1
|
Lu J, Zhang W, Zhu Y, Luo P, Tong X, Xie S, Jiang L, Guo X, Huang J, Gu M, Ding X, Xian S, Huang R, Ji S, Xia Z. Revealing the Therapeutic Potential of Stem Cells in Burn Healing: A Deeper Understanding of the Therapeutic Mechanisms of Epidermal Stem Cells and Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:1914585. [PMID: 39717868 PMCID: PMC11666318 DOI: 10.1155/2024/1914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 12/25/2024] Open
Abstract
Background: Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies. Methods: To achieve this objective, we retrieved scientific publications on burns associated with stem cells covering the period from January 1, 1978, to October 13, 2022, from the Web of Science Core Collection (WoSCC). Bibliometric analyses, including production and collaboration analyses between countries, institutions, authors, and journals, as well as keyword and topic analyses, were conducted using the bibliometrix R package, CiteSpace, and VOSviewer. Results: A total of 1648 burns associated with stem cell documents were published and listed on WOSCC. The most contributive country, institution, journal, and author were the United States, LV Prasad Eye Institute, Burns, and Scheffer C.G. Tseng, respectively. More importantly, combined with historical direct citation network, trend topic analysis, keyword co-occurrence network, and substantial literature analysis, we eventually summarized the research hotspots and frontiers on burns associated stem cell reasearch. Conclusion: The present study obtained deep insight into the developing trends and research hotspots on burns associated with stem cells, which arouses growing concerns and implies increasing clinical implications. The mechanism and therapeutics of epidermal stem cells (ESCs) for burn wounds and the mechanism of mesenchymal stem cells (MSCs) and MSC-derived exosomes for burns wounds are two research hotspots in this field.
Collapse
Affiliation(s)
- Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Pengfei Luo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Salem M, Ateya A, Shouman Z, Salama B, Hamed B, Batiha G, Ataya F, Alexiou A, Papadakis M, Abass M. Amelioration of full-thickness cutaneous wound healing using stem cell exosome and zinc oxide nanoparticles in rats. Heliyon 2024; 10:e38994. [PMID: 39568845 PMCID: PMC11577189 DOI: 10.1016/j.heliyon.2024.e38994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Wound healing is a complex procedure that requires the coordination of several factors, so this study aimed to assess the zinc oxide nanoparticles' regenerated effect and stem cell exosomes on full-thickness wounds in rats. Methods Seventy-two Wistar male rats were subjected to a full-thickness skin defect (20 mm2) on the dorsal surface of each rat between two shoulder joints. The rats were randomized into four groups (18/group) according to wound treatments. The wounds were irrigated with normal saline (Control group), or the wound's edges were subcutaneously injected daily with 0.3 ml of exosome (Exo-group), or 1 ml of zinc oxide nanoparticles (ZnO2-NPs group), or 0.3 ml of exosome in combined with 1 ml of zinc oxide nanoparticles (Exo/ZnO2-NPs group). On the 7th, 14th, and 21st days post-wounding, the weight of the rats, the wound healing breaking strength, the wound size, and the contraction percent were evaluated. Six rats in each group were euthanized at each time point for histopathological, immunohistochemical examination of collagen, the levels of alpha-smooth muscle actin (α-SMA), and epidermal growth factor receptor (EGFR). additionally, the gene expression analysis of the relative renal nuclear factor erythroid 2-related factor2 (Nrf2 mRNA), Transforming growth factor beta-1 (TGFβ1), fibroblast growth factor-7 (FGF7), Transforming growth factor beta-1 (TGFβ1), Lysyl oxidase (LOX), and Vascular endothelial growth factor (VEGF) were applied. Results The Exo-group exhibited a significant decrease in wound size and a significant increase in wound contraction compared with other groups. Histopathologically evaluation during the three intervals revealed that the Exo-group had the highest collagen deposition area with a significant reduction of the granulation tissue. Moreover, upregulated gene expression profiles of the growth factors genes at all time points post-wounding. Discussion The exosomes-treated group revealed superior wound healing and contraction, with minimal inflammatory signs, higher angiogenesis, and myofibroblasts, and associated with higher growth factor expression genes compared to the other groups. Conclusions Exosome-based therapy demonstrates potential as a treatment method to promote and accelerate wound healing by modulating angiogenesis, re-epithelialization, collagen deposition, and gene expression profiles.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Mansoura experimental research center (MERC), Faculty of Medicine, Mansoura, 35516, Egypt
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Mao Y, Liu P, Wei J, Xie Y, Zheng Q, Hu X, Yao J, Meng W. Exosomes derived from Umbilical cord mesenchymal stem cell promote hair regrowth in C57BL6 mice through upregulation of the RAS/ERK signaling pathway. J Transl Int Med 2024; 12:478-494. [PMID: 39513036 PMCID: PMC11538887 DOI: 10.1515/jtim-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background and Objectives Androgenetic alopecia is one of the common types of hair loss and has become a medical and social problem due to its increasingly young onset. Existing therapies, although effective, have serious side effects and therefore better treatments need to be sought. The aim of this study was to evaluate the efficacy of umbilical cord mesenchymal stem cell-derived exosomes in the treatment of androgenetic alopecia and to investigate the mechanism of exosome regulation of hair growth. Methods First, we randomly divided 20 C57BL/6J mice into blank group, model group, positive control group and exosomal hydrogel group, and mice were treated with hair removal on the back. The mice were injected intraperitoneally with dihydrotestosterone solution except for the blank group. At the end of the experiment, new hairs were collected and the differences in length, diameter and number of hair follicles were compared among the groups; the histopathological changes of hair follicles were observed by HE staining; the expression of androgen receptor mRNA and protein in skin tissues were compared; and the skin tissues were analyzed by real-time PCR, western blotting, immunofluorescence staining and transcriptome sequencing. Finally, the results of transcriptome sequencing experiments were verified by real-time PCR, western blotting and other techniques for the corresponding genes and proteins. Results Compared with the blank group, mice in the model group had shorter hair length and reduced hair diameter, and pathological observation showed that the total number of hair follicles was significantly reduced and the hair follicles were miniaturized; compared with the model group, mice in the positive control and exosome groups had longer hair length, larger hair diameter and more hair follicles; the androgen receptor mRNA content and protein expression in the skin tissue of mice in the model group were significantly higher than those in the blank group, and the protein expression in the exosome gel group was lower than that in the model group. Similarly, compared with the model group, the expression of stemness-related proteins K15 and CD200 in the skin tissues of mice in the exosome group increased, and the expression of PCNA, a protein related to cell proliferation, increased. The KEGG data showed that the differential genes were mainly enriched in the RAS/ERK pathway. Conclusions In this study, we demonstrated the therapeutic effect of umbilical cord MSC-derived exosomes on androgenetic alopecia and verified that exosomes regulate hair follicle stem cell stemness through the RAS/ERK pathway to promote hair proliferation and thus hair growth in mice with androgenetic alopecia, providing a potential therapeutic strategy for androgenetic alopecia.
Collapse
Affiliation(s)
- Yongcui Mao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Pinyan Liu
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Jiayun Wei
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Ye Xie
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Qiuxia Zheng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jia Yao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| | - Wenbo Meng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
4
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Panda D, Nayak S. Stem Cell-Based Tissue Engineering Approaches for Diabetic Foot Ulcer: a Review from Mechanism to Clinical Trial. Stem Cell Rev Rep 2024; 20:88-123. [PMID: 37867186 DOI: 10.1007/s12015-023-10640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Diabetic foot ulcer (DFU) is a complication from incomplete or prolonged wound healing, at times requires amputation, putting substantial health and socioeconomic burden. Wound healing is a dynamic overlapping process that can be regulated by arrays of molecular factors showing redundancy in function. However, dysregulation in the mechanism of angiogenesis, extra cellular matrix (ECM) formation and immune modulation are the major causes for impair wound healing in hyperglycaemic patients. Despite development of wound care research, there is a lack of well-accepted targeted therapy with multidisciplinary approach for DFU treatment. Stem cell therapy holds a promising outcome both in preclinical and clinical trials because of its ability to promote healing via regeneration and specialized tissue differentiation. Among different types of stem cells, regenerative potential of mesenchymal stem cell (MSC) is well demonstrated in both experimental and clinical trial. Still there is a huge knowledge gap among medical practitioners for deciding the best stem cell source, administration route, and safety. This review strengthens the fact that why stem cell therapy is a promising candidate to treat DFU and cited multiple tissue engineering and biomaterial-based approaches for delivering stem cells and their aftermath paracrine events. Based on the pre-clinical and clinical studies, the review tried to come up with optimum stem cell source and delivery route for the treatment of DFU. At last, the review glances on possible direction to enhance therapeutics strategy for the same, including different approaches like: phytocompounds, exosomes, scaffold geometry, cell preconditioning and licensing etc.
