1
|
Altieri A, Visser GV, Buechler MB. Enter the Matrix: Fibroblast-immune cell interactions shape extracellular matrix deposition in health and disease. F1000Res 2024; 13:119. [PMID: 39886650 PMCID: PMC11781523 DOI: 10.12688/f1000research.143506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function. In this review, we will highlight recent studies which elucidate the mechanisms by which fibroblast-derived ECM factors (e.g., collagens, fibrillar proteins) regulate ECM architecture and subsequent immune responses, with a focus on macrophages. As examples of fibroblast-derived ECM proteins, we examine Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Transforming Growth Factor-β-inducible protein (TGFBI), also known as BIGH3. We address the need for investigation into how diverse fibroblast populations coordinate immune responses by modulating ECM, including the fibroblast-ECM-immune axis and the precise molecular mediators and pathways which regulate these processes. Finally, we will outline how novel research identifying key regulators of ECM deposition is critical for therapeutic development for fibrotic diseases and cancer.
Collapse
|
2
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
3
|
She Z, Chen H, Lin X, Li C, Su J. POSTN Regulates Fibroblast Proliferation and Migration in Laryngotracheal Stenosis Through the TGF-β/RHOA Pathway. Laryngoscope 2024; 134:4078-4087. [PMID: 38771155 DOI: 10.1002/lary.31505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To investigate the role of periostin (POSTN) and the transforming growth factor β (TGF-β) pathway in the formation of laryngotracheal stenosis (LTS) scar fibrosis and to explore the specific signaling mechanism of POSTN-regulated TGF-β pathway in tracheal fibroblasts. METHODS Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-β pathways in fibrosis diseases. Expression of POSTN and TGF-β pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-β1 and the regulation of cell proliferation and migration via the TGF-β/RHOA pathway. RESULTS The bioinformatics analysis revealed that POSTN and the TGF-β pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-β/RHOA pathway-related molecules (TGFβ1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-β1 and regulation of cell proliferation and migration through the TGF-β/RHOA pathway. CONCLUSION POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-β/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-β1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. LEVEL OF EVIDENCE NA Laryngoscope, 134:4078-4087, 2024.
Collapse
Affiliation(s)
- Zhiqiang She
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiying Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyu Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiping Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Fabritz L, Fortmueller L, Gehmlich K, Kant S, Kemper M, Kucerova D, Syeda F, Faber C, Leube RE, Kirchhof P, Krusche CA. Endurance Training Provokes Arrhythmogenic Right Ventricular Cardiomyopathy Phenotype in Heterozygous Desmoglein-2 Mutants: Alleviation by Preload Reduction. Biomedicines 2024; 12:985. [PMID: 38790949 PMCID: PMC11117820 DOI: 10.3390/biomedicines12050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Desmoglein-2 mutations are detected in 5-10% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Endurance training accelerates the development of the ARVC phenotype, leading to earlier arrhythmic events. Homozygous Dsg2 mutant mice develop a severe ARVC-like phenotype. The phenotype of heterozygous mutant (Dsg2mt/wt) or haploinsufficient (Dsg20/wt) mice is still not well understood. To assess the effects of age and endurance swim training, we studied cardiac morphology and function in sedentary one-year-old Dsg2mt/wt and Dsg20/wt mice and in young Dsg2mt/wt mice exposed to endurance swim training. Cardiac structure was only occasionally affected in aged Dsg20/wt and Dsg2mt/wt mice manifesting as small fibrotic foci and displacement of Connexin 43. Endurance swim training increased the right ventricular (RV) diameter and decreased RV function in Dsg2mt/wt mice but not in wild types. Dsg2mt/wt hearts showed increased ventricular activation times and pacing-induced ventricular arrhythmia without obvious fibrosis or inflammation. Preload-reducing therapy during training prevented RV enlargement and alleviated the electrophysiological phenotype. Taken together, endurance swim training induced features of ARVC in young adult Dsg2mt/wt mice. Prolonged ventricular activation times in the hearts of trained Dsg2mt/wt mice are therefore a potential mechanism for increased arrhythmia risk. Preload-reducing therapy prevented training-induced ARVC phenotype pointing to beneficial treatment options in human patients.
