1
|
Schmidt J, Brandenburg V, Elders H, Shahzad S, Schäkermann S, Fiedler R, Knoke L, Pfänder Y, Dietze P, Bille H, Gärtner B, Albin L, Leichert L, Bandow J, Hofmann E, Narberhaus F. Two redox-responsive LysR-type transcription factors control the oxidative stress response of Agrobacterium tumefaciens. Nucleic Acids Res 2025; 53:gkaf267. [PMID: 40193708 PMCID: PMC11975290 DOI: 10.1093/nar/gkaf267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pathogenic bacteria often encounter fluctuating reactive oxygen species (ROS) levels, particularly during host infection, necessitating robust redox-sensing mechanisms for survival. The LysR-type transcriptional regulator (LTTR) OxyR is a widely conserved bacterial thiol-based redox sensor. However, members of the Rhizobiales also encode LsrB, a second LTTR with potential redox-sensing function. This study explores the roles of OxyR and LsrB in the plant-pathogen Agrobacterium tumefaciens. Through single and combined deletions, we observed increased H2O2 sensitivity, underscoring their function in oxidative defense. Genome-wide transcriptome profiling under H2O2 exposure revealed that OxyR and LsrB co-regulate key antioxidant genes, including katG, encoding a bifunctional catalase/peroxidase. Agrobacterium tumefaciens LsrB possesses four cysteine residues potentially involved in redox sensing. To elucidate the structural basis for redox-sensing, we applied single-particle cryo-EM (cryogenic electron microscopy) to experimentally confirm an AlphaFold model of LsrB, identifying two proximal cysteine pairs. In vitro thiol-trapping coupled with mass spectrometry confirmed reversible thiol modifications of all four residues, suggesting a functional role in redox regulation. Collectively, these findings reveal that A. tumefaciens employs two cysteine-based redox sensing transcription factors, OxyR and LsrB, to withstand oxidative stress encountered in host and soil environments.
Collapse
Affiliation(s)
- Janka J Schmidt
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Hannah Elders
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sina Schäkermann
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ronja Fiedler
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa R Knoke
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pascal Dietze
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bela Gärtner
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lennart J Albin
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars I Leichert
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Zhou H, Lu Z, Liu X, Bie X, Xue F, Tang S, Feng Q, Cheng Y, Yang J. Environmentally Relevant Concentrations of Tetracycline Promote Horizontal Transfer of Antimicrobial Resistance Genes via Plasmid-Mediated Conjugation. Foods 2024; 13:1787. [PMID: 38891015 PMCID: PMC11171790 DOI: 10.3390/foods13111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The ubiquitous presence of antimicrobial-resistant organisms and antimicrobial resistance genes (ARGs) constitutes a major threat to global public safety. Tetracycline (TET) is a common antimicrobial agent that inhibits bacterial growth and is frequently detected in aquatic environments. Although TET may display coselection for resistance, limited knowledge is available on whether and how it might influence plasmid-mediated conjugation. Subinhibitory concentrations (3.9-250 ng/mL) of TET promoted horizontal gene transfer (HGT) via the mobilizable plasmid pVP52-1 from the donor Vibrio parahaemolyticus NJIFDCVp52 to the recipient Escherichia coli EC600 by 1.47- to 3.19-fold. The transcription levels of tetracycline resistance genes [tetA, tetR(A)], conjugation-related genes (traA, traD), outer membrane protein genes (ompA, ompK, ompV), reactive oxygen species (ROS)-related genes (oxyR, rpoS), autoinducer-2 (AI-2) synthesis gene (luxS), and SOS-related genes (lexA, recA) in the donor and recipient were significantly increased. Furthermore, the overproduced intracellular ROS generation and increased cell membrane permeability under TET exposure stimulated the conjugative transfer of ARGs. Overall, this study provides important insights into the contributions of TET to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijie Tang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Qiushi Feng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Yiyu Cheng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
