1
|
Zhang S, Liu J, Zhao H, Gao Y, Ren C, Zhang X. What do You Need to Know after Diabetes and before Diabetic Retinopathy? Aging Dis 2025:AD.2025.0289. [PMID: 40354381 DOI: 10.14336/ad.2025.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes mellitus. Current clinical diagnostic criteria mainly base on visible vascular structure changes, which are insufficient to identify diabetic patients without clinical DR (NDR) but with dysfunctional retinopathy. This review focuses on retinal endothelial cells (RECs), the first cells to sense and respond to elevated blood glucose. As blood glucose rises, RECs undergo compensatory and transitional phases, and the correspondingly altered molecules are likely to become biomarkers and targets for early prediction and treatment of NDR with dysfunctional retinopathy. This article elaborated the possible pathophysiological processes focusing on RECs and summarized recently published and reliable biomarkers for early screening and emerging intervention strategies for NDR patients with dysfunctional retinopathy. Additionally, references for clinical medication selection and lifestyle recommendations for this population are provided. This review aims to deepen the understanding of REC biology and NDR pathophysiology, emphasizes the importance of early detection and intervention, and points out future directions to improve the diagnosis and treatment of NDR with dysfunctional retinopathy and to reduce the occurrence of DR.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Laboratory for Clinical Medicine, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Laboratory for Clinical Medicine, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Xuxiang Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Padovani-Claudio DA, Morales MS, Smith TE, Ontko CD, Namburu NS, Palmer SA, Jhala MG, Ramos CJ, Capozzi ME, McCollum GW, Penn JS. Induction, amplification, and propagation of diabetic retinopathy-associated inflammatory cytokines between human retinal microvascular endothelial and Müller cells and in the mouse retina. Cell Signal 2024; 124:111454. [PMID: 39384004 DOI: 10.1016/j.cellsig.2024.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Ocular levels of IL-1β, TNFα, IL-8, and IL-6 correlate with progression of diabetic retinopathy (DR). Müller cells (MC), which are crucial to maintaining retinal homeostasis, are targets and sources of these cytokines. We explored the relative capacities of these four DR-associated cytokines to amplify inflammatory signal expression both in and between human MC (hMC) and retinal microvascular endothelial cells (hRMEC) and in the mouse retina. Of the four cytokines, IL-1β was the most potent stimulus of transcriptomic alterations in hMC and hRMEC in vitro, as well as in the mouse retina after intravitreal injection in vivo. Stimulation with IL-1β significantly induced expression of all four transcripts in hMC and hRMEC. TNFα significantly induced expression of some, but not all, of the four transcripts in each cell, while neither IL-8 nor IL-6 showed significant induction in either cell. Similarly, conditioned media (CM) derived from hMC or hRMEC treated with IL-1β, but not TNFα, upregulated inflammatory cytokine transcripts in the reciprocal cell type. hRMEC responses to hMC-derived CM were dependent on IL-1R activation. In addition, we observed a correlation between cytokine expression changes following direct and CM stimulation and NFκB-p65 nuclear translocation in both hMC and hRMEC. Finally, in mice, intravitreal injections of IL-1β, but not TNFα, induced retinal expression of Il1b and CXCL8 homologues Cxcl1, Cxcl2, Cxcl3, and Cxcl5, encoding pro-angiogenic chemokines. Our results suggest that expression of IL-1β, TNFα, IL-8, and IL-6 may be initiated, propagated, and sustained by autocrine and paracrine signals in hRMEC and hMC through a process involving IL-1β and NFκB. Targeting these signals may help thwart inflammatory amplification, preventing progression to vision-threatening stages and preserving sight.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Taylor E Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 1161 21st Ave S., Nashville, TN 37232, USA.
| | - Neeraj S Namburu
- College of Arts and Sciences, Vanderbilt University, 2400 Vanderbilt Pl., Nashville, TN 37232, USA.
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Marvarakumari G Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Megan E Capozzi
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 1161 21st Ave S., Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Wang J, Song X, Xia Z, Feng S, Zhang H, Xu C, Zhang H. Serum biomarkers for predicting microvascular complications of diabetes mellitus. Expert Rev Mol Diagn 2024; 24:703-713. [PMID: 39158206 DOI: 10.1080/14737159.2024.2391021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Diabetic microvascular complications such as retinopathy, nephropathy, and neuropathy are primary causes of blindness, terminal renal failure, and neuropathic disorders in type 2 diabetes mellitus patients. Identifying reliable biomarkers promptly is pivotal for early detection and intervention in these severe complications. AREAS COVERED This review offers a thorough examination of the latest research concerning serum biomarkers for the prediction and assessment of diabetic microvascular complications. It encompasses biomarkers associated with glycation, oxidative stress, inflammation, endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis. The review also highlights the potential of emerging biomarkers, such as microRNAs and long non-coding RNAs. EXPERT OPINION Serum biomarkers are emerging as valuable tools for the early assessment and therapeutic guidance of diabetic microvascular complications. The biomarkers identified not only reflect the underlying pathophysiology but also align with the extent of the disease. However, further validation across diverse populations and improvement of the practicality of these biomarkers in routine clinical practice are necessary. Pursuing these objectives is essential to advance early diagnosis, risk assessment, and individualized treatment regimens for those affected by diabetes.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital Chuandong Hospital & Dazhou First People's Hospital, Dazhou, China
| | - Xiaoyi Song
- School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqiao Xia
- Laboratory medicine, Qianwei People's Hospital, Leshan, Sichuan, China
| | - Shu Feng
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hangfeng Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengjie Xu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
5
|
Zeng Y, Xu Y, Pan Y, Guo H. KLF10 knockdown negatively regulates CTRP3 to improve OGD/R-induced brain microvascular endothelial cell injury and barrier dysfunction through Nrf2/HO-1 signaling pathway. Tissue Cell 2023; 82:102106. [PMID: 37210762 DOI: 10.1016/j.tice.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Ischemic stroke seriously endangers human health and even death. This study aimed to investigate the role of KLF10/CTRP3 in oxygen-glucose deprivation/reperfusion (OGD/R)-induced brain microvascular endothelial cells injury, as well as the regulatory effects of the Nrf2/HO-1 signaling pathway. OGD/R-induced human microvascular endothelial cells (hBMECs) were used to simulate the model of cerebral ischemia-reperfusion (I/R) injury. The expression of KLF10/CTRP3 in OGD/R-induced hBMECs as well as the transfection efficiency were all detected by RT-qPCR and western blot. The interaction of KLF10 and CTRP3 was confirmed by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). The viability, apoptosis and endothelial permeability of OGD/R-induced hBMECs was detected by CCK-8, TUNEL and FITC-Dextran assay kit. The capacity of cell migration was assessed by wound healing assay. The expression of apoptosis related proteins, oxidative stress levels and tight junction proteins was also detected. As a result, the expression of KLF10 was increased in OGD/R-induced hBMECs and downregulation of KLF10 could promote the viability, migration and suppress the apoptosis, oxidative stress and endothelial permeability by downregulating the expression of caspase 3, Bax, cleaved PARP, ROS, MDA, and upregulating the expression of Bcl-2, SOD, GSH-Px, ZO-1, occludin, claudin-5. Nrf2/HO-1 signaling pathway was inhibited in OGD/R-induced hBMECs, which was activated by downregulation of KLF10. KLF10 was demonstrated to be combined with CTRP3 and KLF10 inhibited transcription of CTRP3 in hBMECs. The above changes affected by downregulation of KLF10 could be reversed by the interference with CTRP3. In conclusion, KLF10 knockdown improved OGD/R-induced brain microvascular endothelial cell injury and barrier dysfunction through the activation of Nrf2/HO-1 signaling pathway, which was weakened by the downregulation of CTRP3.