Collapse
Affiliation(s)
- Larissa Fabritz
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany; (L.F.); (P.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK; (K.G.); (M.K.); (F.S.)
- Department of Cardiology, Section of Rhythmology, University Hospital Muenster, 48149 Münster, Germany;
| | - Lisa Fortmueller
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany; (L.F.); (P.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Cardiology, Section of Rhythmology, University Hospital Muenster, 48149 Münster, Germany;
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK; (K.G.); (M.K.); (F.S.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Sebastian Kant
- Institute for Molecular and Cellular Anatomy (MOCA), RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (R.E.L.)
| | - Marcel Kemper
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK; (K.G.); (M.K.); (F.S.)
- Department of Cardiology, Section of Rhythmology, University Hospital Muenster, 48149 Münster, Germany;
| | - Dana Kucerova
- Department of Cardiology, Section of Rhythmology, University Hospital Muenster, 48149 Münster, Germany;
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK; (K.G.); (M.K.); (F.S.)
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Muenster, 48149 Münster, Germany;
| | - Rudolf E. Leube
- Institute for Molecular and Cellular Anatomy (MOCA), RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (R.E.L.)
| | - Paulus Kirchhof
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany; (L.F.); (P.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK; (K.G.); (M.K.); (F.S.)
| | - Claudia A. Krusche
- Institute for Molecular and Cellular Anatomy (MOCA), RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (R.E.L.)
| |
Collapse
|
5
|
Wang R, Hasegawa M, Suginobe H, Yoshihara C, Ishii Y, Ueyama A, Ueda K, Hashimoto K, Hirose M, Ishii R, Narita J, Watanabe T, Kawamura T, Taira M, Ueno T, Miyagawa S, Ishida H. Impaired Relaxation in Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Pathogenic TNNI3 Mutation of Pediatric Restrictive Cardiomyopathy. J Am Heart Assoc 2024; 13:e032375. [PMID: 38497452 PMCID: PMC11010001 DOI: 10.1161/jaha.123.032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired diastolic function with preserved ventricular contraction. Several pathogenic variants in sarcomere genes, including TNNI3, are reported to cause Ca2+ hypersensitivity in cardiomyocytes in overexpression models; however, the pathophysiology of induced pluripotent stem cell (iPSC)-derived cardiomyocytes specific to a patient with RCM remains unknown. METHODS AND RESULTS We established an iPSC line from a pediatric patient with RCM and a heterozygous TNNI3 missense variant, c.508C>T (p.Arg170Trp; R170W). We conducted genome editing via CRISPR/Cas9 technology to establish an isogenic correction line harboring wild type TNNI3 as well as a homozygous TNNI3-R170W. iPSCs were then differentiated to cardiomyocytes to compare their cellular physiological, structural, and transcriptomic features. Cardiomyocytes differentiated from heterozygous and homozygous TNNI3-R170W iPSC lines demonstrated impaired diastolic function in cell motion analyses as compared with that in cardiomyocytes derived from isogenic-corrected iPSCs and 3 independent healthy iPSC lines. The intracellular Ca2+ oscillation and immunocytochemistry of troponin I were not significantly affected in RCM-cardiomyocytes with either heterozygous or homozygous TNNI3-R170W. Electron microscopy showed that the myofibril and mitochondrial structures appeared to be unaffected. RNA sequencing revealed that pathways associated with cardiac muscle development and contraction, extracellular matrix-receptor interaction, and transforming growth factor-β were altered in RCM-iPSC-derived cardiomyocytes. CONCLUSIONS Patient-specific iPSC-derived cardiomyocytes could effectively represent the diastolic dysfunction of RCM. Myofibril structures including troponin I remained unaffected in the monolayer culture system, although gene expression profiles associated with cardiac muscle functions were altered.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Moyu Hasegawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidehiro Suginobe
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Chika Yoshihara
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Yoichiro Ishii
- Department of Pediatric Cardiology Osaka Children's and Women's Hospital Osaka Japan
| | - Atsuko Ueyama
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazutoshi Ueda
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Hirose
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Ryo Ishii
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Jun Narita
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Watanabe
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Masaki Taira
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Hidekazu Ishida
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
6
|
Zhang J, Hou H, Song Y, Guo M, Liu X, Yang Q, He G. Proteomics study and protein biomarkers of malignant ventricular arrhythmia in acute myocardial infarction patients. Clin Transl Med 2023; 13:e1435. [PMID: 37962003 PMCID: PMC10644326 DOI: 10.1002/ctm2.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Jian‐Liang Zhang
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Hai‐Tao Hou
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Yu Song
- Critical Care Unit, The Institute of Cardiovascular DiseasesTEDA International Cardiovascular Hospital, Tianjin UniversityTianjinChina
