1
|
Wu H, Chen J, Guo S, Deng J, Zhou Z, Zhang X, Qi T, Yu F, Yang Q. Advances in the acting mechanism and treatment of gut microbiota in metabolic dysfunction-associated steatotic liver disease. Gut Microbes 2025; 17:2500099. [PMID: 40394806 PMCID: PMC12101596 DOI: 10.1080/19490976.2025.2500099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease(MASLD) is increasing in prevalence worldwide and has become the greatest potential risk for cirrhosis and hepatocellular liver cancer. Currently, the role of gut microbiota in the development of MASLD has become a research hotspot. The development of MASLD can affect the homeostasis of gut microbiota, and significant changes in the composition or abundance of gut microbiota and its metabolite abnormalities can influence disease progression. The regulation of gut microbiota is an important strategy and novel target for the treatment of MASLD with good prospects. In this paper, we summarize the role of gut microbiota and its metabolites in the pathogenesis of MASLD, and describe the potential preventive and therapeutic efficacy of gut microbiota as a noninvasive marker to regulate the pathogenesis of MASLD based on the "gut-hepatic axis", which will provide new therapeutic ideas for the clinic.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Jingjing Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Shuyuan Guo
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jinhao Deng
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Zimeng Zhou
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Xuan Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - TianTian Qi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Spine Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qi Yang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Zhang J, Xu J, Yin J, Wang X, Qi Q, Wang Q. Design and Optimization of a Two-Component TorRST-Based Biosensor for Detection and Degradation of Trimethylamine N-Oxide. ACS Synth Biol 2025; 14:553-563. [PMID: 39788875 DOI: 10.1021/acssynbio.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In mammals, Trimethylamine N-oxide (TMAO) is involved in various physiological processes, and is considered a biomarker for multiple diseases. As a natural molecule found in marine organisms, TMAO is also an important indicator of seafood freshness. In this study, a TMAO biosensor was developed in Escherichia coli harnessing TorRST two-component system. By using a cascade amplification circuit based on HrpRS-PhrpL, the biosensor's dynamic range was increased from 4.1- to 10.3-fold. By optimizing the affinity between the regulatory protein TorR and DNA binding sites in promoters, the concentration for 50% of maximal effect (EC50) value was reduced from 1008 to 141 μM. The biosensor was successfully used for aquatic sample detection. By introducing an exogenous TMAO degradation pathway into E. coli Nissle 1917, a probiotic chassis capable of TMAO detection, transportation, and degradation was constructed, providing an effective tool for rapid detection of TMAO and prevention of multiple diseases.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jianping Xu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Jinyan Yin
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiaotong Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qian Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Mi L, Wang Y, Jiang J, Hu Y. Meta-analysis of the effects of probiotics on hyperlipidemia. Curr Res Food Sci 2024; 9:100885. [PMID: 39469722 PMCID: PMC11513789 DOI: 10.1016/j.crfs.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Background The potential role of probiotics in mitigating hyperlipidemia has garnered increasing evidence, yet the specific mechanisms warrant further investigation. Objective This study aimed to examine the alterations in short-chain fatty acids (SCFAs), a hypothesized lipid-lowering mechanism of probiotics, in animal models and to evaluate the lipid-lowering effects of probiotics on hyperlipidemic animal models through a meta-analysis of preclinical experiments. Methods: A comprehensive search of PubMed, Web of Science, EMBASE, Cochrane Library and Google Scholar up to June 2024 yielded nine studies that met the inclusion criteria (INPLASY registration number: No. CRD42024559937). Result The analysis revealed that mice receiving probiotics exhibited a significant increase in SCFA levels