Collapse
Affiliation(s)
- Debarchan Panda
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Dong Y, Wang Z. ROS-scavenging materials for skin wound healing: advancements and applications. Front Bioeng Biotechnol 2023; 11:1304835. [PMID: 38149175 PMCID: PMC10749972 DOI: 10.3389/fbioe.2023.1304835] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
The intricate healing process of skin wounds includes a variety of cellular and molecular events. Wound healing heavily relies on reactive oxygen species (ROS), which are essential for controlling various processes, including inflammation, cell growth, angiogenesis, granulation, and the formation of extracellular matrix. Nevertheless, an overabundance of reactive oxygen species (ROS) caused by extended oxidative pressure may result in the postponement or failure of wound healing. It is crucial to comprehend the function of reactive oxygen species (ROS) and create biomaterials that efficiently eliminate ROS to enhance the healing process of skin wounds. In this study, a thorough examination is presented on the role of reactive oxygen species (ROS) in the process of wound healing, along with an exploration of the existing knowledge regarding biomaterials employed for ROS elimination. In addition, the article covers different techniques and substances used in the management of skin wound. The future prospects and clinical applications of enhanced biomaterials are also emphasized, highlighting the potential of biomaterials that scavenge active oxygen to promote skin repair. This article seeks to enhance the understanding of the complex processes of ROS in the healing of wounds and the application of ROS-scavenging materials. Its objective is to create novel strategies for effective treatment skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Izadi R, Hejazi SH, Bahramikia S. Alternative viewpoint against diabetic wound based on stem cell secretome that can mediated angiogenesis and reduce inflammation. Arch Dermatol Res 2023; 316:28. [PMID: 38060015 DOI: 10.1007/s00403-023-02739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
Diabetes mellitus, as an important metabolic disorder, affects the health of millions of people worldwide. A diabetic wound is one of the complications of diabetes. The stem cell secretome can particularly affect the wound healing process in diabetic wounds. The present study aimed to investigate the effects of Adipose-derived stem cells (ASCs) secretome on the skin wound healing process, angiogenesis, and inflammation in diabetic rats. For this purpose, ASCs were extracted from Adipose tissue and confirmed by flow cytometry and cell differentiation. Secretome was prepared. 27 rats were divided into three groups, non-diabetic, diabetic (treated with phosphate-buffered saline), and diabetics treated with secretome. The levels of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) were examined by the enzyme-linked immunosorbent assay (ELISA) was performed in the skin tissues of all groups. Hematoxylin and eosin (H&E) staining was performed. The level of VEGF was higher in the diabetic group treated with secretome as compared to the other two groups, while the level of TGF-β was lower in this group, compared to the diabetic group. Based on the results of H&E staining, the epidermal thickness and angiogenesis were higher in the diabetic group treated with secretome, whereas edema, number of inflammatory cells, and epidermal damage were lower in this group, compared to the diabetic group. Subcutaneous injection of secretome can lead to diabetic wound healing by increasing growth factors associated with angiogenesis such as VEGF, increasing angiogenesis, regulating TGF-β levels, reducing inflammatory cells.
Collapse
Affiliation(s)
- Rezvan Izadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | | | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
8
|
Hashem HR, Amin BH, Yosri M. Investigation of the potential roles of adipose stem cells and substances of natural origin in the healing process of E. coli infected wound model in Rats. Tissue Cell 2023; 85:102214. [PMID: 37690258 DOI: 10.1016/j.tice.2023.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Skin infections by pathogenic microorganisms are a serious problem due to the potential of dissemination through the bloodstream to various organs causing toxic effects that may be up to mortality. Escherichia coli (E. coli) is one of the most predominant Gram-negative bacterial species present globally with great attention for investigation. The current study is designed to investigate the possible role of adipose tissue-derived stem cells (ADSCs), as well as natural products such as Trichoderma viride (T. viride) extract, Saccharomyces boulardii (S. boulardii) solution in the enhancement of wound healing process in the infected skin with E. coli. Ninety-six female rats were divided into 8 groups (12 animal/group): normal skin, wounded skin, wounded skin infected with E. coli, infected-wounded skin treated by ADSCs, infected-wounded skin treated by T. viride extract, infected-wounded skin treated by S. boulardii solution, infected-wounded skin treated a combination of treatments, infected-wounded skin treated by gentamicin. At day 21 animal weights and bacterial count were detected and compared. Animals were sacrificed and skin from various groups was investigated using a light microscope for sections stained by (hematoxylin eosin, Masson trichrome, and PCNA) as well as transmission electron microscopy. Pro-inflammatory (IL-1β, TNF- α, and IL-13), anti-inflammatory cytokine (IL-4), and antioxidant enzymes (Superoxide dismutase, glutathione, and catalase) were assessed in various groups revealing that ADSCs lightly shift levels of these parameters in various rat groups to regular levels, while administration of T. viride extract, S. boulardii solution, their combination with ADSCs and gentamicin treatment drive the tested cytokines and enzymes to significant levels similar to a normal level where combination therapy gave the best result. The current findings revealed the possibility of using certain natural products as possible substitutes to regularly applied antibiotics with successive protective results in the wound infection model.
Collapse
Affiliation(s)
- Heba R Hashem
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt.
| |
Collapse
|
9
|
Zhang HM, Yang ML, Xi JZ, Yang GY, Wu QN. Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023; 14:1585-1602. [DOI: 10.4239/wjd.v14.i11.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
The complication of diabetes, which is known as diabetic foot ulcer (DFU), is a significant concern due to its association with high rates of disability and mortality. It not only severely affects patients’ quality of life, but also imposes a substantial burden on the healthcare system. In spite of efforts made in clinical practice, treating DFU remains a challenging task. While mesenchymal stem cell (MSC) therapy has been extensively studied in treating DFU, the current efficacy of DFU healing using this method is still inadequate. However, in recent years, several MSCs-based drug delivery systems have emerged, which have shown to increase the efficacy of MSC therapy, especially in treating DFU. This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Department of Endocrinology, People’s Hospital of Chongqing Liangjiang New Area, Chongqing 400030, China
| | - Meng-Liu Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Jia-Zhuang Xi
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| | - Gang-Yi Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| |
Collapse
|
10
|
Sohrabi K, Ahmadi H, Amini A, Ahrabi B, Mostafavinia A, Omidi H, Mirzaei M, Fadaei Fathabady F, Fridoni M, Rahmannia M, Chien S, Bayat M. Promising improvement in infected Wound Healing in Type two Diabetic rats by Combined effects of conditioned medium of human adipose-derived stem cells plus Photobiomodulation. Lab Anim Res 2023; 39:29. [PMID: 37964303 PMCID: PMC10648630 DOI: 10.1186/s42826-023-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND We aimed to examine the accompanying and solo impacts of conditioned medium of human adipose-derived stem cells (h-ASC-COM) and photobiomodulation (PBM) on the maturation stage of an ischemic infected delayed-healing wound model (IIDHWM) of rats with type 2 diabetes (TIIDM). RESULTS Outcomes of the wound closure ratio (WCR) results, tensiometrical microbiological, and stereological assessment followed almost identical patterns. While the outcomes of h-ASC-COM + PBM, PBM only, and h-ASC-COM only regimes were significantly better for all evaluated methods than those of group 1(all, p < 0.001), PBM alone and h-ASC-COM + PBM therapy achieved superior results than h-ASC-COM only (ranged from p = 0.05 to p < 0.001). In terms of tensiometrical and stereological examinations, the results of h-ASC-COM + PBM experienced better results than the PBM only (all, p < 0.001). CONCLUSIONS h-ASC-COM + PBM, PBM, and h-ASC-COM cures expressively accelerated the maturation stage in the wound healing process of IIDHWM with MRSA in TIIDM rats by diminishing the inflammatory reaction, and the microbial flora of MRSA; and increasing wound strength, WCR, number of fibroblasts, and new blood vessels. While the h-ASC-COM + PBM and PBM were more suitable than the effect of h-ASC-COM, the results of h-ASC-COM + PBM were superior to PBM only.
Collapse
Affiliation(s)
- Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Rahmannia
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yadav JP. Based on Clinical Research Matrix Metalloprotease (MMP) Inhibitors to Promote Diabetic Wound Healing. Horm Metab Res 2023; 55:752-757. [PMID: 37798905 DOI: 10.1055/a-2171-5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Chronic inflammation is a common factor in obesity, diabetes mellitus, and the complications of diabetes, including diabetic wounds. These ulcers are characterized by persistent lesions that are challenging to heal, significantly decreasing patients' quality of life and imposing a substantial financial burden on society. MMP are zinc endopeptidases that play a role in wound healing in response to various stimuli, including diabetes mellitus. MMP levels fluctuate throughout the wound healing process in diabetic patients' serum, skin tissues, and wound fluid, indicating their potential as biomarkers for diabetic foot ulcers. Targeting MMP has emerged as a promising strategy for treating diabetic wounds, as these enzymes are involved in critical biological processes related to wound healing, including extracellular matrix secretion, angiogenesis, granulation tissue formation, collagen growth, re-epithelization, inflammatory response, and oxidative stress.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| |
Collapse
|
12
|
Hwang J, Jang S, Kim C, Lee S, Jeong HS. Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury. Int J Mol Sci 2023; 24:13849. [PMID: 37762150 PMCID: PMC10530823 DOI: 10.3390/ijms241813849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.
Collapse
Affiliation(s)
- Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Choonghyo Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| |
Collapse
|
13
|
Mirzadegan E, Golshahi H, Saffarian Z, Edalatkhah H, Darzi M, Khorasani S, Saliminejad K, Kazemnejad S. Application of Menstrual Blood Derived Stromal (stem) Cells Exert Greater Regenerative Potency Than Fibroblasts/Keratinocytes in Chronic Wounds of Diabetic Mice. Avicenna J Med Biotechnol 2023; 15:139-156. [PMID: 37538236 PMCID: PMC10395458 DOI: 10.18502/ajmb.v15i3.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/15/2023] [Indexed: 08/05/2023] Open
Abstract
Background In this study we differentially showed the effects of cell-seeded bilayer scaffold wound dressing in accelerating healing process in diabetic ulcers that still remains as a major clinical challenge. The aim of the study was to compare immunomodulatory and angiogenic activity, and regenerative effect differences between Menstrual blood-derived Stem Cells (MenSCs) and foreskin-derived keratinocytes/fibroblasts. Methods The streptozotocin-induced diabetic mice model was developed in male C57/BL6 mice. A bilayer scaffold was fabricated by electrospining silk fibroin nano-fibers on human Amniotic Membrane (AM). Dermal fibroblasts and keratinocyte isolated from neonatal foreskin and MenSCs were isolated from the menstrual blood of healthy women. The diabetic mice were randomly divided into three groups including no treatment group, fibroblast/keratinocyte-seeded bilayer scaffold group (bSC+FK), and MenSCs-seeded bilayer scaffold group. The healing of full-thickness excisional wounds evaluations in the diabetic mice model in each group were evaluated at 3, 7, and 14 days after treatment. Results The gross and histological data sets significantly showed wound healing promotion via re-epithelialization and wound contraction along with enhanced regeneration in MenSCs-seeded bilayer scaffold group with the most similarity to adjacent intact tissue. Immunofluorescence staining of mouse skin depicted a descending trend of type III collagen along with the higher expression of involucrin as keratinocyte marker in the MenSCs-seeded bilayer nanofibrous scaffold group in comparison with other treatment groups from day 7 to day 14. Moreover, higher levels of CD31 and von Willebrand factor (VWF), and also a higher ratio of M2/M1 macrophages in association with higher levels of the neural marker were observed in the bSC+MenSCs group in comparison with bSC+FK and no treatment groups. Conclusion Healing symptoms in wounds dressed with keratinocyte/fibroblast-seeded bilayer scaffold was significantly lower than MenSCs-seeded bilayer scaffold done on impaired diabetic wound chronicity.