3
|
Yang X, Qian M, Wang Y, Qin Z, Luo M, Chen G, Yi C, Ma Y, Liu X, Liu Z. Thiol-Based Modification of MarR Protein VnrR Regulates Resistance Toward Nitrofuran in Vibrio cholerae By Promoting the Expression of a Novel Nitroreductase VnrA and of NO-Detoxifying Enzyme HmpA. Antioxid Redox Signal 2024; 40:926-942. [PMID: 37742113 DOI: 10.1089/ars.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Aims: Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. Results: Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in Vibrio cholerae, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H2O2), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H2O2 through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, vnrA (vca1057). Gene vnrA encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that V. cholerae metabolizes FZ via the vnrR-vnrA system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. Innovation and Conclusion: This study represents a significant advancement in understanding the antibiotic resistance mechanisms of V. cholerae and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H2O2, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Qian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Ma
- Research Institute of Tsinghua University in Shenzhen, Human Microecology and Healthcare R&D Centre, High-tech Industrial Park, Shenzhen, Guangdong, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
İzgördü ÖK, Gurbanov R, Darcan C. Understanding the transition to viable but non-culturable state in Escherichia coli W3110: a comprehensive analysis of potential spectrochemical biomarkers. World J Microbiol Biotechnol 2024; 40:203. [PMID: 38753033 PMCID: PMC11098925 DOI: 10.1007/s11274-024-04019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Guo F, Quan R, Cui Y, Cao X, Wen T, Xu F. Effects of OxyR regulator on oxidative stress, Apx toxin secretion and virulence of Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2024; 13:1324760. [PMID: 38268788 PMCID: PMC10806198 DOI: 10.3389/fcimb.2023.1324760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, poses a significant threat to global swine populations due to its high prevalence, mortality rates, and substantial economic ramifications. Understanding the pathogen's defense mechanisms against host-produced reactive oxygen species is crucial for its survival, with OxyR, a conserved bacterial transcription factor, being pivotal in oxidative stress response. Methods This study investigated the presence and role of OxyR in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis was conducted on an oxyR disruption mutant to delineate the biological activities influenced by OxyR. Additionally, specific assays were employed to assess urease activity, catalase expression, ApxI toxin secretion, as well as adhesion and invasion abilities of the oxyR disruption mutant on porcine 3D4/21 and PT cells. A mice challenge experiment was also conducted to evaluate the impact of oxyR inactivation on A. pleuropneumoniae virulence. Results OxyR was identified as a conserved regulator present in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis revealed the involvement of OxyR in multiple biological activities. The oxyR disruption resulted in decreased urease activity, elevated catalase expression, enhanced ApxI toxin secretion-attributed to OxyR binding to the apxIBD promoter-and reduced adhesion and invasion abilities on porcine cells. Furthermore, inactivation of oxyR reduced the virulence of A. pleuropneumoniae in a mice challenge experiment. Discussion The findings highlight the pivotal role of OxyR in influencing the virulence mechanisms of A. pleuropneumoniae. The observed effects on various biological activities underscore OxyR as an essential factor contributing to the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tong Wen
- Department of Biology Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Hop HT, Huy TXN, Lee HJ, Kim S. Intracellular growth of Brucella is mediated by Dps-dependent activation of ferritinophagy. EMBO Rep 2023; 24:e55376. [PMID: 37503678 PMCID: PMC10481649 DOI: 10.15252/embr.202255376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | | | - Hu Jang Lee
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| | - Suk Kim
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| |
Collapse
|
7