compared with control mice (acetic acid: standard mean difference [SMD] = 1.26, 95% confidence interval [CI] 0.80 to 1.72, P < 0.00001, I2 = 28%; propionic acid: SMD = 1.99, 95% CI 1.47 to 2.51; butyric acid: SMD = 0.66, 95% CI 0.04 to 1.28, P = 0.04, I2 = 22%; acetate: SMD = 4.5, 95% CI 3.57 to 5.42, P < 0.00001, I2 = 48%; propionate: SMD = 0.76, 95% CI 0.37 to 1.15, P = 0.0002, I2 = 44%; butyrate: SMD = 2.8, 95% CI 2.18 to 3.41, P < 0.00001, I2 = 26%). Additionally, probiotic consumption reduced markers of oxidation and inflammation as well as liver damage enzymes. Conclusion The findings from this meta-analysis suggest that probiotics can enhance SCFA content in the body, decrease lipid levels in animals, improve oxidative stress and inflammation, reduce liver damage, and effectively alleviate hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Mi
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yinzhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
6
|
Hu M, Zhang T, Miao M, Li K, Luan Q, Sun G. Expectations for employing Escherichia coli Nissle 1917 in food science and nutrition. Crit Rev Food Sci Nutr 2024; 65:1802-1810. [PMID: 38189668 DOI: 10.1080/10408398.2023.2301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As a promising probiotic strain, Escherichia coli Nissle 1917 (EcN) has been demonstrated to confer beneficial effects on intestinal health, immune function, and pathogen prevention. Additionally, EcN has also been widely studied due to its clear genomic information, tractable gene regulation, and simple growth conditions. This review summarizes the various applications potential of EcN in food science and nutrition, including inflammation prevention, tumor-targeting therapy, antibacterial agents for food, and nutrient production with a focus on specific case studies. Moreover, we highlight the major challenges of employing EcN in food science and nutrition, including regulatory approval, stability during food processing, and consumer acceptance. Finally, we conclude with a discussion on perspectives related to employing EcN in food science and nutrition.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| | - Qingmin Luan
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| |
Collapse
|
7
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
8
|
Arcidiacono S, Spangler JR, Litteral V, Doherty LA, Stamps B, Walper S, Goodson M, Soares JW. In Vitro Fermentation Evaluation of Engineered Sense and Respond Probiotics in Polymicrobial Communities. ACS Biomater Sci Eng 2023; 9:5176-5185. [PMID: 37642529 DOI: 10.1021/acsbiomaterials.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Synthetic biology provides a means of engineering tailored functions into probiotic bacteria. Of particular interest is introducing microbial sense and response functions; however, techniques for testing in physiologically relevant environments, such as those for the intended use, are still lacking. Typically, engineered probiotics are developed and tested in monoculture or in simplified cocultures still within ideal environments. In vitro fermentation models using simplified microbial communities now allow us to simulate engineered organism behavior, specifically organism persistence and intended functionality, within more physiologically relevant, tailored microbial communities. Here, probiotic bacteria Escherichia coli Nissle and Lactobacillus plantarum engineered with sense and response functionalities were evaluated for the ability to persist and function without adverse impact on commensal bacteria within simplified polymicrobial communities with increasing metabolic competition that simulate gut microbe community dynamics. Probiotic abundance and plasmid stability, measured by viability qPCR, decreased for engineered E. coli Nissle relative to monocultures as metabolic competition increased; functional output was not affected. For engineered L. plantarum, abundance and plasmid stability were not adversely impacted; however, functional output was decreased universally as metabolic competition was introduced. For both organisms, adverse effects on select commensals were not evident. Testing engineered probiotics in more physiologically relevant in vitro test beds can provide critical knowledge for circuit design feedback and functional validation prior to the transition to more costly and time-consuming higher-fidelity testing in animal or human studies.
