope 7 of porcine reproductive and respiratory syndrome virus on virus like particles of porcine circovirus type 2 provides partial protection to pigs. J Vet Med Sci 2021; 83. [PMID: 34234054 PMCID: PMC8437722 DOI: 10.1292/jvms.21-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Cap of porcine circovirus type 2 (PCV2) can be assembled into virus like particles (VLPs) in vitro that have multiple loops located on the particle surface. This would make it a good vehicle for displaying exogenous proteins or epitopes. We derived two epitopes, epitope B (EpB, S37HIQLIYNL45) and epitope 7 (Ep7, Q196WGRL200) from Gp5 of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). We replaced the core region of Loop CD (L75PPGGGSN82) and the carboxyl terminus (K222DPPL226) of PCV2 Cap, respectively, to construct a bi-epitope chimeric PCV2 Cap. Its immunogenicity and protective effects were evaluated as one PRRSV subunit vaccine. The chimeric PCV2 Cap was soluble, efficiently expressed in an Escherichia coli expression system, and could be self-assembled into chimeric virus like particles (cVLPs) with a diameter of 12-15 nm. Western blotting confirmed that the cVLPs could be specifically recognized by anti-PCV2, anti-EpB and anti-Ep7 antibodies. The cVLPs vaccine could alleviate the clinical symptoms and reduce the viral loads after HP-PRRSV challenge in 100-120 days old pigs. These data suggest that the cVLPs vaccine could provide pigs with partial protection against homologous PRRSV strains, and it provides a new design for additional PRRSV subunit vaccines.
Collapse
Affiliation(s)
- Guopan LI
- College of Life Science, Yangtze University, Jingzhou
434000, China
| | - Lei LIU
- State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China
| | - Baojuan XU
- State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China
| | - Jixiong HU
- College of Life Science, Yangtze University, Jingzhou
434000, China
| | - Hongyan KUANG
- Jingzhou Changxin Biotechnology Co., Ltd., Jingzhou 434000,
China
| | - Xi WANG
- Jingzhou Changxin Biotechnology Co., Ltd., Jingzhou 434000,
China
| | - Liping WANG
- State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China
| | - Xiaoxia CUI
- State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China
| | - Houmin SUN
- State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China
| | - Jun RONG
- College of Life Science, Yangtze University, Jingzhou
434000, China,State Key Laboratory of Animal Genetic Engineering Vaccine,
Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266000, China,Correspondence to: Rong, J.:
| |
Collapse
|
8
|
Lei X, Cai X, Yang Y. Genetic engineering strategies for construction of multivalent chimeric VLPs vaccines. Expert Rev Vaccines 2020; 19:235-246. [PMID: 32133886 DOI: 10.1080/14760584.2020.1738227] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over the past two decades, virus-like particles (VLPs) have been developed as a new generation of vaccines against viral infections. Based on VLPs, chimeric VLPs (chi-VLPs) have been generated through genetic modifications or chemical couplings. For construction of multivalent chi-VLPs vaccines, multiple genetic engineering strategies are continuously being developed. Thus, it is important to provide a summary as reference for researchers in this field.Areas covered: The representative studies on the genetic engineered multivalent chi-VLPs are summarized and mainly focused on chimeric capsid VLPs and chimeric enveloped VLPs. The advantages and limitations of each strategy are also discussed at last, as well as opinions on platform choice and future directions of eVLPs vaccines.Expert opinion: The design of multivalent chi-VLPs vaccines needs to meet the following specifications: 1) the incorporated antigens are suggested to display on the exposed surface of chi-VLPs and do not have excessive adverse effects on the stability of chi-VLPs; 2) the chi-VLPs should elicit protective antibodies against the incorporated antigen as well as the source virus of VLPs. However, there is no requirement of retaining the antigenicity of VLPs when using VLPs solely as carriers for antigens display or drug delivery.
Collapse
Affiliation(s)
- Xinnuo Lei
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zmrhal V, Slama P. Current knowledge about interactions between avian dendritic cells and poultry pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103565. [PMID: 31830703 DOI: 10.1016/j.dci.2019.103565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In poultry production conditions today, birds are surrounded by viral, bacterial, and parasitic agents. DCs are the main antigen-presenting cells located in tissues of the body, and their role involves recognizing antigen structures, engulfing and processing them, and subsequently presenting antigen peptides on their surface by major histocompatibility complex, where T cells and B cells are stimulated and can begin appropriate cellular and antibody immune response. This unique function indicates that these cells can be used in producing vaccines, but first it is necessary to culture DCs in vitro to identify the principles of their interactions with pathogens. The following review summarizes our current knowledge about avian dendritic cells and their interactions with pathogens. It provides a basis for future studies of these unique cells and their use in vaccine development.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Schädler J, Sigrist B, Meier SM, Albini S, Wolfrum N. Virus-like particles in a new vaccination approach against infectious laryngotracheitis. J Gen Virol 2019; 100:1013-1026. [PMID: 31099737 DOI: 10.1099/jgv.0.001272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gallid alphaherpesvirus 1 (syn. infectious laryngotracheitis virus; ILTV) is the causative agent of infectious laryngotracheitis, a respiratory disease of chickens causing substantial economic losses in the poultry industry every year. Currently, the most efficient way to achieve protection against infection is immunization with live-attenuated vaccines. However, this vaccination strategy entails the risk of generating new pathogenic viruses resulting from spontaneous mutations or from recombination with field strains. This work presents a new approach based on virus-like particles (VLPs) displaying ILTV glycoproteins B (gB) or G (gG) on their surface. The main focus of this pilot study was to determine the tolerability of VLPs delivered in ovo and intramuscularly (i.m.) into chickens and to investigate the nature of the immune response elicited. The study revealed that the new vaccines were well tolerated in hybrid layer chicks independent of the administration method (in ovo or i.m.). Upon in ovo injection, vaccination with VLP-gG led to an antibody response, while a cellular immune response in VLP-gB-immunized chickens was hardly detectable. Since the administration of VLPs had no visible side effects in vivo and was shown to elicit an antibody-based immune response, we anticipate that VLPs will become a valuable platform for the development of new safe vaccines for poultry.