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
8
|
Muhammad AY, Amonov M, Murugaiah C, Baig AA, Yusoff M. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms. AIMS Microbiol 2023; 9:346-374. [PMID: 37091815 PMCID: PMC10113163 DOI: 10.3934/microbiol.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Collapse
Affiliation(s)
| | - Malik Amonov
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
- * Correspondence: ; Tel: +60189164478
| | | | - Atif Amin Baig
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Marina Yusoff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
9
|
Complementary Roles of Two DNA Protection Proteins from Deinococcus geothermalis. Int J Mol Sci 2022; 24:ijms24010469. [PMID: 36613913 PMCID: PMC9820295 DOI: 10.3390/ijms24010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The roles of two interrelated DNA protection protein in starved cells (Dps)-putative Dps Dgeo_0257 and Dgeo_0281-as orthologous proteins to DrDps1 for DNA binding, protection, and metal ion sensing were characterised in a Deinococcus geothermalis strain. Dgeo_0257 exhibited high DNA-binding affinity and formed a multimeric structure but lacked the conserved amino acid sequence for ferroxidase activity. In contrast, the Dgeo_0281 (DgDps1) protein was abundant in the early exponential phase, had a lower DNA-binding activity than Dgeo_0257, and was mainly observed in its monomeric or dimeric forms. Electrophoretic mobility shift assays demonstrated that both purified proteins bound nonspecifically to DNA, and their binding ability was affected by certain metal ions. For example, in the presence of ferrous and ferric ions, neither Dgeo_0257 nor Dgeo_0281 could readily bind to DNA. In contrast, both proteins exhibited more stable DNA binding in the presence of zinc and manganese ions. Mutants in which the dps gene was disrupted exhibited higher sensitivity to oxidative stress than the wild-type strain. Furthermore, the expression levels of each gene showed an opposite correlation under H2O2 treatment conditions. Collectively, these findings indicate that the putative Dps Dgeo_0257 and DgDps1 from D. geothermalis are involved in DNA binding and protection in complementary interplay ways compared to known Dps.
Collapse
|
10
|
Zhang Z, Chen G, Hussain W, Qin Z, Liu J, Su Y, Zhang H, Ye M. Mr.Vc v2: An updated version of database with increased data of transcriptome and experimental validated interactions. Front Microbiol 2022; 13:1047259. [DOI: 10.3389/fmicb.2022.1047259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Mr.Vc is a database of curated Vibrio cholerae transcriptome data and annotated information. The main objective is to facilitate the accessibility and reusability of the rapidly growing Vibrio cholerae omics data and relevant annotation. To achieve these goals, we performed manual curation on the transcriptome data and organized the datasets in an experiment-centric manner. We collected unknown operons annotated through text-mining analysis that would provide more clues about how Vibrio cholerae modulates gene regulation. Meanwhile, to understand the relationship between genes or experiments, we performed gene co-expression analysis and experiment-experiment correlation analysis. In additional, functional module named “Interactions” which dedicates to collecting experimentally validated interactions about Vibrio cholerae from public databases, MEDLINE documents and literature in life science journals. To date, Mr.Vc v2, which is significantly increased from the previous version, contains 107 microarray experiments, 106 RNA-seq experiments, and 3 Tn-seq projects, covering 56,839 entries of DEGs (Differentially Expressed Genes) from transcriptomes and 7,463 related genes from Tn-seq, respectively. and a total of 270,129 gene co-expression entries and 11,990 entries of experiment-experiment correlation was obtained, in total 1,316 entries of interactions were collected, including 496 protein-chemical signaling molecule interactions, 472 protein–protein interactions, 306 TF (Transcription Factor)-gene interactions and 42 Vibrio cholerae-virus interactions, most of which obtained from 402 literature through text-mining analysis. To make the information easier to access, Mr.Vc v2 is equipped with a search widget, enabling users to query what they are interested in. Mr.Vc v2 is freely available at http://mrvcv2.biownmc.info.
