1
|
Tegafaw T, Liu S, Ahmad MY, Ali Al Saidi AK, Zhao D, Liu Y, Yue H, Nam SW, Chang Y, Lee GH. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv 2023; 13:32381-32397. [PMID: 37928839 PMCID: PMC10623544 DOI: 10.1039/d3ra06837d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Nanodiamonds (ND) are chemically inert and stable owing to their sp3 covalent bonding structure, but their surface sp2 graphitic carbons can be easily homogenized with diverse functional groups via oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| |
Collapse
|
2
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
3
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
4
|
Hebisch E, Hjort M, Volpati D, Prinz CN. Nanostraw-Assisted Cellular Injection of Fluorescent Nanodiamonds via Direct Membrane Opening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006421. [PMID: 33502091 DOI: 10.1002/smll.202006421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Due to their stable fluorescence, biocompatibility, and amenability to functionalization, fluorescent nanodiamonds (FND) are promising materials for long term cell labeling and tracking. However, transporting them to the cytosol remains a major challenge, due to low internalization efficiencies and endosomal entrapment. Here, nanostraws in combination with low voltage electroporation pulses are used to achieve direct delivery of FND to the cytosol. The nanostraw delivery leads to efficient and rapid FND transport into cells compared to when incubating cells in a FND-containing medium. Moreover, whereas all internalized FND delivered by incubation end up in lysosomes, a significantly larger proportion of nanostraw-injected FND are in the cytosol, which opens up for using FND as cellular probes. Furthermore, in order to answer the long-standing question in the field of nano-biology regarding the state of the cell membrane on hollow nanostructures, live cell stimulated emission depletion (STED) microscopy is performed to image directly the state of the membrane on nanostraws. The time-lapse STED images reveal that the cell membrane opens entirely on top of nanostraws upon application of gentle electrical pulses, which supports the hypothesis that many FND are delivered directly to the cytosol, avoiding endocytosis and lysosomal entrapment.
Collapse
Affiliation(s)
- Elke Hebisch
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Martin Hjort
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
- Navan Technologies Inc., 733 Industrial Rd, San Carlos, CA, United States
| | - Diogo Volpati
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| |
Collapse
|
5
|
Douda J, González-Vargas CR, Mota-Díaz II, Basiuk EV, Hernández-Contreras XA, Fuentes-García JA, Bornacelli J, Torres-Torres C. Photoluminescent properties of liposome-encapsulated amine-functionalized nanodiamonds. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abc1c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
In the present work, amine-functionalized nanodiamonds (NDs) have been encapsulated in liposomes and studied in order to observe the modification of their photoluminescence properties. NDs were functionalized with aromatic amines such as 1-aminopyrene and 2-aminofluorene, and the aliphatic amine 1-octadecylamine. Morphology, structural and optical properties of NDs and amine-modified NDs were analyzed by transmission electron microscopy, atomic force microscopy, scanning electron microscopy, and photoluminescence. The amine-functionalized NDs were successfully encapsulated in lecithin liposomes prepared by the green and conventional methods. The obtained results show significant changes in photoluminescent properties of functionalized NDs, and were more potentialized after liposome encapsulation. Our findings could be applied in the development of new kinds of water-dispersible fluorescent hybrids, liposome-NDs, with the capability of drug encapsulation for use in diagnostics and therapy (theragnostic liposomes). All-optical sensors with possibilities for tailoring their response for other biomedical applications can be also contemplated.
Collapse
|
6
|
Morita A, Hamoh T, Sigaeva A, Norouzi N, Nagl A, van der Laan KJ, Evans EPP, Schirhagl R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. NANOMATERIALS 2020; 10:nano10101962. [PMID: 33023102 PMCID: PMC7601435 DOI: 10.3390/nano10101962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Neda Norouzi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Andreas Nagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Emily P. P. Evans
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Correspondence:
| |
Collapse
|
7
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|
8
|
Knötigová PT, Mašek J, Hubatka F, Kotouček J, Kulich P, Šimečková P, Bartheldyová E, Machala M, Švadláková T, Krejsek J, Vaškovicová N, Skoupý R, Krzyžánek V, Macaulay S, Katzuba M, Fekete L, Ashcheulov P, Raška M, Kratochvílová I, Turánek J. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm 2019; 16:3441-3451. [PMID: 31184896 DOI: 10.1021/acs.molpharmaceut.9b00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.