| | - Mu Guo
- Critical Care Unit, The Institute of Cardiovascular DiseasesTEDA International Cardiovascular Hospital, Tianjin UniversityTianjinChina
| | - Xiao‐Cheng Liu
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Qin Yang
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| | - Guo‐Wei He
- The Institute of Cardiovascular Diseases and Department of Cardiovascular surgery, TEDA International Cardiovascular HospitalChinese Academy of Medical Sciences and Graduate School of Peking Union Medical College and Tianjin UniversityTianjinChina
| |
Collapse
|
7
|
Tsuru H, Yoshihara C, Suginobe H, Matsumoto M, Ishii Y, Narita J, Ishii R, Wang R, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Tanaka R, Okajima T, Ozono K, Ishida H. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2023; 12:e029676. [PMID: 37345811 PMCID: PMC10356057 DOI: 10.1161/jaha.123.029676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. Methods and Results Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, apoptosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several humoral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. Conclusions Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell-cell contact.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
- Department of PediatricsNiigata University School of MedicineNiigataJapan
| | - Chika Yoshihara
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidehiro Suginobe
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mizuki Matsumoto
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Yoichiro Ishii
- Department of Pediatric CardiologyOsaka Medical Center for Maternal and Child HealthOsakaJapan
| | - Jun Narita
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryo Ishii
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Renjie Wang
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Atsuko Ueyama
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazutoshi Ueda
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Masaki Hirose
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhisa Hashimoto
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Nagano
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryosuke Tanaka
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Takaharu Okajima
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Keiichi Ozono
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
8
|
Proteomic Analysis of Dupuytren's Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events. Int J Mol Sci 2023; 24:ijms24021081. [PMID: 36674597 PMCID: PMC9866571 DOI: 10.3390/ijms24021081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Dupuytren's contracture (DC) is a chronic and progressive fibroproliferative disorder restricted to the palmar fascia of the hands. Previously, we discovered the presence of high levels of connective tissue growth factor in sweat glands in the vicinity of DC nodules and hypothesized that sweat glands have an important role in the formation of DC lesions. Here, we shed light on the role of sweat glands in the DC pathogenesis by proteomic analysis and immunofluorescence microscopy. We demonstrated that a fraction of sweat gland epithelium underwent epithelial-mesenchymal transition illustrated by negative regulation of E-cadherin. We hypothesized that the increase in connective tissue growth factor expression in DC sweat glands has both autocrine and paracrine effects in sustaining the DC formation and inducing pathological changes in DC-associated sweat glands.
Collapse
|
9
|
Defining the timeline of periostin upregulation in cardiac fibrosis following acute myocardial infarction in mice. Sci Rep 2022; 12:21863. [PMID: 36529756 PMCID: PMC9760637 DOI: 10.1038/s41598-022-26035-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
After myocardial infarction (MI), the heart's reparative response to the ischemic insult and the related loss of cardiomyocytes involves cardiac fibrosis, in which the damaged tissue is replaced with a fibrous scar. Although the scar is essential to prevent ventricular wall rupture in the infarction zone, it expands over time to remote, non-infarct areas, significantly increasing the extent of fibrosis and markedly altering cardiac structure. Cardiac function in this scenario deteriorates, thereby increasing the probability of heart failure and the risk of death. Recent works have suggested that the matricellular protein periostin, known to be involved in fibrosis, is a candidate therapeutic target for the regulation of MI-induced fibrosis and remodeling. Different strategies for the genetic manipulation of periostin have been proposed previously, yet those works did not properly address the time dependency between periostin activity and cardiac fibrosis. Our study aimed to fill that gap in knowledge and fully elucidate the explicit timing of cellular periostin upregulation in the infarcted heart to enable the safer and more effective post-MI targeting of periostin-producing cells. Surgical MI was performed in C57BL/6J and BALB/c mice by ligation of the left anterior descending coronary artery. Flow cytometry analyses of cells derived from the infarcted hearts and quantitative real-time PCR of the total cellular RNA revealed that periostin expression increased during days 2-7 and peaked on day 7 post-infarct, regardless of mouse strain. The established timeline for cellular periostin expression in the post-MI heart is a significant milestone toward the development of optimal periostin-targeted gene therapy.