Collapse
Affiliation(s)
- Youchao Zeng
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 56300, Guizhou, China.
| | - Yongsu Xu
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi 56300, Guizhou, China
| | - Yongjie Pan
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 56300, Guizhou, China
| | - Hong Guo
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 56300, Guizhou, China
| |
Collapse
|
6
|
Violetta L, Kartasasmita AS, Supriyadi R, Rita C. Circulating Biomarkers to Predict Diabetic Retinopathy in Patients with Diabetic Kidney Disease. Vision (Basel) 2023; 7:vision7020034. [PMID: 37092467 PMCID: PMC10123608 DOI: 10.3390/vision7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The purpose of this review is to outline the currently available circulating biomarkers to predict diabetic retinopathy (DR) in patients with diabetic kidney disease (DKD). Studies have extensively reported the association between DR and DKD, suggesting the presence of common pathways of microangiopathy. The presence of other ocular complications including diabetic cataracts may hinder the detection of retinopathy, which may affect the visual outcome after surgery. Unlike DKD screening, the detection of DR requires complex, costly machines and trained technicians. Recognizing potential biological markers related to glycation and oxidative stress, inflammation and endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis as well as novel molecular markers involved in the microangiopathy process may be useful as predictors of retinopathy and identify those at risk of DR progression, especially in cases where retinal visualization becomes a clinical challenge. Further investigations could assist in deciding which biomarkers possess the highest predictive power to predict retinopathy in clinical settings.
Collapse
Affiliation(s)
- Laurencia Violetta
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Indonesia Army Central Hospital, Jakarta 10410, Indonesia
| | | | - Rudi Supriyadi
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| | - Coriejati Rita
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Zhang H, Zhang-Sun ZY, Xue CX, Li XY, Ren J, Jiang YT, Liu T, Yao HR, Zhang J, Gou TT, Tian Y, Lei WR, Yang Y. CTRP family in diseases associated with inflammation and metabolism: molecular mechanisms and clinical implication. Acta Pharmacol Sin 2023; 44:710-725. [PMID: 36207402 PMCID: PMC10042840 DOI: 10.1038/s41401-022-00991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/27/2022] [Indexed: 11/08/2022]
Abstract
C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zi-Yin Zhang-Sun
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Cheng-Xu Xue
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xi-Yang Li
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu-Ting Jiang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Rong Yao
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Gou
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wang-Rui Lei
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Zhang Y, Xu G, Huang B, Chen D, Ye R. Astragaloside IV Regulates Insulin Resistance and Inflammatory Response of Adipocytes via Modulating CTRP3 and PI3K/AKT Signaling. Diabetes Ther 2022; 13:1823-1834. [PMID: 36103112 PMCID: PMC9663774 DOI: 10.1007/s13300-022-01312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Emerging evidence showed that adipocytes are important regulators in controlling insulin resistance in type 2 diabetes mellitus (T2DM). So far, compounds isolated from natural plants have been widely studied for their roles in alleviating T2DM-associated complications. This work evaluated the actions of astragaloside IV (AS-IV) on insulin resistance and inflammatory biomarker expression in adipocytes and explored the potential mechanisms. METHODS Glucose consumption of the adipocytes was determined by a glucose assay kit; the mRNA expression levels of glucose transporter type 4 (GLUT-4), interleukin-6 (IL-6), TNF-α and C1q tumor necrosis factor-related protein 3 (CTRP3) were measured by quantitative real-time PCR (qRT-PCR); the protein levels were determined by western blot assay and enzyme-linked immunosorbent assay. RESULTS AS-IV concentration-dependently increased glucose consumption in the insulin resistance adipocytes. Further qRT-PCR results showed that AS-IV concentration-dependently reduced adipocyte IL-6 and TNF-α expression. Moreover, GLUT-4 expression in adipocytes was also significantly upregulated by AS-IV. Furthermore, we found that AS-IV concentration-dependently increased CTRP3 expression in adipocytes. CTRP3 silence decreased glucose consumption, upregulated IL-6 and TNF-α expression and downregulated GLUT-4 mRNA expression in 200 µM AS-IV-treated adipocytes. Moreover, AS-IV treatment enhanced the activity of phosphoinositide 3-kinase (PI3K)/AKT signaling in adipocytes, which was markedly attenuated by CTRP3 silencing. Importantly, inhibition of PI3K/AKT signaling also attenuated AS-IV induced an increase in glucose consumption and GLUT-4 expression and a decrease in IL-6 and TNF-α expression of adipocytes. CONCLUSIONS Collectively, our data indicated that AS-IV attenuated insulin resistance and inflammation in adipocytes via targeting CTRP3/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Guangning Xu
- Department of Traditional Chinese Medicine, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Baoyi Huang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Dongni Chen
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Renqun Ye
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| |
Collapse
|
9
|
Abstract
Proliferative diabetic retinopathy (PDR) is a world-wide leading cause of blindness among adults and may be associated with the influence of genetic factors. It is significant to search for genetic biomarkers of PDR. In our study, we collected genomic data about PDR from gene expression omnibus (GEO) database. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were carried out. The gene module with the highest gene significance (GS) was defined as the key module. Hub genes were identified by Venn diagram. Then we verified the expression of hub genes in validation data sets and built a diagnostic model by least absolute shrinkage and selection operator (LASSO) regression. Enrichment analysis, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA) and construction of a protein-protein interaction (PPI) network were conducted. In GSE60436, we identified 466 DEGs. WGCNA established 14 gene modules, and the blue module (GS = 0.64), was the key module. Interferon (IFN)-induced protein 44-like (IFI44L) and complement C1q tumor necrosis factor-related protein 5 (C1QTNF5) were identified as hub genes. The expression of hub genes in GEO datasets was verified and a diagnostic model was constructed by LASSO as follows: index = IFI44L * 0.0432 + C1QTNF5 * 0.11246. IFI44L and C1QTNF5 might affect the disease progression of PDR by regulating metabolism-related and inflammatory pathways. IFI44L and C1QTNF5 may play important roles in the disease process of PDR, and a LASSO regression model suggested that the 2 genes could serve as promising biomarkers of PDR.
Collapse
Affiliation(s)
- Mingxin Shang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
| | - Yao Zhang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
| | - Tongtong Zhang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
- * Correspondence: Tongtong Zhang, He Eye Specialist Hospital, No.128 North Huanghe Street, Shenyang, Liaoning Province 110034, China (e-mail: )
| |
Collapse
|
10
|
Wang Y, Hu Q, Luan L, Zhang H. Omentin-1 ameliorates oxidative stress in model of diabetic ophthalmopathy via the promotion of AMPK function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Mohamed MK, Atef AA, Moemen LA, Abdel Azeem AA, Mohalhal IA, Taha AM. Association study of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with diabetic retinopathy in Egyptian patients: crosslinks with angiogenic, inflammatory, and anti-inflammatory markers. J Genet Eng Biotechnol 2022; 20:122. [PMID: 35969320 PMCID: PMC9378806 DOI: 10.1186/s43141-022-00401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Abstract
Background Genetic factors are implicated in the progression of DR—a global cause of blindness. Hence, the current work investigated the association of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with the different stages of retinopathy among T2DM Egyptian patients. The crosslinks of these variants were explored with angiogenesis (VEGF), inflammation (AGEP and VCAM-1), and anti-inflammation (CTRP3) markers. Two hundred eighty-eight subjects were recruited in this study: 72 served as controls and 216 were having T2DM and were divided into diabetics without retinopathy (DWR), diabetics with non-proliferative retinopathy (NPDR), and diabetics with proliferative retinopathy (PDR). The genetic variants were analyzed using PCR-RFLP and their associations with NPDR and PDR were statistically tested. The circulating levels of AGEP, VCAM-1, HIF-1α, VEGF, and CTRP3 were assayed followed by analyzing their associations statistically with the studied variants. Results Only HIF-1α rs11549465 genetic variant (recessive model) was significantly associated with the development of NPDR among T2DM patients (p < 0.025) with a significant correlation with the circulating HIF-1α level (p < 0.0001). However, this variant was not associated with PDR progression. Neither HIF-1α rs11549465 nor VEGF rs3025039 genetic variants were associated with the PDR progression. The circulating AGEP, VCAM-1, HIF-1α, and VEGF were significantly elevated (p < 0.0001) while the CTRP3 was significantly decreased (p < 0.0001) in NPDR and PDR groups. The HIF-1α rs11549465 CT and/or TT genotype carriers were significantly associated with AGEP and VCAM-1 levels in the NPDR group, while it showed a significant association with the CTRP3 level in the PDR group. The VEGF rs3025039 TT genotype carriers showed only a significant association with the CTRP3 level in the PDR group. Conclusion The significant association of HIF-1α rs11549465 other than VEGF rs3025039 with the initiation of NPDR in T2DM Egyptian patients might protect them from progression to the proliferative stage via elevating circulating HIF-1α. However, this protective role was not enough to prevent the development of NPDR because of enhancing angiogenesis and inflammation together with suppressing anti-inflammation. The non-significant association of HIF-1α rs11549465 with PDR among T2DM patients could not make this variant a risk factor for PDR progression.