Collapse
Affiliation(s)
- Steven Arcidiacono
- Soldier Effectiveness Directorate, US Army DEVCOM Soldier Center, Natick, Massachusetts 01760, United States
| | - Joseph R Spangler
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C.20375, United States
| | - Vaughn Litteral
- UES Inc, US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Laurel A Doherty
- Soldier Effectiveness Directorate, US Army DEVCOM Soldier Center, Natick, Massachusetts 01760, United States
| | - Blake Stamps
- 711th Human Performance Wing, US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Scott Walper
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C.20375, United States
| | - Michael Goodson
- 711th Human Performance Wing, US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Jason W Soares
- Soldier Effectiveness Directorate, US Army DEVCOM Soldier Center, Natick, Massachusetts 01760, United States
| |
Collapse
|
9
|
van ‘t Hof M, Mohite OS, Monk JM, Weber T, Palsson BO, Sommer MOA. High-quality genome-scale metabolic network reconstruction of probiotic bacterium Escherichia coli Nissle 1917. BMC Bioinformatics 2022; 23:566. [PMID: 36585633 PMCID: PMC9801561 DOI: 10.1186/s12859-022-05108-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation. RESULTS An updated high-quality genome-scale metabolic model of EcN, iHM1533, was developed based on comparison with 55 E. coli/Shigella reference GEMs and manual curation, including expanded secondary metabolite pathways (enterobactin, salmochelins, aerobactin, yersiniabactin, and colibactin). The model was validated and improved using phenotype microarray data, resulting in an 82.3% accuracy in predicting growth phenotypes on various nutrition sources. Flux variability analysis with previously published 13C fluxomics data validated prediction of the internal central carbon fluxes. A standardised test suite called Memote assessed the quality of iHM1533 to have an overall score of 89%. The model was applied by using constraint-based flux analysis to predict targets for optimisation of secondary metabolite production. Modelling predicted design targets from across amino acid metabolism, carbon metabolism, and other subsystems that are common or unique for influencing the production of various secondary metabolites. CONCLUSION iHM1533 represents a well-annotated metabolic model of EcN with extended secondary metabolite representation. Phenotype characterisation and the iHM1533 model provide a better understanding of the metabolic capabilities of EcN and will help future metabolic engineering efforts.
Collapse
Affiliation(s)
- Max van ‘t Hof
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Omkar S. Mohite
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan M. Monk
- grid.266100.30000 0001 2107 4242Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Tilmann Weber
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bernhard O. Palsson
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark ,grid.266100.30000 0001 2107 4242Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Morten O. A. Sommer
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Barati M, Jabbari M, Abdi Ghavidel A, Nikmehr P, Arzhang P, Aynehchi A, Babashahi M, Mosharkesh E, Roshanravan N, Shabani M, Davoodi SH. The engineered probiotics for the treatment of chronic diseases: A systematic review. J Food Biochem 2022; 46:e14343. [PMID: 35880960 DOI: 10.1111/jfbc.14343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Engineered probiotics (EPs) are a group of probiotics whose proteome is manipulated by biotechnological techniques. EPs have attracted a lot of attention in recent researches for preventing and treating chronic diseases. The current study has been conducted to provide an overview regarding the EPs application in the treatment of chronic disease by a comprehensive systematic review of the published articles up to January 2022. To retrieve the related publications, three databases (PubMed/MEDLINE, Web of Sciences, and Scopus) were searched systematically. Finally, all human (n = 2) and animal (n = 37) studies were included. The included articles evaluated the effects of EPs on treatment of arthritis (n = 3), cancer (n = 2), autoimmune encephalomyelitis (EAE; n = 6), Parkinson disease (PD; n = 1), Alzheimer diseases (AD; n = 1), colitis (n = 11), celiac disease (n = 1), diabetes (n = 8) and cardiovascular disease (CVD; n = 6). Induction of oral tolerance (OT) is the most important mechanism of EPs action in the treatment of chronic disease. Providing oral vaccine and bioactive compounds are the other mechanisms of EPs action. PRACTICAL APPLICATIONS: The current systematic review gathered evidence about the application of EPs in the treatment of chronic diseases. Evidence suggests that EPs have very broad and potent effects in the treatment of chronic and even genetic diseases.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Abdi Ghavidel
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Nikmehr
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aydin Aynehchi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Babashahi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Mosharkesh
- Collage of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
12
|
Chiang CJ, Chao YP, Ali A, Day CH, Ho TJ, Wang PN, Lin SC, Padma VV, Kuo WW, Huang CY. Probiotic Escherichia coli Nissle inhibits IL-6 and MAPK-mediated cardiac hypertrophy during STZ-induced diabetes in rats. Benef Microbes 2021; 12:283-293. [PMID: 34030609 DOI: 10.3920/bm2020.0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escherichia coli Nissle (EcN), a probiotic bacterium protects against several disorders. Multiple reports have studied the pathways involved in cardiac hypertrophy. However, the effects of probiotic EcN against diabetes-induced cardiac hypertrophy remain to be understood. We administered five weeks old Wistar male (271±19.4 g body weight) streptozotocin-induced diabetic rats with 109 cfu of EcN via oral gavage every day for 24 days followed by subjecting the rats to echocardiography to analyse the cardiac parameters. Overexpressed interleukin (IL)-6 induced the MEK5/ERK5, JAK2/STAT3, and MAPK signalling cascades in streptozotocin-induced diabetic rats. Further, the upregulation of calcineurin, NFATc3, and p-GATA4 led to the elevation of hypertrophy markers, such as atrial and B-type natriuretic peptides. In contrast, diabetic rats supplemented with probiotic EcN exhibited significant downregulated IL-6. Moreover, the MEK5/ERK5 and JAK2/STAT3 cascades involved during eccentric hypertrophy and MAPK signalling, including phosphorylated MEK, ERK, JNK, and p-38, were significantly attenuated in diabetic rats after supplementation of EcN. Western blotting and immunofluorescence revealed the significant downregulation of NFATc3 and downstream mediators, thereby resulting in the impairment of cardiac hypertrophy. Taken together, the findings demonstrate that supplementing probiotic EcN has the potential to show cardioprotective effects by inhibiting diabetes-induced cardiomyopathies.