Collapse
Affiliation(s)
- Julia Schädler
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte Sigrist
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simone M Meier
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nina Wolfrum
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Construction and Immunogenicity of Novel Chimeric Virus-Like Particles Bearing Antigens of Infectious Bronchitis Virus and Newcastle Disease Virus. Viruses 2019; 11:v11030254. [PMID: 30871190 PMCID: PMC6465995 DOI: 10.3390/v11030254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) are two poultry pathogens seriously affecting the poultry industry. Here, IBV S1 and the ectodomain of NDV F proteins were separately linked with the trans-membrane and carboxy-terminal domain of IBV S protein (STMCT), composing rS and rF; thus, a novel chimeric infectious bronchitis-Newcastle disease (IB-ND) virus-like particles (VLPs) vaccine containing the rS, rF, and IBV M protein was constructed. Under the transmission electron microscope (TEM), VLPs possessing similar morphology to natural IBV were observed. To evaluate the immunogenicity of chimeric IB-ND VLPs, specific pathogen-free (SPF) chickens were immunized with three increasing doses (50, 75, and 100 μg protein of VLPs). Results of ELISAs detecting IBV and NDV specific antibodies and IL-4 and IFN-γ T cell cytokines indicated that vaccination with chimeric IB-ND VLPs could efficiently induce humoral and cellular immune responses. In the challenge study, chimeric IB-ND VLPs (100 μg protein) provided 100% protection against IBV or NDV virulent challenge from death, and viral RNA levels in tissues and swabs were greatly reduced. Collectively, chimeric IB-ND VLPs are highly immunogenic and could provide complete protection from an IBV or NDV virulent challenge. Chimeric IB-ND VLPs are an appealing vaccine candidate and a promising vaccine platform bearing multivalent antigens.
Collapse
|
12
|
Shrestha A, Sadeyen JR, Iqbal M. Enhancing Protective Efficacy of Poultry Vaccines through Targeted Delivery of Antigens to Antigen-Presenting Cells. Vaccines (Basel) 2018; 6:E75. [PMID: 30445683 PMCID: PMC6313852 DOI: 10.3390/vaccines6040075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Avian viral diseases including avian influenza, Marek's disease and Newcastle disease are detrimental to economies around the world that depend on the poultry trade. A significant zoonotic threat is also posed by avian influenza viruses. Vaccination is an important and widely used method for controlling these poultry diseases. However, the current vaccines do not provide full protection or sterile immunity. Hence, there is a need to develop improved vaccines. The major aim of developing improved vaccines is to induce strong and specific humoral and cellular immunity in vaccinated animals. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to antigen-presenting cells (APCs) including dendritic cells, macrophages and B cells. APCs have a central role in the initiation and maintenance of immune responses through their ability to capture, process and present antigens to T and B cells. Vaccine technology that selectively targets APCs has been achieved by coupling antigens to monoclonal antibodies or ligands that are targeted by APCs. The aim of this review is to discuss existing strategies of selective delivery of antigens to APCs for effective vaccine development in poultry.
Collapse
Affiliation(s)
- Angita Shrestha
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK.
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, Surrey, UK.
| |
Collapse
|
13
|
Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018; 17:833-849. [PMID: 30173619 PMCID: PMC7103734 DOI: 10.1080/14760584.2018.1516552] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.