Collapse
Affiliation(s)
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Leqaa A Moemen
- Biochemistry Unit, Research Institute of Ophthalmology, Giza, Egypt
| | | | - Islam A Mohalhal
- Surgical Retina, Research Institute of Ophthalmology, Giza, Egypt
| | - Alshaimaa M Taha
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Micallef P, Vujičić M, Wu Y, Peris E, Wang Y, Chanclón B, Ståhlberg A, Cardell SL, Wernstedt Asterholm I. C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization. Front Immunol 2022; 13:914956. [PMID: 35720277 PMCID: PMC9202579 DOI: 10.3389/fimmu.2022.914956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.
Collapse
Affiliation(s)
- Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
13
|
Коteliukh M. Predictive Model for Acute Heart Failure in Patients with Acute Myocardial Infarction and Type 2 Diabetes Mellitus Based on Energy and Adipokine Metabolism Indicators. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND: Acute heart failure (AHF) is one of the early complications of acute myocardial infarction (AMI) in diabetic patients. Evaluation of biomarkers of energy and adipokine metabolism can help in the early identification of diabetic patients at risk of AHF.
AIM: The present study is aimed to predict the development of AHF in diabetic patients with AMI based on energy and adipokine metabolism parameters.
METHODS: A total of 74 diabetic patients with AMI were examined between September 1, 2018, and December 31, 2020. Serum adropin, irisin, and C1q/TNF-related protein 3 (CTRP3) levels were measured by enzyme-linked immunosorbent assay. To predict AHF development in AMI patients, generalized linear mixed model (GLMM) was applied.
RESULTS: The serum concentrations of adropin, irisin, and CTRP3 have been found to be reduced in diabetic patients with AMI and AHF. The accuracy of predicting AHF Killip Class 1 was 96.7%, and the accuracy of prediction for AHF Killip Class 2 was 57.1%, that is, the model was poorly sensitive to this level of complications. The prediction accuracy for AHF Killip Class 3 was 80%, that is, the model was highly sensitive to complications of this level, and for AHF Killip Class 4 – 100% being the maximum level of the model sensitivity.
CONCLUSIONS: Low serum concentrations of adropin, irisin, and CTRP3 indicate an imbalance in energy and adipokine homeostasis. The constructed model predicts the probability of AHF development with high accuracy of 91.9% in diabetic patients with AMI.
Collapse
|
14
|
Lin K, Yang L, Xiong Y, Feng K, Zeng W, Deng B. Plasma C1q/tumor necrosis factor-related protein-3 concentrations are associated with diabetic peripheral neuropathy. BMJ Open Diabetes Res Care 2022; 10:e002746. [PMID: 35383102 PMCID: PMC8984060 DOI: 10.1136/bmjdrc-2021-002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/06/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION To analyze the associations of circulating C1q/tumor necrosis factor-related protein-3 (CTRP3) concentrations with several metabolic parameters and to investigate the possible role of CTRP3 in subjects with diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS A total of 347 participants were recruited in this study, and plasma CTRP3 concentrations were analyzed in subjects with DPN (n=172) and without DPN (non-DPN, n=175). The nerve conduction test and oral glucose tolerance test were performed, and Neuropathy Symptom Score (NSS)/Neuropathy Disability Score (NDS) and biochemical parameters were measured in all participants. RESULTS Plasma CTRP3 concentrations were significantly lower in patients with DPN compared with those in patients with diabetes without DPN (p<0.01), despite the comparable glucose and lipid metabolism levels in both groups. Groups with a higher plasma CTRP3 level had a faster nerve conduction velocity. In addition, plasma CTRP3 concentrations were negatively correlated with hemoglobin A1c (HbA1c), urea acid (UA), triglyceride, NSS and NDS (p<0.05) after being adjusted for age and sex. Multivariate logistic regression analysis revealed that plasma CTRP3 concentrations were significantly correlated with DPN after being controlled for age, sex, body mass index, HbA1c, blood pressure, lipid profiles, and renal function. CONCLUSIONS Plasma CTRP3 concentrations were significantly lower in patients with DPM and positively correlated with nerve conduction velocity. The relationship between CTRP3 levels and DPN is independent of the glucose and lipid status. Therefore, circulating CTRP3 might serve as a predictor of impairment of nerve conduction in patients with DPN.
Collapse
Affiliation(s)
- Ke Lin
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Liu Yang
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuyuan Xiong
- Department of Prosthodontics, Stomatoblogical Hospital of Chongqing Medical University, Chongqing, China
| | - Keduo Feng
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wang Zeng
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Deng
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Zeng X, Peng Y, Wang Y, Kang K. C1q/tumor necrosis factor-related protein-3 (CTRP3) activated by forkhead box O4 (FOXO4) down-regulation protects retinal pericytes against high glucose-induced oxidative damage through nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling. Bioengineered 2022; 13:6080-6091. [PMID: 35196182 PMCID: PMC8974204 DOI: 10.1080/21655979.2022.2031413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of blindness among diabetes mellitus patients. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine which is associated with multiple types of metabolism. Nevertheless, little is known about the role of CTRP3 in high glucose (HG)-induced human retinal pericytes (HRPs). This study set out to assess the influence of CTRP3 on HG-induced HRPs and elucidate the latent regulatory mechanism. RT-qPCR and Western blot were to analyze CTRP3 and forkhead box O4 (FOXO4) expression. Western blot was also utilized to detect the protein levels of apoptosis-related factors and nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling-related factors. CCK-8 was to measure cell proliferation while TUNEL assay was to estimate cell apoptosis. Levels of oxidative stress biomarkers including manganese (MnSOD), catalase (CAT) and malonedialdehyde (MDA) were evaluated by the corresponding kits. JASPAR database, ChIP and luciferase reporter assay were to verify the interaction between FOXO4 and CTRP3 promoter. The experimental results uncovered that CTRP3 expression was decreased in HG-stimulated HRPs. Moreover, CTRP3 overexpression strengthened the viability while abrogated the apoptosis and oxidative stress of HG-induced HRPs. Furthermore. FOXO4 was up-regulated in HG-induced HRPs. Besides, FOXO4 bond to CTRP3 promoter and inhibited CTRP3 transcription to modulate the Nrf2/NF-κB signaling pathway. FOXO4 up-regulation reversed the influence of CTRP3 elevation on the proliferation, apoptosis and oxidative stress of HG-induced HRPs. To be summarized, CTRP3 negatively modulated by FOXO4 prevented HG-induced oxidative damage in DR via modulation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- XiuYa Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - YouYuan Peng
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - YanFeng Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - KeMing Kang
- Department of Ophthalmic Fundus Disease, Xiamen Eye Center of Xiamen University, Xiamen, China
| |
Collapse
|
16
|
C1q/TNF-Related Protein 3 Prevents Diabetic Retinopathy via AMPK-Dependent Stabilization of Blood-Retinal Barrier Tight Junctions. Cells 2022; 11:cells11050779. [PMID: 35269401 PMCID: PMC8909652 DOI: 10.3390/cells11050779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background The impairment of the inner blood–retinal barrier (iBRB) increases the pathological development of diabetic retinopathy (DR), a severe complication in diabetic patients. Identifying approaches to preserving iBRB integrity and function is a significant challenge in DR. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly discovered adipokine and a vital biomarker, predicting DR severity. We sought to determine whether and how CTRP3 affects the pathological development of non-proliferative diabetic retinopathy (NPDR). Methods To clarify the pathophysiologic progress of the blood–retinal barrier in NPDR and explore its potential mechanism, a mouse Type 2 diabetic model of diabetic retinopathy was used. The capillary leakage was assessed by confocal microscope with fluorescent-labeled protein in vivo. Furthermore, the effect of CTRP3 on the inner blood–retinal barrier (iBRB) and its molecular mechanism was clarified. Results The results demonstrated that CTRP3 protects iBRB integrity and resists the vascular permeability induced by DR. Mechanistically, the administration of CTRP3 activates the AMPK signaling pathway and enhances the expression of Occludin and Claudin-5 (tight junction protein) in vivo and in vitro. Meanwhile, CTRP3 improves the injury of human retinal endothelial cells (HRMECs) induced by high glucose/high lipids (HG/HL), and its protective effects are AMPK-dependent. Conclusions In summary, we report, for the first time, that CTRP3 prevents diabetes-induced retinal vascular permeability via stabilizing the tight junctions of the iBRB and through the AMPK-dependent Occludin/Claudin-5 signaling pathway, thus critically affecting the development of NPDR.
