1
|
Nierves LA, Lin TT, Moradian A, Shen Q, Sechi S, MacCoss MJ, Qu J, van Eyk JE, Hoofnagle AN, Qian WJ. Biomarkers, Proteoforms, and Mass Spectrometry-Based Assays for Diabetes Clinical Research. J Clin Endocrinol Metab 2025; 110:1514-1523. [PMID: 40056450 DOI: 10.1210/clinem/dgaf159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/10/2025]
Abstract
The prevalence of diabetes, particularly type 2 diabetes, has reached epidemic proportions globally. The number of patients with type 1 diabetes (T1D) is also increasing rapidly. Despite advancements in understanding the pathogenesis of diabetes, the lack of circulating pancreatic biomarkers and reliable clinical-grade assays remains a major gap in diabetes research, often hindering the ability to adequately assess disease progression and therapeutic responses. This mini-review discusses emerging pancreatic biomarkers, with an emphasis on T1D, the limitations of current immunoassays, and the expanding role of mass spectrometry-based assays. Highlights include the recent work within the NIDDK-funded "Targeted Mass Spectrometry Assays for Diabetes and Obesity Research (TaMADOR)" consortium, which aims to develop robust, quantitative, and transferable assays for translational research. The review also emphasizes the importance of proteoform-specific assays for monitoring pancreatic function, including prohormone processing during disease progression or in responses to therapy.
Collapse
Affiliation(s)
- Lorenz A Nierves
- Translational Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tai-Tu Lin
- Translational Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Annie Moradian
- Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qingqing Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer E van Eyk
- Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Wei-Jun Qian
- Translational Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
2
|
Apaolaza PS, Chen YC, Grewal K, Lurz Y, Boulassel S, Verchere CB, Rodriguez-Calvo T. Quantitative analysis of islet prohormone convertase 1/3 expression in human pancreas donors with diabetes. Diabetologia 2024; 67:2771-2785. [PMID: 39404844 PMCID: PMC11604696 DOI: 10.1007/s00125-024-06275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Islet prohormone-processing enzymes convert peptide hormone precursors to mature hormones. Defective beta cell prohormone processing and the release of incompletely processed peptide hormones are observed prior to the onset of diabetes, yet molecular mechanisms underlying impaired prohormone processing during the development of diabetes remains largely unknown. Previous studies have shown that prohormone convertase 1/3 (PC1/3) protein and mRNA expression levels are reduced in whole islets from donors with type 1 diabetes, although whether PC1/3-mediated prohormone processing in alpha and beta cells is disrupted in type 1 diabetes remained to be explored. Herein, we aimed to analyse the expression of PC1/3 in islets from non-diabetic donors, autoantibody-positive donors and donors diagnosed with type 1 diabetes or type 2 diabetes. METHODS Immunostaining and high-dimensional image analysis were performed on pancreatic sections from a cross-sectional cohort of 54 donors obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD) repository, to evaluate PC1/3 expression patterns in islet alpha, beta and delta cells at different stages of diabetes. RESULTS Alpha and beta cell morphology were altered in donors with type 1 diabetes, including decreased alpha and beta cell size. As expected, the insulin-positive and PC1/3-positive areas in the islets were both reduced, and this was accompanied by a reduced percentage of PC1/3-positive and insulin-positive/PC1/3-positive cells in islets. PC1/3 and insulin co-localisation was also reduced. The glucagon-positive area, as well as the percentage of glucagon-positive and glucagon-positive/PC1/3-positive cells in islets, was increased. PC1/3 and glucagon co-localisation was also increased in donors with type 1 diabetes. The somatostatin-positive cell area and somatostatin staining intensity were elevated in islets from donors with recent-onset type 1 diabetes. CONCLUSIONS/INTERPRETATION Our high-resolution histomorphological analysis of human pancreatic islets from donors with and without diabetes has uncovered details of the cellular origin of islet prohormone peptide processing defects. Reduced beta cell PC1/3 and increased alpha cell PC1/3 in islets from donors with type 1 diabetes pinpointed the functional deterioration of beta cells and the concomitant potential increase in PC1/3 usage for prohormone processing in alpha cells during the pathogenesis of type 1 diabetes. Our finding of PC1/3 loss in beta cells may inform the discovery of new prohormone biomarkers as indicators of beta cell dysfunction, and the finding of elevated PC1/3 expression in alpha cells may encourage the design of therapeutic targets via leveraging alpha cell adaptation in diabetes.