Collapse
|
11
|
Wang J, Liu J, Zhao Y, Sun M, Yu G, Fan J, Tian Y, Hu B. OxyR contributes to virulence of Acidovorax citrulli by regulating anti-oxidative stress and expression of flagellin FliC and type IV pili PilA. Front Microbiol 2022; 13:977281. [PMID: 36204623 PMCID: PMC9530317 DOI: 10.3389/fmicb.2022.977281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
In many bacteria, OxyR acts as a transcriptional regulator that facilitates infection via degrading hydrogen peroxide (H2O2) generated by the host defense response. Previous studies showed that OxyR also plays an important role in regulating biofilm formation, cell motility, pili relate-genes expression, and surface polysaccharide production. However, the role of OxyR has not been determined in Acidovorax citrulli strain xjl12. In the current study, the qRT-PCR and western blot assays revealed that the expression level of oxyR was significantly induced by H2O2. The oxyR deletion mutant of A. citrulli was significantly impaired bacterial tolerance to oxidative stress and reduced catalase (CAT) activity. In addition, oxyR mutant resulted in reduced swimming motility, twitching motility, biofilm formation, virulence, and bacterial growth in planta by significantly affecting flagellin and type IV pili-related gene (fliC and pilA) expression. The qRT-PCR assays and western blot revealed that OxyR positively regulated the expression of fliC and pilA. Furthermore, bacterial one-hybrid assay demonstrated that OxyR directly affected pilA and fliC promoter. Through bacterial two-hybrid assay, it was found that OxyR can directly interact with PilA and FliC. These results suggest that OxyR plays a major role in the regulating of a variety of virulence traits, and provide a foundation for future research on the global effects of OxyR in A. citrulli.
Collapse
Affiliation(s)
- Jianan Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Minghui Sun
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Guixu Yu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jiaqin Fan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yanli Tian,
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Baishi Hu,
| |
Collapse
|
12
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
13
|
Shan X, Fu J, Li X, Peng X, Chen L. Comparative proteomics and secretomics revealed virulence, and coresistance-related factors in non O1/O139 Vibrio cholerae recovered from 16 species of consumable aquatic animals. J Proteomics 2022; 251:104408. [PMID: 34737110 DOI: 10.1016/j.jprot.2021.104408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Identification of risk factors of V. cholerae in aquatic products is imperative for assuming food safety. In this study, we determined virulence-associated genes, cross-resistance between antibiotics and heavy metals, and genome fingerprinting profiles of non O1/O139 V. cholerae isolates (n = 20) recovered from 16 species of consumable aquatic animals. Secretomes and proteomes of V. cholerae with distinct genotypes and phenotypes were obtained by using two-dimensional gel electrophoresis (2D-GE) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Comparative secretomic analysis revealed 4 common and 45 differential extracellular proteins among 20 V. cholerae strains, including 13 virulence- and 8 resistance-associated proteins. A total of 21,972 intracellular proteins were identified, and comparative proteomic analysis revealed 215 common and 913 differential intracellular proteins, including 22 virulence- and 8 resistance-associated proteins. Additionally, different secretomes and proteomes were observed between V. cholerae isolates of fish and shellfish origins. A number of novel proteins with unknown function and strain-specific proteins were also discovered in the V. cholerae isolates. SIGNIFICANCE: V. cholerae can cause pandemic cholera in humans. The bacterium is distributed in aquatic environments worldwide. Identification of risk factors of V. cholerae in aquatic products is imperative for assuming food safety. Non-O1/O139 V. cholerae has been reported to cause sporadic cholera-like diarrhea and bacteremia diseases, which indicates virulence factors rather than the major cholera toxin (CT) exist. This study for the first time investigated proteomes and secretomes of non-O1/O139 V. cholerae originating from aquatic animals. This resulted in the identification of a number of virulence and coresistance-related factors, as well as novel proteins and strain-specific proteins in V. cholerae isolates recovered from 16 species of consumable aquatic animals. These results fill gaps for better understanding of pathogenesis and resistance of V. cholerae, and also support the increasing need for novel diagnosis and vaccine targets against the leading waterborne pathogen worldwide.