Collapse
|
17
|
Song FQ, Zhou HM, Ma WX, Li YL, Hu BA, Shang YY, Wang ZH, Zhong M, Zhang W, Ti Y. CIDEC: A Potential Factor in Diabetic Vascular Inflammation. J Vasc Res 2022; 59:114-123. [PMID: 35124674 DOI: 10.1159/000520685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2025] Open
Abstract
Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.
Collapse
Affiliation(s)
- Fang-Qiang Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou, China
| | - Hui-Min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei-Xuan Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Ang Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
19
|
Yan Z, Cao X, Wang C, Liu S, Li Y, Lu G, Yan W, Guo R, Zhao D, Cao J, Xu Y. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway. Biochem Pharmacol 2022; 195:114745. [PMID: 34454930 DOI: 10.1016/j.bcp.2021.114745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
The repair of vascular endothelial cell dysfunction is an encouraging approach for the treatment of vascular complications associated with diabetes. It has been demonstrated that members of C1q/tumor necrosis factor-related protein (CTRP) family may improve endothelial function. Nevertheless, the protective properties of CTRPs in diabetic microvascular complications continue to be mostly unknown. Here, we demonstrate that the C1q-like globular domain of CTRP3, CTRP5, and CTRP9 (gCTRP3, 5, 9) exerted a vasorelaxant effect on the microvasculature, of which gCTRP3 was the most powerful one. In a murine model of type 2 diabetes mellitus, serum gCTRP3 level and endothelial function decreased markedly compared with controls. Two weeks of gCTRP3 treatment (0.5 μg/g/d) enhanced endothelium-dependent relaxation in microvessels, increased nitric oxide (NO·) production, and reduced retinal vascular leakage. In addition, Western blotting in human retinal microvascular endothelial cells indicated that gCTRP3 triggered AMP-activated protein kinase-α (AMPKα), hence increasing the endothelial NO synthase (eNOS) level and NO· production. In addition, incubation with gCTRP3 in vitro ameliorated the endothelial dysfunction induced by high glucose in the branch of the mesenteric artery. Blockade of either eNOS or AMPKα completely abolished the effects of gCTRP3 described above. Taken together, we demonstrate for the first time that gCTRP3 improves impaired vasodilatation of microvasculature in diabetes by ameliorating endothelial cell function through the AMPK/eNOS/NO· signaling pathway. This finding may suggest an effective intervention against diabetes-associated microvascular complications.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Xiaoming Cao
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chunfang Wang
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjie Li
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gan Lu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Laboratory of Emergency Medicine, Department of Emergency Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Wenjun Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiology, Xijing Hospital, Xian, China
| | - Rui Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Morphology Laboratory, Shanxi Medical University, Taiyuan, China
| | - Dajun Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States; Department of Cardiac Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
20
|
Raeisy H, Bayati P, Noorbakhsh F, Hakim Shooshtari M, Eftekhar Ardebili M, Shekarabi M, Mojtabavi N. C1q/TNF-related protein-1: Potential biomarker for early diagnosis of autism spectrum disorder. Int J Immunopathol Pharmacol 2022; 36:3946320221079471. [PMID: 35202556 PMCID: PMC8883289 DOI: 10.1177/03946320221079471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASDs) are neurodevelopmental diseases characterized by communication inabilities, social interaction impairment, repetitive behavior, as well as learning problems. Although the exact mechanism underlying this disease is still obscure, researchers believe that several factors play a significant role in its development and pathogenesis. Some authors have reported an association between adipokines family and autism. C1q/TNF-related protein-1 (CTRP1) is a member of the adipokines family, and we hypothesized that this adipokine might have an influential role in the pathogenesis of ASDs. Since there is no specific marker for screening the disease, we evaluated CTRP1 as a potential marker for achieving this purpose. METHODS Blood samples were collected from 82 (41 ASDs boys, 41 healthy boys as controls) children aged 5-7 years old. CTRP1 gene expression and CTRP1 serum level were measured by quantitative realtime-PCR and enzyme-linked immunosorbent assay methods, respectively. RESULTS It was found that CTRP1 is significantly elevated in autistic children in comparison to healthy controls, both at the gene expression level, as well as at the serum level; demonstrating a good diagnostic value with a good range of sensitivity and specificity for detecting ASDs. CONCLUSION CTRP1 expression is elevated in ASDs boys aged 5-7 years old, suggesting a role for this adipokine in ASDs pathophysiology. Also, receiver operating characteristic curve analyses revealed that this adipokine could be utilized as a diagnostic biomarker for differentiating ASDs patients from healthy individuals along with other recently proposed biomarkers.