Collapse
Affiliation(s)
- Paola S Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kavi Grewal
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yannik Lurz
- Technical University of Munich, Munich, Germany
| | - Severin Boulassel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| |
Collapse
|
3
|
Sims EK, Geyer SM, Long SA, Herold KC. High proinsulin:C-peptide ratio identifies individuals with stage 2 type 1 diabetes at high risk for progression to clinical diagnosis and responses to teplizumab treatment. Diabetologia 2023; 66:2283-2291. [PMID: 37667106 PMCID: PMC10914155 DOI: 10.1007/s00125-023-06003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
AIMS/HYPOTHESIS Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan M Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Desouter AK, Keymeulen B, Demeester S, Van de Velde U, De Pauw P, Van Dalem A, Lapauw B, De Block C, Gillard P, Pipeleers DG, Gorus FK. Baseline plasma proinsulin response to glucose for predicting therapeutic response to otelixizumab in recent-onset type 1 diabetes. Diabetes Res Clin Pract 2023; 205:110974. [PMID: 37884063 DOI: 10.1016/j.diabres.2023.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIMS In recent-onset type 1 diabetes, clamp-derived C-peptide predicts good response to anti-CD3. Elevated proinsulin and proinsulin/C-peptide ratio (PI/CP) suggest increased metabolic/inflammatory beta cell burden. We reanalyzed trial data to compare the ability of baseline acutely glucose-stimulated proinsulin, C-peptide and PI/CP to predict functional outcome. METHODS Eighty recent-onset type 1 diabetes patients participated in the placebo-controlled otelixizumab (GSK; NCT00627146) trial. Hyperglycemic clamps were performed at baseline, 6, 12 and 18 months, involving 3 h of induced euglycemia, followed by acutely raising and maintaining glycemia to ≥ 10 mmol/l for 140 min. Plasma proinsulin, C-peptide and PI/CP were determined after acute (minute 0 at 10 mmol/l; PI0, CP0, PI/CP0) and sustained glucose stimulation (AUC between minutes 60-140). Outcome was assessed as change in AUC60-140 C-peptide from baseline. RESULTS In multiple linear regression, higher baseline (≥median [P50]) PI0 independently predicted preservation of beta cell function in response to anti-CD3 and interacted significantly with IAA. During follow-up, anti-CD3 tempered a further increase in PI/CP0, but not in PI0. CP0 outperformed PI0 and PI/CP0 for post-treatment monitoring. CONCLUSIONS In recent-onset type 1 diabetes, elevated acutely glucose-stimulated proinsulin may complement or replace acutely or sustainedly stimulated C-peptide release for identifying good responders to anti-CD3, but not as outcome measure.
Collapse
Affiliation(s)
- Aster K Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Pieter De Pauw
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent-UGent, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, University of Antwerp-Antwerp University Hospital, Drie Eikestraat 655, 2650 Edegem, Belgium.
| | - Pieter Gillard
- Department of Endocrinology, University Hospital Leuven-KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
5
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
6
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Rodriguez-Calvo T, Chen YC, Verchere CB, Haataja L, Arvan P, Leete P, Richardson SJ, Morgan NG, Qian WJ, Pugliese A, Atkinson M, Evans-Molina C, Sims EK. Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes 2021; 70:1038-1050. [PMID: 33947721 PMCID: PMC8173804 DOI: 10.2337/dbi20-0034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Analysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Pia Leete
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah J Richardson
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, Diabetes Institute, University of Florida, Gainesville, FL
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Departments of Cellular and Integrative Physiology, Medicine, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Emerging data have suggested that β-cell dysfunction may exacerbate the development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and suggest agents that may promote β-cell health in T1D. RECENT FINDINGS Metabolic abnormalities exist years before development of hyperglycemia and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but most remain to be tested in human populations with preclinical disease. SUMMARY This cumulative body of work shows clear evidence that β-cell stress, dysfunction, and death are harbingers of impending T1D and likely contribute to progression of disease and insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with immunomodulatory therapies but will need to be tested in intervention studies with endpoints carefully designed to capture changes in β-cell function and health.