Collapse
Affiliation(s)
- Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hannaneh Golshahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Khorasani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, Zhang Y. Therapeutic Benefits of Stem Cells and Exosomes for Sulfur-Mustard-Induced Tissue Damage. Int J Mol Sci 2023; 24:9947. [PMID: 37373093 PMCID: PMC10298660 DOI: 10.3390/ijms24129947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sulfur mustard (SM) is a highly toxic chemical agent that causes severe tissue damage, particularly to the eyes, lungs, and skin. Despite advances in treatment, there is a need for more effective therapies for SM-induced tissue injury. Stem cell and exosome therapies are emerging as promising approaches for tissue repair and regeneration. Stem cells can differentiate into multiple cell types and promote tissue regeneration, while exosomes are small vesicles that can deliver therapeutic cargo to target cells. Several preclinical studies demonstrated the potential of stem cell, exosome, or combination therapy for various tissue injury, showing improvements in tissue repairing, inflammation, and fibrosis. However, there are also challenges associated with these therapies, such as the requirement for standardized methods for exosome isolation and characterization, the long-term safety and efficacy and reduced SM-induced tissue injury of these therapies. Stem cell or exosome therapy was used for SM-induced eye and lung injury. Despite the limited data on the use for SM-induced skin injury, this therapy is a promising area of research and may offer new treatment options in the future. In this review, we focused on optimizing these therapies, evaluating their safety and efficacy, and comparing their efficacy to other emerging therapeutic approaches potentially for SM-induced tissue injury in the eye, lung, and skin.
Collapse
Affiliation(s)
- Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA;
| | - Sean Vincent Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Patrick Michael McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| |
Collapse
|
15
|
Chen J, Qin S, Liu S, Zhong K, Jing Y, Wu X, Peng F, Li D, Peng C. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol 2023; 14:1089001. [PMID: 36875064 PMCID: PMC9981633 DOI: 10.3389/fimmu.2023.1089001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic inflammation participates in the progression of multiple chronic diseases, including obesity, diabetes mellitus (DM), and DM related complications. Diabetic ulcer, characterized by chronic wounds that are recalcitrant to healing, is a serious complication of DM tremendously affecting the quality of life of patients and imposing a costly medical burden on society. Matrix metalloproteases (MMPs) are a family of zinc endopeptidases with the capacity of degrading all the components of the extracellular matrix, which play a pivotal part in healing process under various conditions including DM. During diabetic wound healing, the dynamic changes of MMPs in the serum, skin tissues, and wound fluid of patients are in connection with the degree of wound recovery, suggesting that MMPs can function as essential biomarkers for the diagnosis of diabetic ulcer. MMPs participate in various biological processes relevant to diabetic ulcer, such as ECM secretion, granulation tissue configuration, angiogenesis, collagen growth, re-epithelization, inflammatory response, as well as oxidative stress, thus, seeking and developing agents targeting MMPs has emerged as a potential way to treat diabetic ulcer. Natural products especially flavonoids, polysaccharides, alkaloids, polypeptides, and estrogens extracted from herbs, vegetables, as well as animals that have been extensively illustrated to treat diabetic ulcer through targeting MMPs-mediated signaling pathways, are discussed in this review and may contribute to the development of functional foods or drug candidates for diabetic ulcer therapy. This review highlights the regulation of MMPs in diabetic wound healing, and the potential therapeutic ability of natural products for diabetic wound healing by targeting MMPs.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Pharmacology, Sichuan University, Chengdu, China
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Yang P, Zhang S, Yan T, Li F, Zhang S. The Therapeutic Application of Stem Cells and Their Derived Exosomes in the Treatment of Radiation-Induced Skin Injury. Radiat Res 2023; 199:182-201. [PMID: 36630584 DOI: 10.1667/rade-22-00023.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Abstract
Radiation-induced skin injury (RISI) is a serious concern for nuclear accidents and cancer radiotherapy, which seriously affects the quality of life of patients. This injury differs from traditional wounds due to impaired healing and the propensity to recurrence and is divided into acute and chronic phases on the basis of the injury time. Unfortunately, there are few effective therapies for preventing or mitigating this injury. Over the last few decades, various studies have focused on the effects of stem cell-based therapies to address the tissue repair and regeneration of irradiated skin. These stem cells modulate inflammation and instigate tissue repair by differentiating into specific kinds of cells or releasing paracrine factors. Stem cell-based therapies, including bone marrow-derived stem cells (BMSCs), adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF), have been reported to facilitate wound healing after radiation exposure. Moreover, stem cell-derived exosomes have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of stem cells. Based on the literature on stem cell-based therapies for radiation-induced skin injury, we summarize the characteristics of different stem cells and describe their latest animal and clinical applications, as well as potential mechanisms. The promise of stem-cell based therapies against radiation-induced skin injury contribute to our response to nuclear events and smooth progress of cancer radiotherapy.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yan
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fengsheng Li
- PLA Rocket Rorce Characteristic Medical Center, Beijing 100088, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
17
|
Hade MD, Suire CN, Suo Z. An Effective Peptide-Based Platform for Efficient Exosomal Loading and Cellular Delivery of a microRNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3851-3866. [PMID: 36638205 DOI: 10.1021/acsami.2c20728] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exosomes, membrane-bound nanosized vesicles of biologic origin, are known to contain various molecules, e.g., proteins, lipids, and nucleic acids, which contribute to the exosomes' ability to mediate cell-to-cell communication. Recent impediments of artificial nanoparticles in drug delivery, including low cellular uptake, activation of the immune system, and tissue obstacles, have led scientists to engineer exosomes as drug delivery vehicles. Though exosomes possess inherent properties of stability, biocompatibility, low immunogenicity, and capability to cross biological barriers, there is a need to develop technologies that allow the efficient loading of therapeutic materials into exosomes. Here, we introduced a simple peptide-equipped technology that can enhance the cargo-loading potential of exosomes in a mild loading environment. Specifically, a known cell-penetrating peptide, YARA, derived from human immunodeficiency virus-1 trans-activator of transcription, was covalently conjugated with miR-21-5p, a mammalian microRNA. The conjugate YARA-miR-21-5p was then incubated with exosomes, isolated from either mesenchymal stem cells or cancer cells, for loading. Exosomal loading of YARA-miR-21-5p was time-dependent and demonstrated an impressive 18.6-fold increase in efficiency over exosomal loading of miR-21-5p through incubation. After effective cellular uptake, the loaded exosomes rapidly delivered YARA-miR-21-5p into mammalian cells. Relative to unloaded exosomes and free YARA-miR-21-5p, the loaded exosomes significantly enhanced the proliferation, migration, and invasion of human and mouse fibroblasts, which are vital steps in wound healing. This study lays the groundwork for using cell-penetrating peptides as an innovative approach to efficiently load therapeutic cargos, e.g., microRNAs, into exosomes, which can then be employed to deliver the cargos into cells to yield biological effects.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
18
|
Dama G, Du J, Zhu X, Liu Y, Lin J. Bone marrow-derived mesenchymal stem cells: A promising therapeutic option for the treatment of diabetic foot ulcers. Diabetes Res Clin Pract 2023; 195:110201. [PMID: 36493913 DOI: 10.1016/j.diabres.2022.110201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Chronic wounds fail to heal through the three normal stages of healing (inflammatory, proliferative, and remodelling), resulting in a chronic tissue injury that is not repaired within the average time limit. Patients suffering from type 1 and type 2 diabetes are prone to develop diabetic foot ulcers (DFUs), which commonly develop into chronic wounds that are non treatable with conventional therapies. DFU develops due to various risk factors, such as peripheral neuropathy, peripheral vascular disease, arterial insufficiency, foot deformities, trauma and impaired resistance to infection. DFUs have gradually become a major problem in the health care system worldwide. In this review, we not only focus on the pathogenesis of DFU but also comprehensively summarize the outcomes of preclinical and clinical studies thus far and the potential therapeutic mechanism of bone marrow-derived mesenchymal stem cells (BMSCs) for the treatment of DFU. Based on the published results, BMSC transplantation can contribute to wound healing through growth factor secretion, anti-inflammation, differentiation into tissue-specific cells, neovascularization, re-epithelialization and angiogenesis in DFUs. Moreover, clinical trials showed that BMSC treatment in patients with diabetic ulcers improved ulcer healing and the ankle-brachial index, ameliorated pain scores, and enhanced claudication walking distances with no reported complications. In conclusion, although BMSC transplantation exhibits promising therapeutic potential in DFU treatment, additional studies should be performed to confirm their efficacy and long-term safety in DFU patients.
Collapse
Affiliation(s)
- Ganesh Dama
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Jiang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China
| | - Xinxing Zhu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Life Sciences and Technology, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Life Sciences and Technology, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China.
| |
Collapse
|
19
|
Ni Y, Chen Y, Jiang X, Pu T, Zhang L, Li S, Hu L, Bai B, Hu T, Yu L, Yang Y. Transplantation of Human Amniotic Mesenchymal Stem Cells Up-Regulates Angiogenic Factor Expression to Attenuate Diabetic Kidney Disease in Rats. Diabetes Metab Syndr Obes 2023; 16:331-343. [PMID: 36785675 PMCID: PMC9921454 DOI: 10.2147/dmso.s371752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Diabetic kidney disease (DKD) is a prevalent and intractable microvascular complication of diabetes mellitus (DM), the process of which is closely related to abnormal expression of angiogenesis-regulating factors (ARFs). Stem cell transplantation might be a novel strategy for treating DKD. This study aims to explore the effect of transplantation of human amniotic mesenchymal stem cells (hAMSCs) on renal microangiopathy in a type 1 DKD rat model (T1DRM). METHODS Seventy-two rats were randomly divided into three groups, including normal control group, DKD group, and hAMSCs transplantation group. T1DRM was established using a rat tail vein injection of streptozotocin (STZ) (55 mg/kg). hAMSCs were obtained from placental amniotic membranes during cesarean delivery and transplanted at 3 and 4 weeks through penile veins. At 6, 8, and 12 weeks following transplantation, blood glucose levels, renal function, pathological kidney alterations, and the expressions of ARFs' mRNA and protein were analyzed. RESULTS In T1DRM, transplanted hAMSCs that were homed at the injured site of kidneys increased ARFs' expression and decreased blood glucose levels. Compared to the DKD group, the levels of 24-h urinary protein, serum creatinine, urea, and kidney injury molecule-1 (KIM-1) were reduced in hAMSCs transplantation group. In terms of renal pathology such as the degree of basement membrane thickening, hAMSCs transplantation was also less severe than the DKD group, thereby alleviating kidney injury. CONCLUSION hAMSCs transplantation might ameliorate STZ-induced chronic kidney injury through increasing ARFs' expression in kidneys and lowering blood glucose levels.