Collapse
Affiliation(s)
- Hamed Raeisy
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Hakim Shooshtari
- Department of Psychiatry, School of Behavioral Sciences and Mental Health, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Eftekhar Ardebili
- Mental Health Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Zhang J, Lin X, Xu J, Tang F, Tan L. CTRP3 protects against uric acid-induced endothelial injury by inhibiting inflammation and oxidase stress in rats. Exp Biol Med (Maywood) 2022; 247:174-183. [PMID: 34601891 PMCID: PMC8777481 DOI: 10.1177/15353702211047183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia, which contributes to vascular endothelial damage, plays a key role in multiple cardiovascular diseases. This study was designed to investigate whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) has a protective effect on endothelial damage induced by uric acid and its underlying mechanisms. Animal models of hyperuricemia were established in Sprague-Dawley (SD) rats through the consumption of 10% fructose water for 12 weeks. Then, the rats were given a single injection of Ad-CTRP3 or Ad-GFP. The animal experiments were ended two weeks later. In vitro, human umbilical vein endothelial cells (HUVECs) were first infected with Ad-CTRP3 or Ad-GFP. Then, the cells were stimulated with 10 mg/dL uric acid for 48 h after pretreatment with or without a Toll-like receptor 4 (TLR4)-specific inhibitor. Hyperuricemic rats showed disorganized intimal structures, increased endothelial apoptosis rates, increased inflammatory responses and oxidative stress, which were accompanied by reduced CTRP3 and elevated TLR4 protein levels in the thoracic aorta. In contrast, CTRP3 overexpression decreased TLR4 protein levels and ameliorated inflammatory responses and oxidative stress, thereby improving the morphology and apoptosis of the aortic endothelium in rats with hyperuricemia. Similarly, CTRP3 overexpression decreased TLR4-mediated inflammation, reduced oxidative stress, and rescued endothelial damage induced by uric acid in HUVECs. In conclusion, CTRP3 ameliorates uric acid-induced inflammation and oxidative stress, which in turn protects against endothelial injury, possibly by inhibiting TLR4-mediated inflammation and downregulating oxidative stress.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Lupin Tan
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| |
Collapse
|
22
|
New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int J Mol Sci 2021; 22:ijms22179453. [PMID: 34502359 PMCID: PMC8430477 DOI: 10.3390/ijms22179453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Collapse
|
23
|
Cheng Y, Qi Y, Liu S, Di R, Shi Q, Li J, Pei C. C1q/TNF-related Protein 9 Inhibits High Glucose-Induced Oxidative Stress and Apoptosis in Retinal Pigment Epithelial Cells Through the Activation of AMPK/Nrf2 Signaling Pathway. Cell Transplant 2021; 29:963689720962052. [PMID: 33040597 PMCID: PMC7784607 DOI: 10.1177/0963689720962052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the common complications of diabetes mellitus. C1q/TNF-related protein 9 (CTRP9) has been demonstrated to be associated with the progression of diabetes and relative complications. However, its role in DR and underlying action of mechanism are not yet well understood. In the present study, human retinal pigment epithelial ARPE-19 cells were cultured under high concentration of glucose to simulate hyperglycemia condition in vitro. Our results showed that the expression of CTRP9 was significantly decreased in high glucose (HG)–stimulated ARPE-19 cells. CTRP9 overexpression improved HG-caused reduction in cell viability of ARPE-19 cells. CTRP9 overexpression significantly attenuated HG-induced oxidative stress, as proved by decreased levels of reactive oxygen species and malondialdehyde, and increased superoxide dismutase activity. Moreover, CTRP9 also prevented apoptosis in ARPE-19 cells in response to HG stimulation with decreased caspse-3 activity and bax expression, as well as increased bcl-2 expression. In contrast, knockdown of CTRP9 aggravated HG-induced oxidative stress and apoptosis. Furthermore, CTRP9 significantly induced the activation of AMPK/Nrf2 pathway in HG-induced ARPE-19 cells. Notably, inhibiting AMPK or Nrf2 blocked the protective effect of CTRP9 on ARPE-19 cells exposed to HG stimulation. Taken together, our findings suggested a protective effect of CTRP9 on HG-induced ARPE-19 cells and a putative mechanism involving the activation of AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuhong Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siwei Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Di
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Shi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Zhu Y, Hu J, Du X, Fang Q, Zhou Y, Chen K. Correlation of serum delta-like ligand-4 level with the severity of diabetic retinopathy. BMC Endocr Disord 2021; 21:157. [PMID: 34362349 PMCID: PMC8344193 DOI: 10.1186/s12902-021-00814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most serious microvascular complications of type 2 diabetes mellitus (T2DM). Delta-like ligand-4 (DLL4) maintains the normal physiological microenvironment of the retina. However, the relationship between the level of DLL4 and the severity of DR remains unclear. METHODS We retrospectively analyzed serum DLL4 levels and other laboratory and clinical data in 94 T2DM patients (35 patients without DR [NDR], 32 with non-proliferative DR [NPDR], 27 with proliferative DR [PDR]), and 30 healthy controls. RESULTS The serum DLL4 level was significantly greater in the NDR group (43.38 ± 16.23 pg/mL), NPDR group (56.57 ± 25.89 pg/mL), and PDR group (74.97 ± 25.28 pg/mL) than in the healthy controls (29.9 ± 8.92 pg/mL; all p < 0.05). Among T2DM patients, the level of DLL4 increased as the severity of DR increased (p < 0.05). Logistic regression analysis demonstrated that DR was positively associated with DLL4, glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), and duration of T2DM (all p < 0.05). Consistently, receiver operating characteristic (ROC) curve analysis also indicated that DLL4 was a potential candidate biomarker for identifying the severity of DR. CONCLUSIONS T2DM patients, especially those with DR, have increased serum levels of DLL4. DLL4 may be used as a biomarker and an independent risk factor for DR, and targeting DLL4 may be a potential therapy in patients with DR.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China
| | - Jingcheng Hu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China
| | - Xuan Du
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China
| | - Qionglei Fang
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China
| | - Yingyi Zhou
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China.
| | - Ke Chen
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou, China.
| |
Collapse
|
25
|
Circulating C1q/TNF-related protein-12 levels are associated with the severity of coronary artery disease. Cytokine 2021; 144:155545. [PMID: 33965313 DOI: 10.1016/j.cyto.2021.155545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is the world's largest cause of death. The association of CAD with inflammation is well established. Recently, it has been confirmed that the C1q/TNF-related protein 12 (CTRP12) has a great anti-inflammatory effect. However, few data are available regarding the serum CTRP12 concentration levels in CAD patients. OBJECTIVE The study was performed to evaluate the correlation between the serum levels of CTRP12 and the CAD severity regarding to the number of affected vessels. METHODS About 200 suspected CAD patients and 50 healthy ones as a control, were evaluated based on case-control study. According to the results of angiography, patients were divided into CAD+ (n = 150) with any major coronary artery stenosis ≥50% and CAD- (n = 50) with <50% stenosis of the arteries. The CAD+patients were categorized into one- (1VD), two- (2VD) and three-vessel disease (3VD) based on the number of stenotic vessels. In the current study, different parameters such as CTRP12, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), total antioxidant capacity (TAC), and malondialdehyde (MDA) levels were evaluated, and also lipid profiles, hs-CRP and demographic factors were investigated as well. RESULTS Data revealed that CTRP12 and TAC levels in CAD + group were significantly lower than control subjects (P < 0.05). CTRP12 levels were found to be significantly lower in the 3VD compared with 1VD and 2VD subgroups (p < 0.01 and p < 0.05, respectively). CONCLUSION Our results confirmed that serum CTRP12 level is inversely associated with CAD severity. Therefore, it may be used as a prediction marker for CAD.