Collapse
Affiliation(s)
- Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
9
|
Tong Y, Yang L, Shao F, Yan X, Li X, Huang G, Xiao Y, Zhou Z. Distinct secretion pattern of serum proinsulin in different types of diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:452. [PMID: 32395496 PMCID: PMC7210169 DOI: 10.21037/atm.2020.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Latent autoimmune diabetes in adults (LADA) is characterized by autoimmunity, late-onset and intermediate beta-cell deprivation rate between type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Herein, we investigated proinsulin (PI) secretion patterns and the endoplasmic reticulum (ER) dysfunction biomarker, PI-to-C-peptide (PI:CP) ratio, to elucidate beta-cell intrinsic pathogenesis mechanisms in different types of diabetes. Methods Total serum fasting PI (FPI) were measured in adult-onset and newly-diagnosed diabetes patients, including 60 T1DM, 60 LADA and 60 T2DM. Thirty of each type underwent mixed meal tolerance tests (MMTTs), and hence 120 min postprandial PI (PPI) were detected. PI:CP ratio = PI (pmol/L) ÷ CP (pmol/L) × 100%. PI-related measurements among types of diabetes were compared. Correlation between PI-related measurements and beta-cell autoimmunity were analyzed. The possibility of discriminating LADA from T1DM and T2DM with PI-related measurements were tested. Results FPI and PPI were significantly higher in LADA than T1DM (P<0.001 for both comparisons), but lower than those in T2DM (P<0.001 and P=0.026, respectively). Fasting PI:CP ratio was significantly higher in T1DM than both LADA and T2DM (median 3.25% vs. 2.13% and 2.32%, P=0.011 and P=0.017, respectively). In LADA, positive autoantibody numbers increased by both fasting and postprandial PI:CP ratio (P=0.007 and P=0.034, respectively). Areas under receiver operation characteristic curves (AUCROC) of FPI and PPI for discriminating LADA from adult-onset T1DM were 0.751 (P<0.001) and 0.838 (P<0.001), respectively. Between LADA and T2DM, AUCROC of FPI and PPI were 0.685 (P<0.001) and 0.741 (P=0.001), respectively. Conclusions In the development of autoimmune diabetes, interplays between ER stress and beta-cell autoimmunity are potentially responsible for severer beta-cell destruction. PI-related measurements could help in differentiating LADA from adult-onset T1DM and T2DM.
Collapse
Affiliation(s)
- Yue Tong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Feng Shao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| |
Collapse
|
10
|
Speake C, Skinner SO, Berel D, Whalen E, Dufort MJ, Young WC, Odegard JM, Pesenacker AM, Gorus FK, James EA, Levings MK, Linsley PS, Akirav EM, Pugliese A, Hessner MJ, Nepom GT, Gottardo R, Long SA. A composite immune signature parallels disease progression across T1D subjects. JCI Insight 2019; 4:126917. [PMID: 31671072 PMCID: PMC6962023 DOI: 10.1172/jci.insight.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Samuel O. Skinner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Dror Berel
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Whalen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew J. Dufort
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William Chad Young
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M. Odegard
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anne M. Pesenacker
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Frans K. Gorus
- Diabetes Research Center, Medical School and University Hospital (UZ Brussel), Brussels Free University Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Megan K. Levings
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Eitan M. Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York, USA
- Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Immune Tolerance Network, Bethesda, Maryland, USA
| | - Raphael Gottardo
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
11
|
Alexandre-Heymann L, Mallone R, Boitard C, Scharfmann R, Larger E. Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord 2019; 20:129-149. [PMID: 31077020 DOI: 10.1007/s11154-019-09501-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last 10 years, several studies have shown that the pancreas of patients with type 1 diabetes (T1D), and even of subjects at risk for T1D, was smaller than the pancreas from healthy subjects. This arose the question of the relationships between the endocrine and exocrine parts of the pancreas in T1D pathogenesis. Our review underlines that histological anomalies of the exocrine pancreas are common in patients with T1D: intralobular and interacinar fibrosis, acinar atrophy, fatty infiltration, leucocytic infiltration, and pancreatic arteriosclerosis are all frequent observations. Moreover, 25% to 75% of adult patients with T1D present with pancreatic exocrine dysfunction. Our review summarizes the putative causal factors for these structural and functional anomalies, including: 1/ alterations of insulin, glucagon, somatostatin and pancreatic polypeptide secretion, 2/ global pancreatic inflammation 3/ autoimmunity targeting the exocrine pancreas, 4/ vascular and neural abnormalities, and 5/ the putative involvement of pancreatic stellate cells. These observations have also given rise to new theories on T1D: the primary event of T1D pathogenesis could be non-specific, e.g bacterial or viral or chemical, resulting in global pancreatic inflammation, which in turn could cause beta-cell predominant destruction by the immune system. Finally, this review emphasizes that it is advisable to evaluate pancreatic exocrine function in patients with T1D presenting with gastro-intestinal complaints, as a clinical trial has shown that pancreatic enzymes replacement therapy can reduce the frequency of hypoglycemia and thus might improve quality of life in subjects with T1D and exocrine failure.