Collapse
Affiliation(s)
| | - Josef Mašek
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | | | - Jan Kotouček
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute , Brno 62100 , Czech Republic
| | | | | | | | - Tereza Švadláková
- Faculty of Medicine, Department of Clinical Immunology and Allergology , Charles University , Hradec Králové 500 03 , Czech Republic
| | - Jan Krejsek
- Faculty of Medicine, Department of Clinical Immunology and Allergology , Charles University , Hradec Králové 500 03 , Czech Republic
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | - Radim Skoupý
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments , Czech Academy of Sciences , Brno 61264 , Czech Republic
| | | | | | - Ladislav Fekete
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | - Petr Ashcheulov
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | - Milan Raška
- Veterinary Research Institute , Brno 62100 , Czech Republic.,Department of Immunology, Faculty of Medicine and Dentistry , Palacky University Olomouc , Olomouc 775 15 , Czech Republic
| | - Irena Kratochvílová
- Institute of Physics of the Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 , Prague 8, Czech Republic
| | | |
Collapse
|
9
|
Liu D, Fyta M. Hybrids made of defective nanodiamonds interacting with DNA nucleobases. NANOTECHNOLOGY 2019; 30:065601. [PMID: 30524020 DOI: 10.1088/1361-6528/aaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The characteristics of hybrids made of a defective nanodiamond and a biomolecule unit are investigated in this work. Focus is given on the interaction between the nanodiamond and a DNA nucleobase. The latter is placed close to the former in two different arrangements, realizing different bonding types. The nanodiamond includes a negatively charged nitrogen-vacancy center and is hydrogen terminated. Using quantum-mechanical calculations, we could elucidate the structural and electronic properties of such hybrids. Our study clearly identifies the importance of the relative orientation of the two components, the nanodiamond and the nucleobase, in the complex in controlling the electronic properties of the resulting hybrid. The position of the defect at the center or closer to its interface with the nucleobase further controls the electronic orbitals around the defect center, hence its optical activity. In the end, we discuss the relevance of our work in biosensing.
Collapse
Affiliation(s)
- Di Liu
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | | |
Collapse
|
10
|
Cao X, Ye Q, Fan M, Liu C. Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms. J Appl Microbiol 2019; 126:740-751. [PMID: 30556937 DOI: 10.1111/jam.14178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/01/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms and explore the mechanism of the antibiofilm effect of Rh2 in vitro. METHODS AND RESULTS Streptococcus mutans, Streptococcus sobrinus and Streptococcus sanguinis were chosen to form the monospecies or multispecies biofilms. Crystal violet staining and laser scanning confocal microscopy were used to observe the effect of Rh2 on biofilms in vitro. Cytotoxicity was examined by the Cell Counting Kit-8. The effects of Rh2 on bacterial membranes were observed via transmission electron microscopy (TEM). The isobaric tags for relative and absolute quantification (iTRAQ) method were used to profile the common differentially expressed proteins. Gene expression was analysed by reverse transcription quantitative polymerase chain reaction. In general, the treatment of cariogenic biofilms with Rh2 significantly decreased biomass accumulation by inhibiting bacterial growth and extracellular polysaccharide synthesis without any cytotoxic effects. TEM imaging showed that Rh2 could disrupt the cell membranes of these bacteria. The iTRAQ results indicated that the levels of mannose-specific IIC/D and acetaldehyde/alcohol dehydrogenase were substantially down-regulated, while the mRNA expression of the corresponding genes were significantly changed. CONCLUSIONS Our data revealed a potential application for Rh2 in the protection against dental caries via the inhibition of cariogenic biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes the first application of a ginsenoside against multispecies cariogenic biofilms. Rh2 may serve as an alternative agent to prevent dental caries by effectively modulating the pathogenic potentials of oral biofilms.
Collapse
Affiliation(s)
- X Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and Their Applications in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704263. [PMID: 29573338 DOI: 10.1002/smll.201704263] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed.
Collapse
Affiliation(s)
- Mayeul Chipaux
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Kiran J van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Simon R Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| |
Collapse
|
12
|
Hemelaar SR, Saspaanithy B, L'Hommelet SRM, Perona Martinez FP, van der Laan KJ, Schirhagl R. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake. SENSORS 2018; 18:s18020355. [PMID: 29373504 PMCID: PMC5855215 DOI: 10.3390/s18020355] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/02/2022]
Abstract
Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing) for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer) research in HeLa cells.
Collapse
Affiliation(s)
- Simon R Hemelaar
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Babujhi Saspaanithy
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Severin R M L'Hommelet
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Felipe P Perona Martinez
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Kiran J van der Laan
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|