Collapse
Affiliation(s)
- Braeden Donaldson
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand.,b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Zabeen Lateef
- c Department of Pharmacology and Toxicology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Greg F Walker
- d School of Pharmacy , University of Otago , Dunedin , New Zealand
| | - Sarah L Young
- b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Vernon K Ward
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
14
|
Chimeric Newcastle disease virus-vectored vaccine protects chickens against H9N2 avian influenza virus in the presence of pre-existing NDV immunity. Arch Virol 2018; 163:3365-3371. [PMID: 30187143 DOI: 10.1007/s00705-018-4016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
Abstract
A chimeric Newcastle disease virus (NDV) vector (NDV/AI4-TFHN) was constructed with the replacement of the ectodomains of the fusion and hemagglutinin-neuraminidase proteins by those from avian paramyxovirus type 2. The chimeric virus induced high antibody response in chickens pre-immunized with NDV. A recombinant vaccine candidate, NDV/AI4-TFHN-H9, expressing the hemagglutinin of H9N2 avian influenza virus, was generated, on the basis of the chimeric NDV vector mentioned above. The NDV/AI4-TFHN-H9 vaccine elicited H9-specific hemagglutination inhibition antibodies in chickens pre-immunized with NDV vaccine, and reduced the numbers of chickens shedding virus after H9N2 challenge. NDV/AI4-TFHN-H9 could serve as an alternative vaccine for the prevention of H9N2 infection in commercial poultry flocks.
Collapse
|
15
|
Heinimäki S, Tamminen K, Malm M, Vesikari T, Blazevic V. Live baculovirus acts as a strong B and T cell adjuvant for monomeric and oligomeric protein antigens. Virology 2017; 511:114-122. [PMID: 28843813 DOI: 10.1016/j.virol.2017.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
Abstract
Recombinant proteins produced by baculovirus (BV) expression systems contain residual BV after crude purification. We studied adjuvant effect of BV on antibody and T cell responses against two model antigens, monomeric ovalbumin (OVA) protein and oligomeric norovirus (NoV) virus-like particles (VLPs). BALB/c mice were immunized intradermally with OVA alone or OVA formulated with live or inactivated BV, and VLP formulations comprised of chromatographically purified NoV GII.4 VLPs alone or mixed with BV, or of crude purified VLPs containing BV impurities from expression system. Live BV improved immunogenicity of NoV VLPs, sparing VLP dose up to 10-fold. Moreover, soluble OVA protein induced IgG2a antibodies and T cell response only when co-administered with live BV. BV adjuvant effect was completely abrogated by removal or inactivation of BV. These findings support the usage of crude purified proteins containing residual BV as vaccine antigens.
Collapse
Affiliation(s)
- Suvi Heinimäki
- Vaccine Research Center, University of Tampere, Finland.
| | - Kirsi Tamminen
- Vaccine Research Center, University of Tampere, Finland.
| | - Maria Malm
- Vaccine Research Center, University of Tampere, Finland.
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere, Finland.
| |
Collapse
|
16
|
Qian J, Ding J, Yin R, Sun Y, Xue C, Xu X, Wang J, Ding C, Yu S, Liu X, Hu S, Cong Y, Ding Z. Newcastle disease virus-like particles induce dendritic cell maturation and enhance viral-specific immune response. Virus Genes 2017; 53:555-564. [PMID: 28365829 DOI: 10.1007/s11262-017-1451-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/26/2017] [Indexed: 12/20/2022]
Abstract
Circulating of genotype VII Newcastle disease virus (NDV) is a great threat to the poultry industry worldwide. Virus-like particles (VLPs) are increasingly being considered as potential viral vaccines due to their safety and efficacy. In this study, we analyzed in vitro the stimulatory effects of VLPs containing the matrix and hemagglutinin-neuraminidase of genotype VII NDV on dendritic cells (DCs) and evaluated their immunogenicity in mice. The results showed that immature bone marrow-derived dendritic cells (BMDCs) responded to stimulation with VLPs by up-regulating expressions of MHC II, CD40, CD80, and CD86 molecules and by increasing the cytokine secretions of TNF-α, IFN-γ, IL-6, and IL-12p70. Besides, VLPs enhanced the immunostimulatory capacity of DCs to stimulate autologous T cell proliferation. Furthermore, VLPs can induce efficient humoral and cellular immune responses, and recruit mature DCs to the spleen in C57BL/6 mice, as shown by an obvious increase in double-positive proliferation of splenic CD11c+CD86+ cells. These data indicate that NDV VLPs can be a valuable candidate for NDV vaccine development.
Collapse
Affiliation(s)
- Jing Qian
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Yixue Sun
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Cong Xue
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Jianzhong Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Kostina LV, Zaberezhnyy AD, Grebennikova TV, Antipova NV, Aliper TI, Nepoklonov EA. Vaccines against avian influenza in poultry. Vopr Virusol 2017; 62:53-60. [PMID: 36494928 DOI: 10.18821/0507-4088-2017-62-2-53-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The review presents the latest data about the types of vaccines against avian influenza that are used in current medical practice or are under development. Inactivated whole virion vaccines, live vector vaccines, as well as experimental vaccines developed using genetic engineering techniques (e.g. subunit vaccines, VLP vaccines, DNA vaccines) were considered. The efficiency of influenza reverse genetic technology for the development of prototype vaccine strains was noted.
Collapse
Affiliation(s)
- L V Kostina
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | - A D Zaberezhnyy
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - T V Grebennikova
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | | | - T I Aliper
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - E A Nepoklonov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor)
| |
Collapse
|
18
|
Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy. J Virol 2017; 91:JVI.01693-16. [PMID: 28077631 DOI: 10.1128/jvi.01693-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses.IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses.
Collapse
|