Collapse
Affiliation(s)
- Laure Alexandre-Heymann
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Roberto Mallone
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Christian Boitard
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Raphaël Scharfmann
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Etienne Larger
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France.
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France.
| |
Collapse
|
12
|
Sims EK, Evans-Molina C, Tersey SA, Eizirik DL, Mirmira RG. Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia 2018; 61:2259-2265. [PMID: 30112687 PMCID: PMC6160346 DOI: 10.1007/s00125-018-4712-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Recent work on the pathogenesis of type 1 diabetes has led to an evolving recognition of the heterogeneity of this disease, both with regards to clinical phenotype and responses to therapies to prevent or revert diabetes. This heterogeneity not only limits efforts to accurately predict clinical disease but also is reflected in differing responses to immunomodulatory therapeutics. Thus, there is a need for robust biomarkers of beta cell health, which could provide insight into pathophysiological differences in disease course, improve disease prediction, increase the understanding of therapeutic responses to immunomodulatory interventions and identify individuals most likely to benefit from these therapies. In this review, we outline current literature, limitations and future directions for promising circulating markers of beta cell stress and death in type 1 diabetes, including markers indicating abnormal prohormone processing, circulating RNAs and circulating DNAs.
Collapse
Affiliation(s)
- Emily K Sims
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, US Department of Veterans Affairs, Indianapolis, IN, USA
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Balke EM, Demeester S, Lee D, Gillard P, Hilbrands R, Van de Velde U, Van der Auwera BJ, Ling Z, Roep BO, Pipeleers DG, Keymeulen B, Gorus FK. SLC30A8 polymorphism and BMI complement HLA-A*24 as risk factors for poor graft function in islet allograft recipients. Diabetologia 2018; 61:1623-1632. [PMID: 29679103 DOI: 10.1007/s00125-018-4609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
AIMS/HYPOTHESIS HLA-A*24 carriership hampers achievement of insulin independence in islet allograft recipients. However, less than half of those who fail to achieve insulin independence carry the allele. We investigated whether genetic polymorphism at the recipients' zinc transporter 8-encoding SLC30A8 gene (rs13266634) could complement their HLA-A*24 status in predicting functional graft outcome. METHODS We retrospectively analysed data of a hospital-based patient cohort followed for 18 months post transplantation. Forty C-peptide-negative type 1 diabetic individuals who received >2 million beta cells (>4000 islet equivalents) per kg body weight in one or two intraportal implantations under similar immunosuppression were genotyped for SLC30A8. Outcome measurements included achievement and maintenance of graft function. Metabolic benefit was defined as <25% CV of fasting glycaemia in the presence of >331 pmol/l C-peptide, in addition to achievement of insulin independence and maintenance of C-peptide positivity. RESULTS In multivariate analysis, HLA-A*24 positivity, presence of SLC30A8 CT or TT genotypes and BMI more than or equal to the group median (23.9 kg/m2) were independently associated with failure to achieve insulin independence (p = 0.015-0.046). The risk increased with the number of factors present (p < 0.001). High BMI interacted with SLC30A8 T allele carriership to independently predict difficulty in achieving graft function with metabolic benefit (p = 0.015). Maintenance of C-peptide positivity was mainly associated with older age at the time of implantation. Only HLA-A*24 carriership independently predicted failure to maintain acceptable graft function once achieved (p = 0.012). CONCLUSIONS/INTERPRETATION HLA-A*24, the SLC30A8 T allele and high BMI are associated with poor graft outcome and should be considered in the interpretation of future transplantation trials. TRIAL REGISTRATION ClinicalTrials.gov NCT00798785 and NCT00623610.
Collapse
Affiliation(s)
- Else M Balke
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - DaHae Lee
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Gillard
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Bart J Van der Auwera
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Bart O Roep
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Daniël G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
15
|
Van Dalem A, Demeester S, Balti EV, Keymeulen B, Gillard P, Lapauw B, De Block C, Abrams P, Weber E, Vermeulen I, De Pauw P, Pipeleers D, Weets I, Gorus FK. Correction: Prediction of Impending Type 1 Diabetes through Automated Dual-Label Measurement of Proinsulin:C-Peptide Ratio. PLoS One 2017; 12:e0179108. [PMID: 28570714 PMCID: PMC5453615 DOI: 10.1371/journal.pone.0179108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|