Collapse
|
26
|
Ding H, Wang Z, Song W. CTRP3 protects hippocampal neurons from oxygen-glucose deprivation-induced injury through the AMPK/Nrf2/ARE pathway. Hum Exp Toxicol 2021; 40:1153-1162. [PMID: 33501881 DOI: 10.1177/0960327121989412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE C1q/TNF-related protein 3 (CTRP3), a member of CTRP family, has been found to have neuroprotective effect. In the current study, we investigated the protective role of CTRP3 in hippocampal neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS The mRNA and protein levels of CTRP3 in OGD/R-stimulated hippocampal neurons were measured using qRT-PCR and western blot analysis, respectively. CCK-8 assay was performed to assess cell viability. ROS production was measured using the fluorescence probe 2',7'-dichlorofluorescein diacetate (H2DCFDA). The activities of SOD and GPx were determined using ELISA. Cell apoptosis was assessed. Luciferase reporter assay was carried out to assess the activation of ARE). The levels of p-AMPK and Nrf2 were measured using western blot. RESULTS Our results showed that the expression of CTRP3 was significantly downregulated in hippocampal neuronal cells exposed to OGD/R. Overexpression of CTRP3 improved cell viability of OGD/R-induced hippocampal neurons. In addition, overexpression of CTRP3 attenuated the OGD/R-caused oxidative stress with decreased ROS production and increased activities of SOD and GPx. Moreover, CTRP3 caused a significant increase in bcl-2 expression and decreases in bax expression and caspase-3 activity. Furthermore, CTRP3 overexpression significantly upregulated the levels of p-AMPK and Nrf2, as well induced the activation of ARE in OGD-R-induced hippocampal neurons. CTRP3 upregulated the mRNA expression levels of HO-1, NQO-1 and GPx-3. Additionally, treatment with the inhibitor of AMPK partially reversed the neuroprotective effect of CTRP3 in OGD/R-exposed neurons. CONCLUSION CTRP3 exerted protective effect on OGD/R-induced cerebral injury, which was regulated by AMPK/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- H Ding
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Z Wang
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - W Song
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Guo B, Zhuang T, Xu F, Lin X, Li F, Shan SK, Wu F, Zhong JY, Wang Y, Zheng MH, Xu QS, Ehsan UMH, Yuan LQ. New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Front Physiol 2020; 11:570270. [PMID: 33343381 PMCID: PMC7744821 DOI: 10.3389/fphys.2020.570270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue, as the largest endocrine organ, secretes many biologically active molecules circulating in the bloodstream, collectively termed adipocytokines, which not only regulate the metabolism but also play a role in pathophysiological processes. C1q tumor necrosis factor (TNF)-related protein 3 (CTRP3) is a member of C1q tumor necrosis factor-related proteins (CTRPs), which is a paralog of adiponectin. CTRP3 has a wide range of effects on glucose/lipid metabolism, inflammation, and contributes to cardiovascular protection. In this review, we comprehensively discussed the latest research on CTRP3 in obesity, diabetes, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tongtian Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ullah Muhammad Hasnain Ehsan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Moradi N, Najafi M, Sharma T, Fallah S, Koushki M, Peterson JM, Meyre D, Fadaei R. Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: A systematic review and meta-analysis. Diabetes Res Clin Pract 2020; 169:108453. [PMID: 32949652 DOI: 10.1016/j.diabres.2020.108453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that adipokines may be therapeutic targets for cardiometabolic diseases such as type 2 diabetes mellitus (T2DM). C1q TNF Related Protein 3 (CTRP3) is a newly discovered adipokine which shares properties with adiponectin. The literature about the association between circulating levels of CTRP3 and T2DM has been conflicting. The present study reassessed the data on circulating CTRP3 levels in T2DM patients compared to controls through a systematic review and meta-analysis. A literature search was performed in Medline, Embase, Scopus, and Web of science to identify studies that measured circulating CTRP3 levels in T2DM patients and controls. The search identified 124 studies of which 59 were screened for title and abstract and 13 were subsequently screened at the full text stage and 12 studies included into the meta-analysis. Subgroup analyses, depending on the presence of T2DM complications, matching for BMI, age, and cut off value of fasting blood sugar and HOMA-IR, were performed. The results show that circulating CTRP3 levels are negatively associated with T2DM status (SMD: -0.837; 95% CI: (-1.656 to -0.017); p = 0.045). No publication bias was identified using the Begg's rank correlation and Egger's linear regression tests (P = 1 and P = 0.44, respectively). Meta-regression demonstrated significant association between CRTP3 levels with BMI (slope: 0.11; 95% CI: 0.04-0.19; p = 0.001) and sex (slope: -0.07; 95% CI: -0.12 to -0.01; p = 0.008). The present systematic review and meta-analysis evidences a negative association between circulating level of CTRP3 and T2DM status. BMI and sex may modify this association.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tanmay Sharma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jonathan M Peterson
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States; Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
30
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
31
|
Liu J, Meng Z, Gan L, Guo R, Gao J, Liu C, Zhu D, Liu D, Zhang L, Zhang Z, Xie D, Jiao X, Lau WB, Lopez BL, Christopher TA, Ma X, Cao J, Wang Y. C1q/TNF-related protein 5 contributes to diabetic vascular endothelium dysfunction through promoting Nox-1 signaling. Redox Biol 2020; 34:101476. [PMID: 32122792 PMCID: PMC7327962 DOI: 10.1016/j.redox.2020.101476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Dysregulated adipokine profiles contribute to the pathogenesis of diabetic cardiovascular complications. Endothelial cell (EC) dysfunction, a common pathological alteration in cardiovascular disorders, is exaggerated in diabetes. However, it is unclear whether and how dysregulated adipokines may contribute to diabetic EC dysfunction. METHODS AND RESULTS Serum C1q/TNF-Related Protein 5 (CTRP5) were determined in control/diabetes patients, and control/diabetic mice (high-fat diet, HFD). We observed for the first time that serum total CTRP5 was increased, high molecular weight (HMW) form was decreased, but the globular form (gCTRP5) was significantly increased in diabetic patients. These pathological alterations were reproduced in diabetic mice. To determine the pathological significance of increased gCTRP5 in diabetes, in vivo, ex vivo and in vitro experiments were performed. Diabetic atherosclerosis and EC dysfunction were significantly attenuated by the in vivo administration of CTRP5 neutralization antibody (CTRP5Ab). EC apoptosis was significantly increased in diabetic EC (isolated from HFD animal aorta) or high glucose high lipid (HGHL) cultured HUVECs. These pathological alterations were further potentiated by gCTRP5 and attenuated by CTRP5Ab. Pathway specific discovery-driven approach revealed that Nox1 expression was one of the signaling molecules commonly activated by HFD, HGHL, and gCTRP5. Treatment with CTRP5Ab reversed HFD-induced Nox1 upregulation. Finally, Nox1siRNA was used to determine the causative role of Nox1 in gCTRP5 induced EC apoptosis in diabetes. Results showed that gCTRP5 activated the mitochondrial apoptotic signal of EC in diabetes, which was blocked by the silencing Nox1 gene. CONCLUSION We demonstrated for the first time that gCTRP5 is a novel molecule contributing to diabetic vascular EC dysfunction through Nox1-mediated mitochondrial apoptosis, suggesting that interventions blocking gCTRP5 may protect diabetic EC function, ultimately attenuate diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhijun Meng
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Jia Gao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Caihong Liu
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ling Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiangying Jiao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jimin Cao
- Department of Physiology, Shanxi Medical University, Shanxi, China.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Zhang J, He J. CTRP3 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3758-3764. [PMID: 31556307 DOI: 10.1080/21691401.2019.1666864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common diabetic complications and remains the leading cause of vision loss among adults. C1q/TNF-related protein 3 (CTRP3) is a member of CTRP family that has been found to be involved in the progression of diabetes mellitus and diabetic complications. However, the role of CTRP3 in DR has not been fully understood. In the present study, the results showed that CTRP3 expression was significantly decreased in DR patients compared with controls. In vitro investigations proved that overexpression of CTRP3 improved cell viability of ARPE-19 cells in response to high glucose (HG) stimulation. CTRP3 also attenuated HG-induced oxidative stress in ARPE-19 cells with decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased superoxide dismutase (SOD) activity. Apoptotic rate was significantly decreased in CTRP3 overexpressing ARPE-19 cells. Besides, bcl-2 expression was increased, while bax expression was decreased by CTRP3 overexpression. Moreover, overexpression of CTRP3 enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway in HG-stimulated ARPE-19 cells, and Nrf2 knockdown reversed CTRP3-mediated oxidative stress and apoptosis. These findings suggested that CTRP3 attenuated HG-stimulated oxidative stress and apoptosis in ARPE-19 cells, which were mediated by activation of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital , Xi'an , China
| | - Jing He
- Department of Obstetrics, First Affiliated Hospital of Xi'an Medical College , Xi'an , China
| |
Collapse
|
33
|
Zhang C, Luo Y, Liu R, Li X, Yang M, Zhang Y, Li L, Mou H, Guo L, Li J, Liu H, Yang G, Zhang X. Circulating complement-1q tumor necrosis factor-α-related protein isoform 5 levels are low in type 2 diabetes patients and reduced by dapagliflozin. J Diabetes Investig 2020; 11:88-95. [PMID: 31070007 PMCID: PMC6944827 DOI: 10.1111/jdi.13069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS/INTRODUCTION As a member of the tumor necrosis factor-α-related protein family, complement-1q tumor necrosis factor-α-related protein isoform 5 (CTRP5) has been found to be associated with obesity and insulin resistance (IR). Previous studies in humans and animals have reported contradictory results related to the association between CTRP5 and IR. The purpose of the present study was to explore the relationship between CTRP5 and IR through a cross-sectional study and drug intervention study of type 2 diabetes patients. MATERIALS AND METHODS A cross-sectional study was carried out with 118 newly diagnosed patients with type 2 diabetes and 116 healthy adults. In an interventional study, 78 individuals with newly diagnosed type 2 diabetes received sodium-glucose cotransporter 2 inhibitor (dapagliflozin) treatment for 3 months. Circulating CTRP5 concentrations were measured by enzyme-linked immunosorbent assay. RESULTS Serum CTRP5 concentrations were markedly reduced in patients with type 2 diabetes when compared with those of healthy individuals (P < 0.01). When considering the study population as a whole, individuals with IR (homeostasis model of assessment of IR ≥2.78) had lower CTRP5 concentrations than the individuals without IR (homeostasis model of assessment of IR <2.78; P < 0.01). Serum CTRP5 negatively correlated with age, body mass index, waist-to-hip ratio, Systolic blood pressure, triglyceride, total cholesterol, glycated hemoglobin, fasting blood glucose, 2-h blood glucose, fasting insulin and homeostasis model of assessment of IR. After 12 weeks of sodium-glucose cotransporter 2 inhibitor treatment, serum CTRP5 levels in type 2 diabetes patients were significantly reduced accompanied with ameliorated glycometabolism and IR compared with before treatment (P < 0.01). CONCLUSIONS CTRP5 is likely a marker for type 2 diabetes in humans.