Collapse
Affiliation(s)
- Xinying Shan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junfeng Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Skåne A, Loose JSM, Vaaje-Kolstad G, Askarian F. Comparative proteomic profiling reveals specific adaption of Vibrio anguillarum to oxidative stress, iron deprivation and humoral components of innate immunity. J Proteomics 2022; 251:104412. [PMID: 34737109 DOI: 10.1016/j.jprot.2021.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
|
16
|
Ma Y, Yang X, Wang H, Qin Z, Yi C, Shi C, Luo M, Chen G, Yan J, Liu X, Liu Z. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB. PLoS Pathog 2021; 17:e1009763. [PMID: 34283874 PMCID: PMC8324212 DOI: 10.1371/journal.ppat.1009763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/30/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Sensing and resisting oxidative stress is critical for Vibrio cholerae to survive in either the aquatic environment or the gastrointestinal tract. Previous studies mainly focused on the mechanisms of oxidative stress response regulation that rely on enzymatic antioxidant systems, while functions of non-enzymatic antioxidants are rarely discussed in V. cholerae. For the first time, we investigated the role of hydrogen sulfide (H2S), the simplest thiol compound, in protecting V. cholerae against oxidative stress. We found that degradation of L-cysteine by putative cystathionine β-synthase (CBS) is the major source of endogenous H2S in V. cholerae. Our results indicate that intracellular H2S level has a positive correlation with cbs expression, while the enhanced H2S production can render V. cholerae cells less susceptible to H2O2 in vitro. Using proteome analysis and real-time qPCR assay, we found that cbs expression could stimulate the expression of several enzymatic antioxidants, including reactive oxygen species (ROS) detoxifying enzymes SodB, KatG and AhpC, the DNA protective protein DPS and the protein redox regulator Trx1. Assays of ROS detoxification capacities revealed that CBS-derived H2S could promote catalase activity at the post-translational level, especially for KatB, which serves as an important way that endogenous H2S participates in H2O2 detoxification. The enhancement of catalase activity by H2S is achieved through facilitating the uptake of iron. Adult mice experiments showed that cbs mutant has colonization defect, while either complementation of cbs or exogenous supplement of N-Acetyl-L-Cysteine restores its fitness in the host environment. Herein, we proposed that V. cholerae regulates CBS-dependent H2S production for better survival and proliferation under ROS stress.
Collapse
Affiliation(s)
- Yao Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongou Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Changping Shi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Shin J, Choe D, Ransegnola B, Hong H, Onyekwere I, Cross T, Shi Q, Cho B, Westblade LF, Brito IL, Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790. [PMID: 33463026 PMCID: PMC7857431 DOI: 10.15252/embr.202051790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level β-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.
Collapse
Affiliation(s)
- Jung‐Ho Shin
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Donghui Choe
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Brett Ransegnola
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Hye‐Rim Hong
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Ikenna Onyekwere
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Trevor Cross
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Qiaojuan Shi
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
- Intelligent Synthetic Biology CenterDaejeonKorea
| | - Lars F Westblade
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Ilana L Brito
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
- Cornell Institute of Host‐Microbe Interactions and DiseaseCornell UniversityIthacaNYUSA
| |
Collapse
|
18
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
19
|
Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020; 11:1582-1599. [PMID: 33172314 PMCID: PMC7671094 DOI: 10.1080/21505594.2020.1845039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 2020; 10:582554. [PMID: 33194819 PMCID: PMC7644805 DOI: 10.3389/fcimb.2020.582554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, could proliferate in aquatic environment and infect humans through contaminated food and water. Enormous microorganisms residing in human gastrointestinal tract establish a special microecological system, which immediately responds to the invasion of V. cholerae, through “colonization resistance” mechanisms, such as antimicrobial peptide production, nutrients competition, and intestinal barrier maintenances. Meanwhile, V. cholerae could quickly sense those signals and modulate the expression of relevant genes to circumvent those stresses during infection, leading to successful colonization on the surface of small intestinal epithelial cells. In this review, we summarized the crosstalks profiles between gut microbiota and V. cholerae in the terms of Type VI Secretion System (T6SS), Quorum Sensing (QS), Reactive Oxygen Species (ROS)/pH stress, and Bioactive metabolites. These mechanisms can also be applied to molecular bacterial pathogenesis of other pathogens in host.