Collapse
Affiliation(s)
- Yu Ni
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yuqin Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Xuheng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Tao Pu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Ling Zhang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, People’s Republic of China
| | - Shaobin Li
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Linhong Hu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Bing Bai
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Tingting Hu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Correspondence: Limei Yu, Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China, Email
| | - Yibin Yang
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Yibin Yang, Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China, Email
| |
Collapse
|
20
|
Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: Emerging frontiers in wound healing. Med Res Rev 2022; 42:2102-2125. [PMID: 35757979 DOI: 10.1002/med.21918] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/10/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles are membranous particles, ranging from 30 nm to 10 µm in diameter, which are released by nearly all cell types to aid in intercellular communication. These complex vesicles carry a multitude of signaling moieties from their cell of origin, such as proteins, lipids, cell surface receptors, enzymes, cytokines, metabolites, and nucleic acids. A growing body of evidence suggests that in addition to delivering cargos into target cells to facilitate intercellular communication, extracellular vesicles may also play roles in such processes as cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. As these vesicles have natural biocompatibility, stability in circulation, low toxicity, and low immunogenicity, and serve as efficient carriers of molecular cargos, these nanoparticles are ideal therapeutic candidates for regenerative medicine. Exploring and identifying the homeostatic functions of extracellular vesicles may facilitate the development of new regenerative therapies. In this review, we summarize the wound healing process, difficulties in stem cell therapies for regenerative medicine, and the applications of mesenchymal stromal cell-derived extracellular vesicles in improving and accelerating the wound healing process.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - James Mossell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
21
|
Hosseini M, Koehler KR, Shafiee A. Biofabrication of Human Skin with Its Appendages. Adv Healthc Mater 2022; 11:e2201626. [PMID: 36063498 PMCID: PMC11469047 DOI: 10.1002/adhm.202201626] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Much effort has been made to generate human skin organ in the laboratory. Yet, the current models are limited due to the lack of many critical biological and structural features of the skin. Importantly, these in vitro models lack appendages and fail to recapitulate the whole human skin construction. Thus, engineering a human skin with the capacity to generate all components, including appendages, is a major challenge. This review intends to provide an update on the recent efforts underway to regenerate appendage-bearing skin organs based on scaffold-free and scaffold-based bioengineering approaches. Although the mouse skin equivalents containing hair follicles, sebaceous glands, and sweat glands have been established in vitro, there has been limited success in humans. A combination of biofabricated matrices and cell aggregates, such as organoids, can pave the way for generating skin substitutes with human-like biological, structural, and physical features. Accordingly, the formation of human skin organoids and reconstruction of vascularized skin equipped with immune cells prompt calls for more scientific research. The generation of appendage-bearing skin substitutes can be applied in practice for wound healing, hair restoration, and scar treatment.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of MechanicalMedical and Process EngineeringFaculty of EngineeringQueensland University of TechnologyBrisbaneQLD4059Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D)Queensland University of TechnologyBrisbaneQLD4059Australia
| | - Karl R. Koehler
- Department of Otolaryngology‐Head and Neck SurgeryHarvard Medical SchoolBostonMA02115USA
- Department of OtolaryngologyBoston Children's HospitalBostonMA02115USA
| | - Abbas Shafiee
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- Royal Brisbane and Women's HospitalMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- The University of Queensland Diamantina InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLD4102Australia
| |
Collapse
|
22
|
Urine-Derived Stem Cells for Epithelial Tissues Reconstruction and Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14081669. [PMID: 36015295 PMCID: PMC9415563 DOI: 10.3390/pharmaceutics14081669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial tissue injury can occur on any surface site of the body, particularly in the skin or urethral mucosa tissue, due to trauma, infection, inflammation, and toxic compounds. Both internal and external body epithelial tissue injuries can significantly affect patients’ quality of life, increase healthcare spending, and increase the global economic burden. Transplantation of epithelial tissue grafts is an effective treatment strategy in clinical settings. Autologous bio-engineered epithelia are common clinical skin substitutes that have the specific advantages of avoiding tissue rejection, obviating ethical concerns, reducing the risk of infection, and decreasing scarring compared to donor grafts. However, epithelial cells are often obtained from the individual’s skin and mucosa through invasive methods, which cause further injury or damage. Urine-derived stem cells (USC) of kidney origin, obtained via non-invasive acquisition, possess high stemness properties, self-renewal ability, trophic effects, multipotent differentiation potential, and immunomodulatory ability. These cells show versatile potential for tissue regeneration, with extensive evidence supporting their use in the repair of epidermal and urothelial injuries. We discuss the collection, isolation, culture, characterization, and differentiation of USC. We also discuss the use of USC for cellular therapies as well as the administration of USC-derived paracrine factors for epidermal and urothelial tissue repair. Specifically, we will discuss 3D constructions involving multiple types of USC-loaded hydrogels and USC-seeded scaffolds for use in cosmetic production testing, drug development, and disease modeling. In conclusion, urine-derived stem cells are a readily accessible autologous stem cell source well-suited for developing personalized medical treatments in epithelial tissue regeneration and drug testing.
Collapse
|
23
|
Arango-Rodríguez ML, Solarte-David VA, Becerra-Bayona SM, Callegari E, Paez MD, Sossa CL, Vera MEO, Mateus LC, Eduardo Serrano S, Ardila-Roa AK, Viviescas LTG. Role of mesenchymal stromal cells derivatives in diabetic foot ulcers: a controlled randomized phase 1/2 clinical trial. Cytotherapy 2022; 24:1035-1048. [PMID: 36084965 DOI: 10.1016/j.jcyt.2022.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes-related foot complications have been identified as the most common isolated cause of morbidity among patients with diabetes and the leading cause of amputation. Therefore, new strategies to stimulate skin regeneration may provide a novel therapeutic approach to reduce non-healing ulcer disease. Recently, we demonstrated in proof-of-concept in humans that administration of allogeneic bone marrow mesenchymal stromal cellss derivatives (allo-hBM-MSCDs) is effective in a similar way to the use of allogeneic bone marrow mesenchymal stromal cellss (allo-hBM-MSCs) in grade 2 diabetic foot ulcers (DFUs). AIM To assess the safety and efficacy profile of the allo-hBM-MSCDs relative to the conventional approach (PolyMen® dressing) in 1/2 clinical trial phases in patients with grade 1 and 2 DFUs. METHODS In the present study, we used 2 doses of allo-hBM-MSCDs (1 mL) or 1 dose of allo-hBM-MSCs (1 × 106 cells) intradermally injected around wounds and assessed their safety and effectiveness, relative to the conventional approach (PolyMem dressing). Allo-hBM-MSCDs and allo-hBM-MSCs were produced in a certified Good Manufacturing Practice-type Laboratory. Patients with grade 1 and 2 DFUs were randomized to receive allo-hBM-MSCDs (n=12), allo-hBM-MSCs (n=6) or conventional treatment (PolyMem dressing) (n=10). The wound-healing process was macroscopically evaluated until the complete closure of the ulcers. RESULTS No adverse events were reported. Patients with grade 1 and 2 DFUs treated with either allo-hBM-MSCDs or allo-hBM-MSCs, achieved greater percentages of wound closure, enhanced skin regeneration in shorter times and a greater ulcer-free survival relative to the patients who received conventional treatment. Finally, through proteomic analysis, we elucidated the proteins and growth factors that are secreted by allo-hBM-MSCs and relevant to the wound-healing process. In addition, by combining proteomics with Gene Ontology analysis, we comprehensively classified secreted proteins on both biological process and molecular function. CONCLUSIONS In this phase 1/2 trial, our cumulative results suggest that 2 doses of allo-hBM-MSCDs combined with a wound dressing are a safe and effective treatment for grade 1 and 2 DFUs.
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia.
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia 680003
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Maria D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia; Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153 Floridablanca, Colombia
| | | | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| |
Collapse
|
24
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
25
|
Gangadaran P, Oh EJ, Rajendran RL, Kim HM, Oh JM, Kwak S, Hong CM, Choi KY, Chung HY, Ahn BC. Identification of Angiogenic Cargoes in Human Fibroblasts-Derived Extracellular Vesicles and Induction of Wound Healing. Pharmaceuticals (Basel) 2022; 15:702. [PMID: 35745621 PMCID: PMC9230817 DOI: 10.3390/ph15060702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
A complete redevelopment of the skin remains a challenge in the management of acute and chronic wounds. Recently, the application of extracellular vesicles (EVs) for soft tissue wound healing has received much attention. As fibroblasts are fundamental cells for soft tissues and skin, we investigate the proangiogenic factors in human normal fibroblast-derived EVs (hNF-EVs) and their effects on wound healing. Normal fibroblasts were isolated from human skin tissues and characterized by immunofluorescence (IF) and Western blotting (WB). hNF-EVs were isolated by ultracentrifugation and characterized using transmission electron microscopy and WB. The proangiogenic cargos in hNF-EVs were identified by a TaqMan assay and a protein array. Other in vitro assays, including internalization assays, cell counting kit-8 analysis, scratch wound assays, WBs, and tube formation assays were conducted to assess the effects of hNF-EVs on fibroblasts and endothelial cells. A novel scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue was applied onto full-thickness skin wounds in mice. The wound healing therapeutical effect of hNF-EVs was assessed by calculating the rate of wound closure and through histological analysis. Isolated hNF was confirmed by verifying the expression of the fibroblast markers vimentin, αSMA, Hsp70, and S100A4. Isolated hNF-EVs showed intact EVs with round morphology, enriched in CD81 and CD63, and devoid of the cell markers GM130, Calnexin, and Cytochrome C. Our TaqMan assay showed that hNF-EVs were enriched in miR130a and miR210, and protein arrays showed enriched levels of the proangiogenic proteins' vascular endothelial growth factor (VEGF)-D and CXCL8. Next, we found that the internalization of hNF-EVs into hNF increased the proliferation and migration of hNF, in addition to increasing the expression of bFGF, MMP2, and αSMA. The internalization of hNF-EVs into the endothelial cells increased their proliferation and tube formation. A scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue accelerated the wound healing rate in full-thickness skin wounds in mice, and the treatments increased the cellular density, deposition, and maturation of collagens in the wounds. Moreover, the scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue increased the VEGF and CD31 expression in the wounds, indicating that hNF-EVs have an angiogenic ability to achieve complete skin regeneration. These findings open up for new treatment strategies to be developed for wound healing. Further, we offer a new approach to the efficient, scaffold-free noninvasive delivery of hNF-EVs to wounds.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (S.K.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (C.M.H.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (H.M.K.); (K.Y.C.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (C.M.H.)