Collapse
Affiliation(s)
- Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Yong Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Rui Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xiaoqiang Li
- Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Yu Zhang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Huaming Mou
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Lian Guo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Jing Li
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| | - Hua Liu
- Department of PediatricsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Gangyi Yang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xianxiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of EndocrinologyChongqing Three Gorges Central HospitalChongqingChina
| |
Collapse
|
34
|
Mammadzada P, Bayle J, Gudmundsson J, Kvanta A, André H. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J Clin Med 2019; 8:jcm8122217. [PMID: 31847440 PMCID: PMC6947310 DOI: 10.3390/jcm8122217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) can provide insight into the pathophysiological states of ocular tissues such as proliferative diabetic retinopathy (PDR). In this study, differences in miRNA expression in vitreous from PDR patients with and without incidence of recurrent vitreous hemorrhage (RVH) after the initial pars-plana vitrectomy (PPV) were analyzed, with the aim of identifying biomarkers for RVH. Fifty-four consented vitreous samples were analyzed from patients undergoing PPV for PDR, of which eighteen samples underwent a second surgery due to RVH. Ten of the sixty-six expressed miRNAs (miRNAs-19a, -20a, -22, -27a, -29a, -93, -126, -128, -130a, and -150) displayed divergences between the PDR vitreous groups and to the control. A significant increase in the miRNA-19a and -27a expression was determined in PDR patients undergoing PPV as compared to the controls. miRNA-20a and -93 were significantly upregulated in primary PPV vitreous samples of patients afflicted with RVH. Moreover, this observed upregulation was not significant between the non-RVH and control group, thus emphasizing the association with RVH incidence. miRNA-19a and -27a were detected as putative vitreous biomarkers for PDR, and elevated levels of miRNA-20a and -93 in vitreous with RVH suggest their biomarker potential for major PDR complications such as recurrent hemorrhage incidence.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Juliette Bayle
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Johann Gudmundsson
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Department of Ophthalmology, University of Iceland, Reykjavik 101, Iceland
| | - Anders Kvanta
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Helder André
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Correspondence:
| |
Collapse
|
35
|
Qian C, Liang S, Wan G, Dong Y, Lu T, Yan P. Salidroside alleviates high-glucose-induced injury in retinal pigment epithelial cell line ARPE-19 by down-regulation of miR-138. RNA Biol 2019; 16:1461-1470. [PMID: 31251107 DOI: 10.1080/15476286.2019.1637696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes leading cause of blindness in adults. Salidroside (SAL) is a main ingredient from Rhodiola rosea L., has been reported to have a beneficial protection on vascular function. However, whether SAL is a suitable treatment for DR remains unreported. The study aimed to investigate the effect of SAL on high-glucose (HG)-induced injury in ARPE-19 cells. ARPE-19 cells were managed with diverse concentrations of glucose, and constructed a model of HG-induced ARPE-19 cells injury. Then, SAL was employed to stimulate ARPE-19 cells, and cell viability, apoptosis, apoptosis-associated factors, the pro-inflammatory cytokines, and ROS levels were determined. The correlation between miR-138 and SIRT1 was predicated by bioinformatics software of TargetScan (http://www.targetscan.org/) and Dual luciferase reporter assay. MiR-138 mimic, inhibitor and NCs were transfected into ARPE-19 cells, and the impacts of miR-138 on HG-induced cell injury were investigated. PI3K/AKT and AMPK signalling pathways were examined to explore the underlying mechanism. The results disclosed that HG inhibited cell viability, promoted apoptosis, up-regulated IL-6 and TNF-α, as well as increased ROS level in ARPE-19 cells. But, SAL obviously alleviated HG-induced ARPE-19 cells injury. Repressed miR-138 was triggered by SAL, and SIRT1 was predicated as a direct target of miR-138. Overexpressed miR-138 declined the protective effect of SAL on HG-injured ARPE-19 cells. Besides, SAL activated PI3K/AKT and AMPK pathways by adjusting miR-138. In conclusions, SAL flattened HG-induced injury in ARPE-19 cells by repression of miR-138 and activating PI3K/AKT and AMPK pathways.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Shenzhi Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Taiying Lu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Panshi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
36
|
Komosinska-Vassev K, Olczyk P, Kuźnik-Trocha K, Jura-Półtorak A, Derkacz A, Purchałka M, Telega A, Olczyk K. Circulating C1q/TNF-Related Protein 3, Omentin-1 and NGAL in Obese Patients with Type 2 Diabetes During Insulin Therapy. J Clin Med 2019; 8:jcm8060805. [PMID: 31195747 PMCID: PMC6617185 DOI: 10.3390/jcm8060805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/16/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was to quantify the plasma concentration of omentin-1, neutrophil gelatinase-associated lipocalin (NGAL), and complement C1q tumor necrosis factor-related protein-3 (CTRP3) in obese patients with type 2 diabetes, before introducing insulin therapy, in relation to the plasma expression profiles of these regulatory molecules in the same patients after a 6-month insulin mixture therapy and in obese controls. Elevated plasma NGAL concentrations were found in type 2 diabetic patients as compared with subjects with metabolically healthy obesity. In turn, a 6-month insulin mixture therapy has shown a marked increase in the plasma concentration of omentine-1 and a significant decrease in plasma CTRP3 concentration in obese patients with type 2 diabetes, in relation to the values found in these patients before the implementation of insulin therapy. Insulin mixture therapy has also proved to be an important factor modifying the plasma profile of NGAL, increasing the concentration of this bioactive molecule in the plasma of patients with type 2 diabetes, after 6 months of its use, in relation to the concentration before treatment. The significant changes in the plasma profile of omentin-1, NGAL and CTRP3 during insulin therapy suggest their potential diagnostic utility in monitoring metabolic changes associated with the introduction of insulin treatment in type 2 diabetic patients.