Collapse
Affiliation(s)
- Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Tian X, Huang L, Wang M, Biville F, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Zhang L, Yu Y, Cheng A, Liu M. The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy. Vet Microbiol 2020; 247:108730. [PMID: 32768200 DOI: 10.1016/j.vetmic.2020.108730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
Excessive iron in the bacterial cytoplasm can potentiate the production of harmful reactive oxygen species (ROS). Riemerella anatipestifer (R. anatipestifer, RA), a gram-negative bacterium, encodes an iron uptake system, but its iron detoxification mechanism is unknown. Here, the dps gene of R. anatipestifer CH-1 (RA-CH-1) was deleted using sacB as a counterselection marker. The dps mutant was more sensitive to H2O2 than the wild type in iron-rich conditions but not in iron-limited conditions, suggesting that Dps prevents H2O2-induced damage through iron binding. However, the dps mutant and wild type were identically sensitive to bactericidal antibiotics, and antibiotic treatment did not enhance RA-CH-1 ROS production. Furthermore, Dps prevents DNA damage by binding DNA. The RA-CH-1 dps transcript level was higher in the stationary phase than in the early and exponential phases and was increased by OxyR in the presence of H2O2. Finally, duckling colonization by the dps mutant was similar to that by the wild type at 48 h postinfection but significantly lower at 60 h postinfection, suggesting that RA-CH-1 Dps is not involved in host invasion but increases resistance to host clearance. Dps thus likely plays an important role in R. anatipestifer physiology and pathogenesis through protecting against oxidative stress.
Collapse
Affiliation(s)
- Xiu Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | | | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
22
|
Vibrio cholerae Virulence Activator ToxR Regulates Manganese Transport and Resistance to Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00944-19. [PMID: 31871097 DOI: 10.1128/iai.00944-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Like many other pathogens, Vibrio cholerae, the causative agent of cholera, can modulate its gene expression to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. In this study, we found that another key virulence regulator, ToxR, was important for V. cholerae resistance to hydrogen peroxide. Through a genome-wide transposon screen, we discovered that a deletion in mneA, which encodes a manganese exporter, restored ROS resistance of the toxR mutant. We then showed that ToxR did not affect mneA transcription but that the ToxR-regulated major porin OmpU was critical for ROS resistance. The addition of manganese in culture medium restored ROS resistance in both the toxR and ompU mutants. Furthermore, elemental analysis indicated that the intracellular concentration of manganese in both the toxR and ompU mutants was reduced. This may result in intracellular ROS accumulation in these mutants. Our data suggest that ToxR plays an important role in the resistance to reactive oxygen species through the regulation of manganese transport.