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (H.M.K.); (K.Y.C.)
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (C.M.H.)
| | - Suin Kwak
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (S.K.)
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (H.M.K.); (K.Y.C.)
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (C.M.H.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (H.M.K.); (K.Y.C.)
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (S.K.)
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (H.M.K.); (K.Y.C.)
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (S.K.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (C.M.H.)
| |
Collapse
|
26
|
Heydari MB, Ghanbari-Movahed Z, Heydari M, Farzaei MH. In vitro study of the mesenchymal stem cells-conditional media role in skin wound healing process: A systematic review. Int Wound J 2022; 19:2210-2223. [PMID: 35412017 DOI: 10.1111/iwj.13796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-conditioned medium (CM) offers a potential opportunity in the skin wound healing treatment. In this systematic review, an overview of the knowledge on this topic has been provided. A multistep search of the PubMed, Scopus and Science Direct database has been performed to identify papers on MSCs-conditional media used in skin wound healing. Eligibility checks were performed based upon predefined selection criteria. Of the 485 articles initially identified, consequently, only 96 articles apparently related to MSC-conditional media were initially assessed for eligibility. Finally, the 32 articles, strictly regarding the in vitro use of MSCs-conditional media in skin wounds, were analysed. The information analysed highlights the efficacy of MSCs-conditional media on skin wound healing in vitro models. The outcome of this review may be used to guide pre-clinical and clinical studies on the role of MSCs-conditional media in skin wound healing.
Collapse
Affiliation(s)
- Mohammad Bagher Heydari
- Specialist General Surgeon, Taleghani Hospital, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Heydari
- Department of Pharmacy Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
28
|
Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13:24. [PMID: 35073970 PMCID: PMC8785459 DOI: 10.1186/s13287-021-02697-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and also their exosome has become a game-changing tool in the context of tissue engineering and regenerative medicine. MSCs due to their competencies to establish skin cells, such as fibroblast and keratinocyte, and also their unique attribute to suppress inflammation in wound site has attracted increasing attention among scholars. In addition, MSC's other capabilities to induce angiogenesis as a result of secretion of pro-angiogenic factors accompanied with marked anti-fibrotic activities, which mainly mediated by the releases matrix metalloproteinase (MMPs), make them a rational and effective strategy to accelerate wound healing with a small scar. Since the chief healing properties of the MSCs depend on their paracrine effects, it appears that MSCs-derived exosomes also can be an alternative option to support wound healing and skin regeneration as an innovative cell-free approach. Such exosomes convey functional cargos (e.g., growth factor, cytokine, miRNA, etc.) from MSCs to target cells, thereby affecting the recipient skin cells' biological events, such as migration, proliferation, and also secretion of ECM components (e.g., collagen). The main superiorities of exosome therapy over parental MSCs are the diminished risk of tumor formation and also lower immunogenicity. Herein, we deliver an overview of recent in vivo reports rendering the therapeutic benefits of the MSCs-based therapies to ease skin wound healing, and so improving quality of life among patients suffering from such conditions.
Collapse
Affiliation(s)
- Donghui Bian
- Department of Burns and Plastic Surgery, 960 Hospital of the People’s Liberation Army, Jinan, 250031 China
| | - Yan Wu
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Guodong Song
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Ramyar Azizi
- Department of Immunology, Medicine Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Aguiar Koga BA, Fernandes LA, Fratini P, Sogayar MC, Carreira ACO. Role of MSC-derived small extracellular vesicles in tissue repair and regeneration. Front Cell Dev Biol 2022; 10:1047094. [PMID: 36935901 PMCID: PMC10014555 DOI: 10.3389/fcell.2022.1047094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 03/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Letícia Alves Fernandes
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Ana Claudia Oliveira Carreira, ,
| |
Collapse
|
30
|
Luna GLF, Oehlmeyer TL, Brandão G, Brassolatti P, Tosta J, Goto LS, Avó LD, Leal AMDO. Use of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase in wound healing in diabetic rats. ACTA ACUST UNITED AC 2021; 54:e11352. [PMID: 34495249 PMCID: PMC8427594 DOI: 10.1590/1414-431x2021e11352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus is associated with neural and micro- and macrovascular complications. Therapeutic options for these complications are limited and the delivery of mesenchymal stem cells into lesions have been reported to improve the healing process. In this work, the effects of the administration of a lineage of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase (hBMSC-TERT) as a potential therapeutic tool for wound healing in diabetic rats were investigated. This is the first description of the use of these cells in diabetic wounds. Dorsal cutaneous lesions were made in streptozotocin-induced diabetic rats and hBMSC-TERT were subcutaneously administered around the lesions. The healing process was evaluated macroscopically, histologically, and by birefringence analysis. Diabetic wounded rats infused with hBMSC-TERT (DM-TERT group) and the non-diabetic wounded rats not infused with hBMSC-TERT (CW group) had very similar patterns of fibroblastic response and collagen proliferation indicating improvement of wound healing. The result obtained by birefringence analysis was in accordance with that obtained by the histological analysis. The results indicated that local administration of hBMSC-TERT in diabetic wounds improved the wound healing process and may become a therapeutic option for wounds in individuals with diabetes.
Collapse
Affiliation(s)
- G L Flores Luna
- Post-Graduate Program in Biotechnology, Laboratório de Investigação Endócrina Metabólica, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T L Oehlmeyer
- Post-Graduate Program in Biotechnology, Laboratório de Investigação Endócrina Metabólica, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - G Brandão
- Post-Graduate Program in Biotechnology, Laboratório de Investigação Endócrina Metabólica, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - P Brassolatti
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - J Tosta
- Post-Graduate Program in Biotechnology, Laboratório de Investigação Endócrina Metabólica, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - L S Goto
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brasil
| | - L de Avó
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A M de Oliveira Leal
- Post-Graduate Program in Biotechnology, Laboratório de Investigação Endócrina Metabólica, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
31
|
Linnemann C, Savini L, Rollmann MF, Histing T, Nussler AK, Ehnert S. Altered Secretome of Diabetic Monocytes Could Negatively Influence Fracture Healing-An In Vitro Study. Int J Mol Sci 2021; 22:9212. [PMID: 34502120 PMCID: PMC8430926 DOI: 10.3390/ijms22179212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a main risk factor for delayed fracture healing and fracture non-unions. Successful fracture healing requires stimuli from different immune cells, known to be affected in diabetics. Especially, application of mononuclear cells has been proposed to promote wound and fracture healing. Thus, aim was to investigate the effect of pre-/diabetic conditions on mononuclear cell functions essential to promote osteoprogenitor cell function. We here show that pre-/diabetic conditions suppress the expression of chemokines, e.g., CCL2 and CCL8 in osteoprogenitor cells. The associated MCP-1 and MCP-2 were significantly reduced in serum of diabetics. Both MCPs chemoattract mononuclear THP-1 cells. Migration of these cells is suppressed under hyperglycemic conditions, proposing that less mononuclear cells invade the site of fracture in diabetics. Further, we show that the composition of cytokines secreted by mononuclear cells strongly differ between diabetics and controls. Similar is seen in THP-1 cells cultured under hyperinsulinemia or hyperglycemia. The altered secretome reduces the positive effect of the THP-1 cell conditioned medium on migration of osteoprogenitor cells. In summary, our data support that factors secreted by mononuclear cells may support fracture healing by promoting migration of osteoprogenitor cells but suggest that this effect might be reduced in diabetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (C.L.); (L.S.); (M.F.R.); (T.H.); (A.K.N.)
| |
Collapse
|
32
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
33
|
Ali F, Wajid N, Sarwar MG, Qazi AM. Oral Administration of Aloe vera Ameliorates Wound Healing through Improved Angiogenesis and chemotaxis in Sprague Dawley Rats. Curr Pharm Biotechnol 2021; 22:1122-1128. [PMID: 33023442 DOI: 10.2174/1389201021999201001204345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/21/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aloe vera has been reported as a topical antibiotic and healing agent for wounds, but advantages of oral administration and mechanisms of wound healing have not been reported. Present study focuses on the evaluation of effects of oral administration of Aloe vera for excisional cutaneous wounds in Sprague Dawley rats. METHODS Sprague Dawley (SD) rats were inflicted with excisional wounds and were either treated with Aloe vera orally (Aloe vera) or kept untreated (wound). In contrast, healthy rats were kept as control group. Wound area was measured from day 7th to day 21st. Collagen content was estimated by hydroxyproline assay. Histology was analysed by hematoxylin and eosin staining. Angiogenesis was observed by indirect ELISA for Insulin like Growth Factor (IGF-1) and Vascular Endothelial Growth Factor (VEGF) protein from skin, serum and bone marrow. Chemotaxis was evaluated by RT-PCR analysis for Stromal cell-Derived Factor-1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR-4) from skin and bone marrow. RESULTS Aloe vera healed wounds earlier than untreated rats with gradual improvement in wound areas and collagen content. Aloe vera also improved the expression of IGF-1 and VEGF in skin and bone marrow indicating an improvement in angiogenesis. RT- PCR analysis showed increased expression of genes for chemotaxis (SDF-1 and CXCR-4) in skin and bone marrow. CONCLUSION Aloe vera improves healing by increasing collagen content, improving angiogenesis and chemotaxis.