Collapse
Affiliation(s)
- Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Pawel Olczyk
- Department of Community Pharmacy, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Alicja Derkacz
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Marcin Purchałka
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Alicja Telega
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| |
Collapse
|
37
|
Yaribeygi H, Rashidfarrokhi F, Atkin SL, Sahebkar A. C1q/TNF-related protein-3 and glucose homeostasis. Diabetes Metab Syndr 2019; 13:1923-1927. [PMID: 31235116 DOI: 10.1016/j.dsx.2019.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Adipokines are cytokines produced by adipocytes that may mediate inflammatory processes, whilst adipocyte-derived proteins may have the converse effect. C1q/TNF-related protein-3 or CTRP3 is a novel adipokine that is expressed and released by most types of human tissues including adipose tissue. This adipokine, considered as an adiponectin, can normalize blood glucose by several mechanisms. In addition, it can modulate the expression/secretion of other cytokine and adipokines leading to lower insulin resistance in peripheral tissues. Beneficial effects of CTRP3 against hyperglycemia-induced complications in the kidney and eye have been reported. In this review, we have presented the latest findings on the in vitro and in vivo hypoglycemic effects of CTRP3, followed by the findings on the preventive/therapeutic effects of CTRP3 adipokines against diabetes related complications.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farin Rashidfarrokhi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Moradi N, Fadaei R, Khamseh ME, Nobakht A, Rezaei MJ, Aliakbary F, Vatannejad A, Hosseini J. Serum levels of CTRP3 in diabetic nephropathy and its relationship with insulin resistance and kidney function. PLoS One 2019; 14:e0215617. [PMID: 31009504 PMCID: PMC6476508 DOI: 10.1371/journal.pone.0215617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background C1q TNF related protein 3 (CTRP3) is an adipokine secreted from adipose tissue. Previous studies have suggested that CTRP3 improves insulin sensitivity and reduces inflammation. Human studies have evaluated circulating levels of this adipokine in patients with diabetes mellitus (DM), diabetic retinopathy, metabolic syndrome, and coronary artery diseases. However, circulating levels of this adipokine in patients with diabetic nephropathy have not been evaluated. The present study aimed to assess serum levels of CTRP3 in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (T2DM-NP) and its relationship with metabolic and inflammatory markers. Methods This cross-sectional study was performed on 55 controls, 54 patients with T2DM, and 55 patients with T2DM-NP. Serum levels of CTRP3, adiponectin, TNF-α, and IL-6 were measured by ELISA technique. Results Serum levels of CTRP3 were significantly lower in patients with T2DM (257.61 ± 69.79 ng/mL, p < 0.001) and T2DM-NP (222.03 ± 51.99 ng/mL, p < 0.001) compared to controls (328.17 ± 80.73 ng/mL), and those with T2DM-NP compared to T2DM group. CTRP3 was independently associated with HOMA-IR (r = -0.327, p < 0.05) and adiponectin (r = 0.436, p < 0.01) in T2DM group. In T2DM-NP patients, CTRP3 independently was associated with eGFR (r = 0.428, p < 0.01) and HOMA-IR (r = -0.436, p < 0.01). Furthermore, CTRP3 revealed a ability to differentiate T2DM-NP patients from controls (area under curve (95% confidence interval): 0.881 (0.820–0.943) and p < 0.001). Conclusion Decreased serum levels of CTRP3 in patients with T2DM and diabetic nephropathy and its association with pathologic mechanism in these patients suggested a possible role for CTRP3 in pathogenesis of diabetic nephropathy; nevertheless, further studies are required in this regard.
Collapse
Affiliation(s)
- Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ebrahim Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nobakht
- Department of Nephrology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Rezaei
- Department of Anatomy and Histology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fereshteh Aliakbary
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Hosseini
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
39
|
Hu TY, Li LM, Pan YZ. CTRP3 inhibits high glucose-induced human glomerular mesangial cell dysfunction. J Cell Biochem 2018; 120:5729-5736. [PMID: 30362596 DOI: 10.1002/jcb.27859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
C1q/tumour necrosis factor-related protein-3 (CTRP3) is a member of CTRP family, and its blood level is reduced in human and rodent models of obesity and diabetes. However, the role of CTRP3 in diabetic nephropathy remains unclear. This study was designed to examine the effects of CTRP3 on cell proliferation and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) in response to high glucose (HG), and explore the potential molecular mechanisms. Our results demonstrated that the expression of CTRP3 was significantly decreased by HG stimulation in MCs. In addition, CTRP3 overexpression inhibited MCs proliferation, reactive oxygen species level, and ECM production in HG-stimulated MCs. Mechanistically, CTRP3 overexpression inhibited the activation of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway in HG-stimulated MCs. Taken together, these findings indicated that CTRP3 attenuated HG-induced MC proliferation and ECM production through the inactivation of the JAK2/STAT3 signaling pathway. Thus, CTRP3 may be a potential therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tian-Ying Hu
- Department of Endocrinology, Weinan Central Hospital, Weinan, Shaanxi, China
| | - La-Mei Li
- Department of Infectious Diseases, Weinan Central Hospital, Weinan, Shaanxi, China
| | - Yan-Zi Pan
- Department of Nephropathy, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi, China
| |
Collapse
|
40
|
Mao Z, Yang L, Lu X, Tan A, Wang Y, Ding F, Xiao L, Qi X, Yu Y. C1QTNF3 in the murine ovary and its function in folliculogenesis. Reproduction 2018; 155:333-346. [DOI: 10.1530/rep-17-0783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
C1q/tumor necrosis factor-related protein 3 (C1QTNF3) is a novel adipokine with modulating effects on metabolism, inflammation and the cardiovascular system. C1QTNF3 expression levels in the sera and omental adipose tissues of women with PCOS are low compared to control subjects. However, the expression and function of C1QTNF3 in the ovary has not previously been examined. Here, we assessed the expression patterns of C1qtnf3 in the ovary and explored its role in folliculogenesis. The C1qtnf3 transcript abundance was higher in large follicles than in small follicles and was under the influence of gonadotropin. C1QTNF3 was detected mainly in the granulosa cells and oocytes of growing follicles and modestly in the granulosa cells of atretic follicles and in luteal cells. Excess androgen significantly decreased C1QTNF3 expression in the ovaries in vivo and in granulosa cells in vitro. Recombinant C1QTNF3 protein accelerated the weight gain of ovarian explants and the growth of preantral follicles induced by follicle stimulating hormone (FSH) in vitro. The stimulatory effect of C1QTNF3 on ovarian growth was accompanied by the initiation of AKT, mTOR, p70S6K and 4EBP1 phosphorylation, an increase in CCND2 expression and a reduction in cleaved CASP3 levels. Moreover, the addition of C1QTNF3 accelerated proliferation and reduced activated CASP3/7 activity in granulosa cells. In vivo, the ovarian intrabursal administration of the C1QTNF3 antibody delayed gonadotropin-induced antral follicle development. Taken together, our data demonstrate that C1QTNF3 is an intraovarian factor that promotes follicle growth by accelerating proliferation, decelerating apoptosis and promoting AKT/mTOR phosphorylation.
Collapse
|
41
|
Kuk H, Arnold C, Meyer R, Hecker M, Korff T. Magnolol inhibits venous remodeling in mice. Sci Rep 2017; 7:17820. [PMID: 29259201 PMCID: PMC5736655 DOI: 10.1038/s41598-017-17910-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Due to gravity the venous vasculature in the lower extremities is exposed to elevated pressure levels which may be amplified by obesity or pregnancy. As a consequence, venules dilate and may be slowly transformed into varicose or spider veins. In fact, chronically elevated venous pressure was sufficient to cause the corkscrew-like enlargement of superficial veins in mice. We hypothesized that biomechanical activation of endothelial cells contributes to this process and investigated the inhibitory capacity of Magnolol in this context - a natural compound that features multiple properties counteracting cellular stress. While Magnolol did not influence endothelial capillary sprout formation, it interfered with proliferation, ERK1/2 activity, gelatinase activity as well as baseline production of reactive oxygen species in these cells or murine veins. The anti-oxidative and anti-proliferative capacity of Magnolol was mediated through stimulation of heme oxygenase-1 expression. Finally, local transdermal application of Magnolol attenuated pressure-mediated development of varicose/spider veins in mice and was accompanied by the absence of proliferating and MMP-2 positive endothelial cells. Collectively, our data identified Magnolol as a potent inhibitor of biomechanically evoked endothelial cell activity during pressure-mediated venous remodeling processes which contribute to the development of varicose and spider veins.
Collapse
Affiliation(s)
- Hanna Kuk
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Ralph Meyer
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|