Collapse
|
23
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
24
|
Salze M, Giard JC, Riboulet-Bisson E, Hain T, Rincé A, Muller C. Identification of the general stress stimulon related to colonization in Enterococcus faecalis. Arch Microbiol 2019; 202:233-246. [DOI: 10.1007/s00203-019-01735-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/06/2019] [Accepted: 09/21/2019] [Indexed: 01/08/2023]
|
25
|
Cyclic di-GMP Increases Catalase Production and Hydrogen Peroxide Tolerance in Vibrio cholerae. Appl Environ Microbiol 2019; 85:AEM.01043-19. [PMID: 31300398 DOI: 10.1128/aem.01043-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that causes the disease cholera, which affects nearly 1 million people each year. In between outbreaks, V. cholerae resides in fresh and salt water environments, where it is able to persist through changes in temperature, oxygen, and salinity. One key characteristic that promotes environmental persistence of V. cholerae is the ability to form multicellular communities, called biofilms, that often adhere to biotic and abiotic sources. Biofilm formation in V. cholerae is positively regulated by the dinucleotide second messenger cyclic dimeric GMP (c-di-GMP). While most research on the c-di-GMP regulon has focused on biofilm formation or motility, we hypothesized that the c-di-GMP signaling network encompassed a larger set of effector functions than reported. We found that high intracellular c-di-GMP increased catalase activity ∼4-fold relative to strains with unaltered c-di-GMP. Genetic studies demonstrated that c-di-GMP mediated catalase activity was due to increased expression of the catalase-encoding gene katB Moreover, c-di-GMP mediated regulation of catalase activity and katB expression required the c-di-GMP dependent transcription factors VpsT and VpsR. Lastly, we found that high c-di-GMP increased survival after H2O2 challenge in a katB-, vpsR-, and vpsT-dependent manner. Our results indicate that antioxidant production is regulated by c-di-GMP uncovering a new node in the growing VpsT and VpsR c-di-GMP signaling network of V. cholerae IMPORTANCE As a result of infection with V. cholerae, patients become dehydrated, leading to death if not properly treated. The aquatic environment is the natural reservoir for V. cholerae, where it can survive alterations in temperature, salinity, and oxygen. The second messenger molecule c-di-GMP is an important signal regulating host and aquatic environmental persistence because it controls whether V. cholerae will form a biofilm or disperse through flagellar motility. In this work, we demonstrate another function of c-di-GMP in V. cholerae biology: promoting tolerance to the reactive oxygen species H2O2 through the differential regulation of catalase expression. Our results suggest a mechanism where c-di-GMP simultaneously controls biofilm formation and antioxidant production, which could promote persistence in human and marine environments.
Collapse
|
26
|
Patra SK, Samaddar S, Sinha N, Ghosh S. Reactive nitrogen species induced catalases promote a novel nitrosative stress tolerance mechanism in Vibrio cholerae. Nitric Oxide 2019; 88:35-44. [PMID: 30981896 DOI: 10.1016/j.niox.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/04/2019] [Accepted: 04/09/2019] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae faces nitrosative stress during successful colonization in intestine. Very little information is available on the nitrosative stress protective mechanisms of V. cholerae. Reports show that NorR regulon control two genes hmpA and nnrS responsible for nitric oxide (NO) detoxification in V. cholerae. In the present study we first time report a novel role of V. cholerae catalases under nitrosative stress. Using zymogram analysis of catalase we showed that KatB and KatG activity were induced within 30 min in V. cholerae in the presence of sodium nitroprusside (SNP), a NO donor compound. Surprisingly, V. cholerae cell survival was found to be decreased under nitrosative stress if catalase activities were blocked by ATz, a catalase inhibitor. Flow cytometry study was conducted to detect reactive oxygen species (ROS) and reactive nitrogen species (RNS) using DHE and DHR123, fluorescent probes respectively. Short exposure of SNP to V. cholerae did not generate ROS but RNS was detectable within 30 min. Total glutathione content was increased in V. cholerae cells under nitrosative stress. Furthermore, Superoxide dismutase (SOD) and Glutathione reductase (GR) activities remained unchanged under nitrosative stress in V. cholerae indicated antioxidant role of NO which could produce peroxynitrite. To investigate the role of catalase induction under nitrosative stress in V. cholerae, we conducted peroxynitrite reductase assay using cell lysates. Interestingly, SNP treated V. cholerae cell lysates showed lowest DHR123 oxidation compared to the control set. The extent of DHR123 oxidation was more in V. cholerae cell lysate when catalases were blocked by ATz.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sourabh Samaddar
- Bose Institute, P-1/12, CIT Road Scheme VIIM, Kolkata, 700 054, West Bengal, India
| | - Nilanjan Sinha
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
27
|
Zhang Z, Chen G, Hu J, Hussain W, Fan F, Yang Y, Zhou Z, Fang X, Zhu J, Chen WH, Liu Z. Mr.Vc: a database of microarray and RNA-seq of Vibrio cholerae. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5522264. [PMID: 31231774 PMCID: PMC6597751 DOI: 10.1093/database/baz069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023]
Abstract