Collapse
Affiliation(s)
- Fatima Ali
- The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Nadia Wajid
- The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Maryam G Sarwar
- The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Aamer M Qazi
- The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
34
|
Cao Y, Yan J, Liu H. [Clinical research progress of mesenchymal stem cells in treatment of chronic wounds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:496-501. [PMID: 33855836 DOI: 10.7507/1002-1892.202011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the clinical research progress of mesenchymal stem cells (MSCs) in the treatment of chronic wounds. Methods The literature related to the chronic wound repair with MSCs at home and abroad in recent years was extensively reviewed, and the possible mechanism of MSCs in the treatment of chronic wounds, as well as its application and existing problems were summarized. Results MSCs can participate in all aspects of chronic wound healing to promote wound healing, and has shown broad application prospects in clinical trials. MSCs commonly used in clinical research include bone marrow-derived MSCs, adipose-derived tissue MSCs, and umbilical cord-derived MSCs. Conclusion MSCs treatment is a promising strategy for the chronic wounds, but there are still many problems in its widespread clinical application that require further research.
Collapse
Affiliation(s)
- Yingxuan Cao
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| | - Jianxin Yan
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| | - Hongwei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| |
Collapse
|
35
|
Gangadaran P, Rajendran RL, Oh JM, Oh EJ, Hong CM, Chung HY, Lee J, Ahn BC. Identification of Angiogenic Cargo in Extracellular Vesicles Secreted from Human Adipose Tissue-Derived Stem Cells and Induction of Angiogenesis In Vitro and In Vivo. Pharmaceutics 2021; 13:495. [PMID: 33916460 PMCID: PMC8066163 DOI: 10.3390/pharmaceutics13040495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is defined as the generation of new blood vessels or the sprouting of endothelial cells from a pre-existing vascular network. Angiogenesis occurs during the growth and development of an organism, the response of organs or tissues to injury, and during cancer development and progression. The majority of studies on stem-cell-derived extracellular vesicles (EVs) have used cell lines, and have primarily focused on well-known solitary proteins. Here, we isolated stem cells from human adipose tissue (ADSCs), and we isolated EVs from them (ADSC-EVs). The ADSC-EVs were characterised and 20 angiogenic proteins were analysed using an angiogenic antibody array. Furthermore, we analysed the ability of ADSC-EVs to induce angiogenesis in vitro and in vivo. ADSC-EVs were positive for CD81 and negative for GM130, calnexin, and cytochrome-C. ADSC-EVs showed typical EV spherical morphology and were ~200 nm in size. ADSC-EVs were found to contain angiogenic proteins as cargo, among which interleukin 8 (IL-8) was the most abundant, followed by chemokine (C-C motif) ligand 2 (CCL2), a tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and vascular endothelial growth factor-D (VEGF-D). ADSC-EVs treatment increased the proliferation, migration, total vessel length, total number of junctions, and junction density of endothelial cells in vitro. The results of an in vivo Matrigel plug assay revealed that ADSC-EVs induced more blood vessels in the Matrigel compared with the control. These results demonstrate that ADSC-EVs contain angiogenic proteins as cargo and promote angiogenesis in vitro and in vivo. Therefore, ADSC-EVs have potential for therapeutic use in ischaemia.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Korea;
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Korea;
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| |
Collapse
|
36
|
Jiang X, Lai XR, Lu JQ, Tang LZ, Zhang JR, Liu HW. Decellularized adipose tissue: A key factor in promoting fat regeneration by recruiting and inducing mesenchymal stem cells. Biochem Biophys Res Commun 2021; 541:63-69. [PMID: 33477034 DOI: 10.1016/j.bbrc.2020.12.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Decellularized adipose tissue (DAT) has attracted much attention due to its wide range of sources and adipose regeneration capacity. However, the lipogenic efficiency of DAT is still controversial due to its unclear mechanism. To this point, it is crucial to clarify the mechanism of DAT in promoting adipose regeneration Objective: This study aims to explore the mechanism of DAT promoting adipose regeneration and survival mechanism of DAT transplantation in vivo. METHODS DAT preparation by repeated freeze-thaw, enzymatic digestion, and isopropanol degreasing. Histology, DAPI, immunohistochemistry, immunofluorescence and scanning electron microscopy confirmed the efficacy and reproducibility of these approaches. BM-MSCs, ADSCs and UCMSCs were cocultured with DAT for 14 days and then stained with oil red O. Adipogenic genes of three MSCs were detected by RT-PCR. DAT and adipose tissue were transplanted subcutaneously into the back of nude mice to observe medium and long-term morphological changes, vascularization, and lipid-forming efficiency. Mass spectrometry (MS)-based proteomic to analyze the adipogenic protein contents of DAT and adipose tissue. RESULTS The DAT without any cellular components but with an abundance of collagen; neither DNA nor lipids were detected. Seeding experiments with MSCs indicated that the DAT provided an inductive microenvironment for adipogenesis, supporting the expression of the master regulators PPARγ. Within four months after transplantation, HE morphology of DAT was identical to adipose cells. Immunofluorescence markers CD31 and perilipin were increased in DAT, while the retention rate gradually decreased over time, eventually accounting for 33.7% of the original volume. MS-based proteomic analyses identified 1013 types of proteins in adipose tissue and 29 proteins in the DAT. Analyses of GO and KEGG databases suggested that DAT contained a variety of proteins involved in fat metabolism. CONCLUSIONS DAT can interact with different types of MSCs and ultimately achieve adipose regeneration. The presence of multiple adipogenic proteins in DAT make it play a vital role in adipose regeneration. DAT is expected to be an ideal bio-derived scaffold for adipose tissue engineering.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Xin-Rui Lai
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Jin-Qiang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Ling-Zhi Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Jin-Rong Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| |
Collapse
|
37
|
Shafaie S, Andalib S, Shafaei H, Montaseri A, Tavakolizadeh M. Differential Biological Behavior of Fibroblasts and Endothelial Cells under Aloe vera Gel Culturing. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:234-246. [PMID: 33274186 PMCID: PMC7703660 DOI: 10.22088/ijmcm.bums.9.3.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Aloe vera is used for its large variety of biological activities such as wound healing, anti-fungal, anti-inflammatory, hypoglycemic, immunomodulatory, gastroprotective, and anti-cancer. Although the beneficial effects of Aloe vera on wound healing have been proven, little is known about its effects at the cellular level. In this study, we evaluated the angiogenic and migrative effects of Aloe vera gel on fibroblasts and endothelial cells. Fibroblasts and endothelial cells were cultured in monolayer conditions with low glucose DMEM with 10% serum and 1% penicillin-streptomycin. Fresh and mature leaves of Aloe vera were used for gel preparation. Cell proliferation and morphology were studied by an inverted microscope. The migration of fibroblasts was assessed by scratch assay. MTT assay was performed for cell viability assessment, and real-time RT-PCR was used for evaluation of PECAM-1, integrin α1 and β1 transcription. After two days, the protein level of PECAM-1 was detected by flow cytometry. Our results showed that Aloe vera has a higher proliferative effect on fibroblasts in comparison with endothelial cells. Aloe vera also induced the migration of fibroblasts. The viability of both types of cells was similar to control ones. Integrin α1, β1 and PECAM-1 gene expression increased significantly (P <0.005) in Aloe vera treated fibroblasts and endothelial cells in comparison with the control groups. However, the expression of these genes was significantly higher in fibroblasts in comparison with endothelial cells. Protein levels of PECAM-1 showed no change in both cell types upon Aloe vera treatment. Aloe vera gel induced angiogenic and cell adhesion properties in fibroblasts more than endothelial cells. Further investigations are needed to show the main role of fibroblasts rather than endothelial cells in wound healing by Aloe vera administration.
Collapse
Affiliation(s)
- Saba Shafaie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hajar Shafaei
- Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz.,Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Tavakolizadeh
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
38
|
Bazzoni R, Takam Kamga P, Tanasi I, Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front Cell Dev Biol 2020; 8:596079. [PMID: 33240892 PMCID: PMC7677193 DOI: 10.3389/fcell.2020.596079] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal tissues of the body and capable of promoting tissue repair and attenuating inflammatory processes through their immunomodulatory properties. Preclinical and clinical observations revealed that not only direct intercellular communication mediates MSC properties; in fact, a pivotal role is also played by the release of soluble and bioactive factors, such as cytokines, growth factor and extracellular vesicles (EVs). EVs are membrane-coated vesicles containing a large variety of bioactive molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release their contents into target cells, thus influencing cell fate through the control of intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects toward different effector cells belonging to both innate and adaptive immunity. In this review, we will discuss the literature data concerning MSC-derived EVs, including the current standardized methods for their isolation and characterization, the mechanisms supporting their immunoregulatory properties, and their potential clinical application as alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Rahbar Layegh E, Fadaei Fathabadi F, Lotfinia M, Zare F, Mohammadi Tofigh A, Abrishami S, Piryaei A. Photobiomodulation therapy improves the growth factor and cytokine secretory profile in human type 2 diabetic fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111962. [PMID: 32712344 DOI: 10.1016/j.jphotobiol.2020.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
Abstract
Impaired wound healing is a common complication of diabetes mellitus (DM) and the underlying mechanism of this impairment is still unclear. Fibroblast, as the main reconstructing cell, secretes some critical growth factors and cytokine contributing to wound healing. It is well known that DM alters the behavior of these cells and photobiomodulation therapy (PBMT) compensates some impairments in diabetic fibroblasts. Therefore, the aim of the present study was to demonstrate the impact of diabetes and the role of PBMT through low level laser irradiation on secretory profile of human diabetic fibroblasts. Primary human dermal fibroblasts from normal (HDFs) and diabetic (DHDFs) donors were harvested. For PBMT, the DHDFs were irradiated with a Helium-Neon laser at 632.8 nm wavelength and energy density of 0.5 J/cm2, as laser treated group (LT-DHDFs). Next, some cellular behaviors and secretory profiling array for 60 growth factors/cytokines were investigated in LT-DHDFs and then compared with those of controls. The data showed that the PBMT could compensate such impairments occurred in DHDFs in terms of viability, proliferation, and migration. Furthermore, considering our novel findings, out of those 20 growth factors/cytokines involved in cell proliferation, immune system regulation, and cell-cell communication pathways, which significantly decreased in DHDF as compared with HDFs, the PBMT could compensate seven in LT-DHDFs as compared with DHDFs. The seven growth factor/cytokines, which are mainly involved in cell-cell communication, positive regulation of cell proliferation, and chemokine mediated pathway included BDNF, Eotaxin-3, FGF6, FGF7, Fractalkine, fit-3ligand, and GCP-2. Therefore, it is suggested that scrutinizing these differentially secreted molecules and the impaired pathways in DHDFs, in combination with those compensated in LT-DHDFs, could raise our knowledge to manage diabetic ulcer through a feasible and cost effective intervention, specifically PBMT.