Collapse
Affiliation(s)
- C J Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Y P Chao
- Department of Chemical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - A Ali
- Department of Biological Science and Technology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - C H Day
- Department of Nursing, MeiHo University, 23, Pingguang Rd., Neipu, Pingtung 912, Taiwan
| | - T J Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707 Section 3 Chung-Yang Road, Hualien 97002, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, 701 Jhongyang Road Section 3, Hualien 97004, Taiwan
| | - P N Wang
- Department of Chemical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - S C Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - V V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - W W Kuo
- Department of Biological Science and Technology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - C Y Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.,Department of Biotechnology, Asia University, 500 Liufeng Rd., Wufeng, 41354 Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
13
|
Kelly VW, Liang BK, Sirk SJ. Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synth Biol 2020; 9:3184-3201. [PMID: 33205966 DOI: 10.1021/acssynbio.0c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern medicine has long studied the mechanism and impact of pathogenic microbes on human hosts, but has only recently shifted attention toward the complex and vital roles that commensal and probiotic microbes play in both health and dysbiosis. Fueled by an enhanced appreciation of the human-microbe holobiont, the past decade has yielded countless insights and established many new avenues of investigation in this area. In this review, we discuss advances, limitations, and emerging frontiers for microbes as agents of health maintenance, disease prevention, and cure. We highlight the flexibility of microbial therapeutics across disease states, with special consideration for the rational engineering of microbes toward precision medicine outcomes. As the field advances, we anticipate that tools of synthetic biology will be increasingly employed to engineer functional living therapeutics with the potential to address longstanding limitations of traditional drugs.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin K. Liang
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Kang M, Choe D, Kim K, Cho BK, Cho S. Synthetic Biology Approaches in The Development of Engineered Therapeutic Microbes. Int J Mol Sci 2020; 21:ijms21228744. [PMID: 33228099 PMCID: PMC7699352 DOI: 10.3390/ijms21228744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Since the intimate relationship between microbes and human health has been uncovered, microbes have been in the spotlight as therapeutic targets for several diseases. Microbes contribute to a wide range of diseases, such as gastrointestinal disorders, diabetes and cancer. However, as host-microbiome interactions have not been fully elucidated, treatments such as probiotic administration and fecal transplantations that are used to modulate the microbial community often cause nonspecific results with serious safety concerns. As an alternative, synthetic biology can be used to rewire microbial networks such that the microbes can function as therapeutic agents. Genetic sensors can be transformed to detect biomarkers associated with disease occurrence and progression. Moreover, microbes can be reprogrammed to produce various therapeutic molecules from the host and bacterial proteins, such as cytokines, enzymes and signaling molecules, in response to a disturbed physiological state of the host. These therapeutic treatment systems are composed of several genetic parts, either identified in bacterial endogenous regulation systems or developed through synthetic design. Such genetic components are connected to form complex genetic logic circuits for sophisticated therapy. In this review, we discussed the synthetic biology strategies that can be used to construct engineered therapeutic microbes for improved microbiome-based treatment.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| |
Collapse
|
15
|
Bai Y, Mansell TJ. Production and Sensing of Butyrate in a Probiotic Escherichia coli Strain. Int J Mol Sci 2020; 21:ijms21103615. [PMID: 32443851 PMCID: PMC7279287 DOI: 10.3390/ijms21103615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The short-chain fatty acid butyrate plays critical roles in human gut health, affecting immunomodulation, cell differentiation, and apoptosis, while also serving as the preferred carbon source for colon cells. In this work, we have engineered a model probiotic organism, Escherichia coli Nissle 1917 (EcN, serotype O6:K5:H1), to produce butyrate from genomic loci up to approximately 1 g/L (11 mM). Then, for real-time monitoring of butyrate production in cultures, we developed a high-throughput biosensor that responds to intracellular butyrate concentrations, with green fluorescent protein as the reporter. This work provides a foundation for studies of butyrate for therapeutic applications.