Gram-negative bacterium Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease. During its infectious cycle, V. cholerae routinely switches niches between aquatic environment and host gastrointestinal tract, in which V. cholerae modulates its transcriptome pattern accordingly for better survival and proliferation. A comprehensive resource for V. cholerae transcriptome will be helpful for cholera research, including prevention, diagnosis and intervention strategies. In this study, we constructed a microarray and RNA-seq database of V. cholerae (Mr.Vc), containing gene transcriptional expression data of 145 experimental conditions of V. cholerae from various sources, covering 25 937 entries of differentially expressed genes. In addition, we collected relevant information including gene annotation, operons they may belong to and possible interaction partners of their protein products. With Mr.Vc, users can easily find transcriptome data they are interested in, such as the experimental conditions in which a gene of interest was differentially expressed in, or all genes that were differentially expressed in an experimental condition. We believe that Mr.Vc database is a comprehensive data repository dedicated to V. cholerae and could be a useful resource for all researchers in related fields. Mr.Vc is available for free at http://bioinfo.life.hust.edu.cn/mrvc.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wajid Hussain
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fenxia Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaodong Fang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Bioinformatics Group, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hua Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,College of Life Science, Henan Normal University, Xinxiang 453007, China.,Huazhong University of Science and Technology Ezhou Industrial Technology Research Institute, Ezhou, Hubei 436044, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
28
|
Pan X, Wu J, Xu S, Duan T, Duan Y, Wang J, Zhang F, Zhou M. Contribution of OxyR Towards Differential Sensitivity to Antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1244-1256. [PMID: 29905495 DOI: 10.1094/mpmi-03-18-0074-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazine in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. We also found that X. oryzae pv. oryzae was much more sensitive to PCA and H2O2 and had a defective antioxidant system (i.e., less of total antioxidant capacity and total catalase activity than X. oryzae pv. oryzicola, although X. oryzae pvs. oryzae and oryzicola are very closely related). Based on KEGG sequences, OxyR differs in 10 amino acids in X. oryzae pv. oryzae versus X. oryzae pv. oryzicola. By exchanging OxyR between X. oryzae pvs. oryzae and oryzicola, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected X. oryzae pvs. oryzae and oryzicola growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response on nonhost plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in antioxidative stress between X. oryzae pvs. oryzae and oryzicola and contributes to the differences in survival of them against oxidative stress.
Collapse
Affiliation(s)
- Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
29
|
Wang H, Xing X, Wang J, Pang B, Liu M, Larios-Valencia J, Liu T, Liu G, Xie S, Hao G, Liu Z, Kan B, Zhu J. Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 2018; 14:e1007413. [PMID: 30376582 PMCID: PMC6226196 DOI: 10.1371/journal.ppat.1007413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms. Cholera is a devastating diarrheal disease that is still endemic to many developing nations, with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae, the causative agent of cholera, transitions from aquatic reservoirs to the human gastrointestinal tract, where it expresses virulence factors to facilitate colonization of the small intestines and to combat host innate immune effectors, such as reactive oxygen species (ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that deletion of mutS, which is part of DNA mismatch repair system, drastically increased colonization in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-overproducing mutants and a high frequency rugose phenotype when exposed to ROS selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype, both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation frequency as a temporal adaptive strategy to overcome oxidative stress and to enhance infectivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JH)
| | - Xiaolin Xing
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Tao Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Ge Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Saijun Xie
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Guijuan Hao
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail: (HW); (JH)
| |
Collapse
|
30
|
An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep 2018; 8:15021. [PMID: 30301917 PMCID: PMC6177443 DOI: 10.1038/s41598-018-33291-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.
Collapse
|
31
|
OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Infect Immun 2017; 85:IAI.00929-16. [PMID: 28138024 DOI: 10.1128/iai.00929-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H2O2 A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H2O2 RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H2O2 Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H2O2 Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H2O2 or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.
Collapse
|