Collapse
Affiliation(s)
- E Rahbar Layegh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Fadaei Fathabadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - F Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Mohammadi Tofigh
- Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Abrishami
- Department of Cardiovascular Surgery, Imam Khomeini Hospital Complex, Tehran Iniversity Medical Center, Tehran, Iran
| | - A Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Becerra-Bayona SM, Solarte-David VA, Sossa CL, Mateus LC, Villamil M, Pereira J, Arango-Rodríguez ML. Mesenchymal stem cells derivatives as a novel and potential therapeutic approach to treat diabetic foot ulcers. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM19-0164. [PMID: 32698128 PMCID: PMC7354732 DOI: 10.1530/edm-19-0164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Diabetic foot ulcer morbidity and mortality are dramatically increasing worldwide, reinforcing the urgency to propose more effective interventions to treat such a devastating condition. Previously, using a diabetic mouse model, we demonstrated that administration of bone marrow mesenchymal stem cells derivatives is more effective than the use of bone marrow mesenchymal stem cells alone. Here, we used the aforementioned treatments on three patients with grade 2 diabetic foot ulcers and assessed their beneficial effects, relative to the conventional approach. In the present study, two doses of cell derivatives, one dose of mesenchymal stem cells or one dose of vehicle (saline solution with 5% of human albumin), were intradermally injected around wounds. Wound healing process and changes on re-epithelialization were macroscopically evaluated until complete closure of the ulcers. All ulcers were simultaneously treated with conventional treatment (PolyMen® dressing). Patients treated with either cell derivatives or mesenchymal stem cells achieved higher percentages of wound closure in shorter times, relative to the patient treated with the conventional treatment. The cell derivative and mesenchymal stem cells approaches resulted in complete wound closure and enhanced skin regeneration at some point between days 35 and 42, although no differences between these two treatments were observed. Moreover, wounds treated with the conventional treatment healed after 161 days. Intradermal administration of cell derivatives improved wound healing to a similar extent as mesenchymal stem cells. Thus, our results suggest that mesenchymal stem cell derivatives may serve as a novel and potential therapeutic approach to treat diabetic foot ulcers. LEARNING POINTS In diabetic mouse models, the administration of mesenchymal stem cells derivatives have been demonstrated to be more effective than the use of marrow mesenchymal stem cells alone. Mesenchymal stem cells have been explored as an attractive therapeutic option to treat non-healing ulcers. Mesenchymal stem cells derivatives accelerate the re-epithelialization on diabetic foot ulcers.
Collapse
Affiliation(s)
- Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga – UNAB, Bucaramanga, Colombia
| | | | - Claudia L Sossa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga – UNAB, Bucaramanga, Colombia
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
| | - Ligia C Mateus
- Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
| | - Martha Villamil
- Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
| | - Jorge Pereira
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle – FOSCAL, Floridablanca, Colombia
| |
Collapse
|
41
|
Saheli M, Bayat M, Ganji R, Hendudari F, Kheirjou R, Pakzad M, Najar B, Piryaei A. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch Dermatol Res 2020; 312:325-336. [DOI: 10.1007/s00403-019-02016-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023]
|
42
|
Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:555-570. [PMID: 32242479 DOI: 10.1089/ten.teb.2019.0351] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Healing skin wounds with anatomic and functional integrity, especially under chronic pathological conditions, remain an enormous challenge. Due to their outstanding regenerative potential, mesenchymal stem cells (MSCs) have been explored in many studies to determine the healing ability for difficult-to-treat diseases. In this article, we review current animal studies and clinical trials of MSC-based therapy for chronic wounds, and discuss major challenges that confront future clinical applications. We found that a wealth of animal studies have revealed the versatile roles and the benefits of MSCs for chronic wound healing. MSC treatment results in enhanced angiogenesis, facilitated reepithelialization, improved granulation, and accelerated wound closure. There are some evidences of the transdifferentiation of MSCs into skin cells. However, the healing effect of MSCs depends primarily on their paracrine actions, which alleviate the harsh microenvironment of chronic wounds and regulate local cellular responses. Consistent with the findings of preclinical studies, some clinical trials have shown improved wound healing after transplantation of MSCs in chronic wounds, mainly lower extremity ulcers, pressure sores, and radiation burns. However, there are some limitations in these clinical trials, especially a small number of patients and imperfect methodology. Therefore, to better define the safety and efficiency of MSC-based wound therapy, large-scale controlled multicenter trials are needed in the future. In addition, to build a robust pool of clinical evidence, standardized protocols, especially the cultivation and quality control of MSCs, are recommended. Altogether, based on current data, MSC-based therapy represents a promising treatment option for chronic wounds. Impact statement Chronic wounds persist as a significant health care problem, particularly with increasing number of patients and the lack of efficient treatments. The main goal of this article is to provide an overview of current status of mesenchymal stem cell (MSC)-based therapy for chronic wounds. The roles of MSCs in skin wound healing, as revealed in a large number of animal studies, are detailed. A critical view is made on the clinical application of MSCs for lower extremity ulcers, pressure sores, and radiation burns. Main challenges that confront future clinical applications are discussed, which hopefully contribute to innovations in MSC-based wound treatment.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Gou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin-Cui Da
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Delfino MM, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Sasso-Cerri E, Cerri PS. Immunoinflammatory response and bioactive potential of GuttaFlow bioseal and MTA Fillapex in the rat subcutaneous tissue. Sci Rep 2020; 10:7173. [PMID: 32346066 PMCID: PMC7188821 DOI: 10.1038/s41598-020-64041-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022] Open
Abstract
To evaluate the effect of GuttaFlow bioseal (GFB) and MTA Fillapex (MTAF) in comparison with Endofill (EF) in the subcutaneous tissue. Polyethylene tubes with GFB, MTAF, EF or empty tubes (control group; CG) were implanted into subcutaneous of rats. After 7, 15, 30 and 60 days, the capsule thickness, inflammatory reaction, interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), caspase-3, TUNEL-positive cells, von Kossa and ultrastructural features were evaluated. The data were statistically analyzed (p ≤ 0.05). At all periods, the number of IL-6- and VEGF-immunolabelled cells, and capsule thickness were lower in GFB than MTAF, which was lower than EF (p < 0.0001). At 60 days, the number of inflammatory cells was similar in GFB and MTAF (p = 0.58). Significant differences in the number of TUNEL- and caspase-3-positive cells were not observed among GFB, MTAF and CG whereas the highest values were found in EF specimens. The EF specimens exhibited several cells with condensed chromatin, typical of apoptosis. von Kossa-positive and birefringent structures were only observed in GFB and MTAF, suggesting the presence of calcite crystals. Taken together, these results show that cellular and structural damage induced by GFB and MTAF sealers were recovery over time. Moreover, these sealers express bioactive potential in subcutaneous tissue.
Collapse
Affiliation(s)
- Mateus Machado Delfino
- Department of Restorative Dentistry, Dental School - São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | - Mário Tanomaru-Filho
- Department of Restorative Dentistry, Dental School - São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Dental School - São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Dental School - São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
44
|
The Potential of a Hair Follicle Mesenchymal Stem Cell-Conditioned Medium for Wound Healing and Hair Follicle Regeneration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study elucidated the wound healing and hair regeneration properties of a conditioned medium prepared from the culture of human hair follicle mesenchymal stem cells (HFMSCs). The wound-healing effects of mesenchymal stem cell-conditioned medium (MSC-CM) were tested in vitro using scratch assays co-cultured with HaCaT keratinocyte and monitored through optical microscopy. The cell proliferation of HFMSCs and the HaCaT keratinocyte were observed in the presence of different kinds of drugs including UK5099, sodium L-lactate, lactate dehydrogenase-A, MSC-CM, caffeine, and caffeic acid. The hair regeneration properties were investigated in vivo by administrating the MSC-CM solutions to adult B6 mouse models. For quantification, hematoxylin and eosin staining were performed following euthanasia. In vitro results revealed that MSC-CM promotes dermal cell migrations and enhances proliferation of HFMSCs and HaCaT keratinocytes, demonstrating wound-healing properties. Moreover, when the MSC-CM solutions were applied to the shaved mouse skin, a dark area that expanded overtime was seen. Although no hair growth was found, histological analysis proved that a fat layer thickness increment was found under the mouse’s skin, ultimately projecting the formation of new hair growth. MSC-CM promotes the migration and proliferation of dermal keratinocytes that are beneficial for wound healing and hair growth. It is believed that MSC-CM can potentially serve as the basis of alternative therapeutic applications for wound closure and skin regeneration as well as hair growth stimulation and hair loss prevention in alopecia.