Collapse
|
16
|
Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 2020; 11:1738. [PMID: 32269218 PMCID: PMC7142098 DOI: 10.1038/s41467-020-15508-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/29/2022] Open
Abstract
A complex interplay of metabolic and immunological mechanisms underlies many diseases that represent a substantial unmet medical need. There is an increasing appreciation of the role microbes play in human health and disease, and evidence is accumulating that a new class of live biotherapeutics comprised of engineered microbes could address specific mechanisms of disease. Using the tools of synthetic biology, nonpathogenic bacteria can be designed to sense and respond to environmental signals in order to consume harmful compounds and deliver therapeutic effectors. In this perspective, we describe considerations for the design and development of engineered live biotherapeutics to achieve regulatory and patient acceptance. The role microbes play in human health and the ability of synthetic biology to engineer microbial properties opens up new ways of treating disease. In this perspective, the authors describe the design and development of these living therapeutics.
Collapse
|
17
|
Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, Reeder PJ, Momin MM, Bergeron CG, Guilmain SE, Miller PF, Kurtz CB, Falb D. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 2018; 36:857-864. [DOI: 10.1038/nbt.4222] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 07/20/2018] [Indexed: 01/01/2023]
|
18
|
Danchin A. Bacteria in the ageing gut: did the taming of fire promote a long human lifespan? Environ Microbiol 2018; 20:1966-1987. [PMID: 29727052 DOI: 10.1111/1462-2920.14255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unique among animals as they evolved towards Homo sapiens, hominins progressively cooked their food on a routine basis. Cooked products are characterized by singular chemical compounds, derived from the pervasive Maillard reaction. This same reaction is omnipresent in normal metabolism involving carbonyls and amines, and its products accumulate with age. The gut microbiota acts as a first line of defence against the toxicity of cooked Maillard compounds, that also selectively shape the microbial flora, letting specific metabolites to reach the blood stream. Positive selection of metabolic functions allowed the body of hominins who tamed fire to use and dispose of these age-related compounds. I propose here that, as a hopeful accidental consequence, this resulted in extending human lifespan far beyond that of our great ape cousins. The limited data exploring the role of taming fire on the human genetic setup and on its microbiota is discussed in relation with ageing.
Collapse
Affiliation(s)
- Antoine Danchin
- Integromics, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, Paris, 75013, France.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
19
|
Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017; 56:6615-6625. [DOI: 10.1021/acs.biochem.7b01185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kazuhiro Saihara
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Ryosuke Kamikubo
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuto Ikemoto
- Niigata
Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata 950-3112, Japan
| | - Koji Uchida
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mitsugu Akagawa
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
20
|
Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW. Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 2017; 40:8-16. [PMID: 28478369 DOI: 10.1016/j.cbpa.2017.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022]
Abstract
Various studies have shown the beneficial effects of probiotics in humans. The use of synthetic biology to engineer programmable probiotics that specifically targets cancer, infectious agents, or other metabolic diseases has gained much interest since the last decade. Developments made in synthetic probiotics as therapeutics within the last three years will be discussed in this review.
Collapse
Affiliation(s)
- Koon Jiew Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Wee Chiew Kwok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Nikhil Aggarwal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Tao Sun
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore.
| |
Collapse
|
21
|
Genetically engineered Escherichia coli Nissle 1917 synbiotic counters fructose-induced metabolic syndrome and iron deficiency. Appl Microbiol Biotechnol 2017; 101:4713-4723. [DOI: 10.1007/s00253-017-8207-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
|