Collapse
|
45
|
Qi L, Ahmadi AR, Huang J, Chen M, Pan B, Kuwabara H, Iwasaki K, Wang W, Wesson R, Cameron AM, Cui S, Burdick J, Sun Z. Major Improvement in Wound Healing Through Pharmacologic Mobilization of Stem Cells in Severely Diabetic Rats. Diabetes 2020; 69:699-712. [PMID: 31974141 DOI: 10.2337/db19-0907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 11/13/2022]
Abstract
Current therapeutic strategies for diabetic foot ulcer (DFU) have focused on developing topical healing agents, but few agents have controlled prospective data to support their effectiveness in promoting wound healing. We tested a stem cell mobilizing therapy for DFU using a combination of AMD3100 and low-dose FK506 (tacrolimus) (AF) in streptozocin-induced type 1 diabetic (T1DM) rats and type 2 diabetic Goto-Kakizaki (GK) rats that had developed peripheral artery disease and neuropathy. Here, we show that the time for healing back wounds in T1DM rats was reduced from 27 to 19 days, and the foot wound healing time was reduced from 25 to 20 days by treatment with AF (subcutaneously, every other day). Similarly, in GK rats treated with AF, the healing time on back wounds was reduced from 26 to 21 days. Further, this shortened healing time was accompanied by reduced scar and by regeneration of hair follicles. We found that AF therapy mobilized and recruited bone marrow-derived CD133+ and CD34+ endothelial progenitor cells and Ym1/2+ M2 macrophages into the wound sites, associated with enhanced capillary and hair follicle neogenesis. Moreover, AF therapy improved microcirculation in diabetic and neuropathic feet in GK rats. This study provides a novel systemic therapy for healing DFU.
Collapse
Affiliation(s)
- Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melissa Chen
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Baohan Pan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hiroshi Kuwabara
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenichi Iwasaki
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Russell Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
46
|
Prado LG, Arruda HS, Peixoto Araujo NM, de Oliveira Braga LE, Banzato TP, Pereira GA, Figueiredo MC, Ruiz ALTG, Eberlin MN, de Carvalho JE, Vendramini-Costa DB, Pastore GM. Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Res Int 2020; 133:109168. [PMID: 32466931 DOI: 10.1016/j.foodres.2020.109168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022]
Abstract
Araticum (Annona crassiflora Mart.) is a native fruit from Brazilian Cerrado widely used by folk medicine. Nevertheless, the biological effects of its seeds and peel have not been extensively evaluated. We evaluate herein the antioxidant, antiproliferative and healing potential of araticum peel and seeds extracts. HPLC-ESI-MS/MS analysis showed flavonoids, namely epicatechin and quercetin, as the main compounds in peel and seeds extracts, respectively. These extracts showed high content of phenolic compounds (7254.46 and 97.74 µg/g extract) and, as consequence, high antioxidant capacity. Interesting, the seeds extract was more effective than peel extract against all tested cancer cells, especially on NCI-ADR/RES (multidrug resistant ovary adenocarcinoma) cell line. In the cell migration assay by using HaCaT (keratinocyte), the seeds extract induced migration, while the peel extract showed an inhibitory effect. In this way, phenolic content could be related to antioxidant capacity, but it was not related to antiproliferative and healing effect. The araticum seeds extract showed an interesting response to in vitro biological assay although of its low content of phenolic compounds. Unidentified compounds, such as alkaloids and annonaceous acetogenins could be related to it. Araticum has potential to be used as therapeutic plant especially as antiproliferative and healing drug.
Collapse
Affiliation(s)
- Lívia Garcia Prado
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Lucia Elaine de Oliveira Braga
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Graduate Program in Odontology, University of Campinas, UNICAMP, Piracicaba, SP 13414-903, Brazil
| | - Thais Petrochelli Banzato
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Institute of Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gustavo Araujo Pereira
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Mariana Cecchetto Figueiredo
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil
| | - Ana Lúcia Tasca Gois Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Graduate Program in Odontology, University of Campinas, UNICAMP, Piracicaba, SP 13414-903, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP 13083-970, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, Campinas, SP 13083-871, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| |
Collapse
|
47
|
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:146. [PMID: 32195233 PMCID: PMC7062641 DOI: 10.3389/fbioe.2020.00146] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The cells secrete extracellular vesicles (EV) that may have an endosomal origin, or from evaginations of the plasma membrane. The former are usually called exosomes, with sizes ranging from 50 to 100 nm. These EV contain a lipid bilayer associated to membrane proteins. Molecules such as nucleic acids (DNA, mRNA, miRNA, lncRNA, etc.) and proteins may be stored inside. The EV composition depends on the producer cell type and its physiological conditions. Through them, the cells modify their microenvironment and the behavior of neighboring cells. That is accomplished by transferring factors that modulate different metabolic and signaling pathways. Due to their properties, EV can be applied as a diagnostic and therapeutic tool in medicine. The mesenchymal stromal cells (MSC) have immunomodulatory properties and a high regenerative capacity. These features are linked to their paracrine activity and EV secretion. Therefore, research on exosomes produced by MSC has been intensified for use in cell-free regenerative medicine. In this area, the use of EV for the treatment of chronic skin ulcers (CSU) has been proposed. Such sores occur when normal healing does not resolve properly. That is usually due to excessive prolongation of the inflammatory phase. These ulcers are associated with aging and diseases, such as diabetes, so their prevalence is increasing with the one of such latter disease, mainly in developed countries. This has very important socio-economic repercussions. In this review, we show that the application of MSC-derived EV for the treatment of CSU has positive effects, including accelerating healing and decreasing scar formation. This is because the EV have immunosuppressive and immunomodulatory properties. Likewise, they have the ability to activate the angiogenesis, proliferation, migration, and differentiation of the main cell types involved in skin regeneration. They include endothelial cells, fibroblasts, and keratinocytes. Most of the studies carried out so far are preclinical. Therefore, there is a need to advance more in the knowledge about the conditions of production, isolation, and action mechanisms of EV. Interestingly, their potential application in the treatment of CSU opens the door for the design of new highly effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba, Spain
| |
Collapse
|
48
|
Kosol W, Kumar S, Marrero-BerrÍos I, Berthiaume F. Medium conditioned by human mesenchymal stromal cells reverses low serum and hypoxia-induced inhibition of wound closure. Biochem Biophys Res Commun 2020; 522:335-341. [PMID: 31761327 PMCID: PMC10660584 DOI: 10.1016/j.bbrc.2019.11.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Chronic wounds, such as pressure ulcers, are a common complication of impaired peripheral circulation, such as in advanced diabetes. Factors secreted by mesenchymal stromal cells (MSCs) have been shown to enhance wound healing in vitro and in vivo. However, there is little understanding of the impact of the chronic wound environment, namely the limited supply of nutrients and oxygen, on the ability of wound cells to respond to MSCs. In this study, we first established the effects of hypoxia (1% O2) and low serum (1% serum) concentration on the proliferation and migration of keratinocytes. We found that hypoxia and low serum significantly slowed down these processes. Next, we found that supplementation with human MSC-concentrated conditioned media (hMSC-CM) enhanced both cell migration and proliferation in the presence of hypoxia and low serum. Furthermore, low serum and hypoxia decreased cell spreading and F-actin expression, which was reversed in the presence of hMSC-CM. Several wound healing mediators were identified in hMSC-CM, including IL-5, IL-6, IL-8, IL-9, IP-10, MCP-1, FGF-2, and VEGF. This study suggests that the concentrated secretome of human MSCs can reverse the inhibitory effect of hypoxia and low serum on keratinocyte proliferation and migration. This phenomenon may contribute to the beneficial effects of hMSC-CM on wound healing in vivo.
Collapse
Affiliation(s)
- Wilai Kosol
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Ileana Marrero-BerrÍos
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
49
|
Oryan A, Alemzadeh E, Mohammadi AA. Application of honey as a protective material in maintaining the viability of adipose stem cells in burn wound healing: A histological, molecular and biochemical study. Tissue Cell 2019; 61:89-97. [PMID: 31759413 DOI: 10.1016/j.tice.2019.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
Enhanced resistance to oxidative stress makes the adipose stem cells (ASCs) able to promote wound repair and regeneration. Such cells can be achieved by addition of an anti-oxidant to cell culture medium. In this study, a combination of honey (H) and ASCs was applied on burn wounds and the injured area was then covered by a tegaderm (T) dressing in a rat model. Wound healing was evaluated by histopathological, histomorphometrical, molecular, scanning electron microscopy, and biochemical assessments on days 7, 14, and 28 post-wounding. Treatment with ASCs-containing honey (T-H/ASC) resulted in substantial reduction in the level of pro-inflammatory cytokines including interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) in wound bed, at 7 day post-surgery. T-H/ASCs also elevated the level of bFGF expression, indicating that ASCs enhanced angiogenesis, at 7 day post-wounding. T-H/ASCs significantly improved angiogenesis, re-epithelialization, and granulation tissue formation compared to other treatment regimes, at 14 day post-surgery. These outcomes were in exceptionally good agreement with the histological and biochemical findings. Increased bFGF level in the T-H/ASCs treated wounds at the 28th day post-surgery showed the anti-scarring activity of ASCs. Honey can be considered as a protective material in maintaining the viability of ASCs and improving the cellular resistance to oxidative stress. Furthermore, combination of ASCs and honey can provide a nutrient media for the ASCs and enhance the ability of regeneration of the ASC-based therapies.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Shukla SK, Sharma AK, Gupta V, Yashavarddhan MH. Pharmacological control of inflammation in wound healing. J Tissue Viability 2019; 28:218-222. [PMID: 31542301 DOI: 10.1016/j.jtv.2019.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Wound inflammation is a rapid and highly orchestrated process that significantly impacts the wound healing cascade. Consequent to injury, a series of events set off that include inflammatory, proliferation and maturation phases leading to wound closure and restoration of normal skin integrity. Stimuli causing stress to host immune system or induce inflammatory response include tissue damage and pathogenic microbial infection.Several evidences points towards the positive role of inflammation as it essential to fight against the attack of invading pathogens and to remove dead tissues from the site of injury. Besides its positive role, prolonged inflammation is injurious and may result in deregulated stages of the wound healing which may lead to excessive scarring. Achieving balance in inflammatory cascade is one of the challenging tasks for development of a wound healing drug. This review mainly focuses on the pharmacological control of inflammation by agents which critically balance the inflammatory cascade. However, none of the agent is available in the healthcare market which exclusively plays a role in wound repair. In this review we shall explore different factors or agents affecting inflammation in wound healing. This information might be helpful in designing and development new process, technologies or drugs for better management of wound care. In addition, understanding the effect of inflammation on the outcome of the healing process will serve as a significant milestone in the area of pathological tissue repair.
Collapse
Affiliation(s)
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Vanya Gupta
- Graphic Era Deemed to be University, Uttarakhand, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|