Collapse
|
10
|
Wang L, Zhang Y, Yu M, Yuan W. Identification of Hub Genes in the Remodeling of Non-Infarcted Myocardium Following Acute Myocardial Infarction. J Cardiovasc Dev Dis 2022; 9:jcdd9120409. [PMID: 36547406 PMCID: PMC9788553 DOI: 10.3390/jcdd9120409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: There are few diagnostic and therapeutic targets for myocardial remodeling in the salvageable non-infarcted myocardium. (2) Methods: Hub genes were identified through comprehensive bioinformatics analysis (GSE775, GSE19322, and GSE110209 from the gene expression omnibus (GEO) database) and the biological functions of hub genes were examined by gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, the differential expression of hub genes in various cell populations between the acute myocardial infarction (AMI) and sham-operation groups was analyzed by processing scRNA data (E-MTAB-7376 from the ArrayExpress database) and RNA-seq data (GSE183168). (3) Results: Ten strongly interlinked hub genes (Timp1, Sparc, Spp1, Tgfb1, Decr1, Vim, Serpine1, Serpina3n, Thbs2, and Vcan) were identified by the construction of a protein-protein interaction network from 135 differentially expressed genes identified through comprehensive bioinformatics analysis and their reliability was verified using GSE119857. In addition, the 10 hub genes were found to influence the ventricular remodeling of non-infarcted tissue by modulating the extracellular matrix (ECM)-mediated myocardial fibrosis, macrophage-driven inflammation, and fatty acid metabolism. (4) Conclusions: Ten hub genes were identified, which may provide novel potential targets for the improvement and treatment of AMI and its complications.
Collapse
|
11
|
Ciccosanti F, Antonioli M, Sacchi A, Notari S, Farina A, Beccacece A, Fusto M, Vergori A, D'Offizi G, Taglietti F, Antinori A, Nicastri E, Marchioni L, Palmieri F, Ippolito G, Piacentini M, Agrati C, Fimia GM. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin Proteomics 2022; 19:38. [PMID: 36348270 PMCID: PMC9641302 DOI: 10.1186/s12014-022-09377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Sacchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Stefania Notari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Anna Farina
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessia Beccacece
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Marisa Fusto
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Vergori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Taglietti
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Andrea Antinori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Emanuele Nicastri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Luisa Marchioni
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Palmieri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- General Directorate for Research and Health Innovation, Italian Ministry of Health, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.
| |
Collapse
|
12
|
Identification of the Potential Molecular Mechanism of TGFBI Gene in Persistent Atrial Fibrillation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1643674. [PMID: 36398072 PMCID: PMC9666036 DOI: 10.1155/2022/1643674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Background Transforming growth factor beta-induced protein (TGFBI, encoded by TGFBI gene), is an extracellular matrix protein, widely expressed in variety of tissues. It binds to collagens type I, II, and IV and plays important roles in the interactions of cell with cell, collagen, and matrix. It has been reported to be associated with myocardial fibrosis, and the latter is an important pathophysiologyical basis of atrial fibrillation (AF). However, the mechanism of TGFBI in AF remains unclear. We aimed to detect the potential mechanism of TGFBI in AF via bioinformatics analysis. Methods The microarray dataset of GSE115574 was examined to detect the genes coexpressed with TGFBI from 14 left atrial tissue samples of AF patients. TGFBI coexpression genes were then screened using the R package. Using online analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-protein interaction (PPI) network of TGFBI and its coexpression genes. The modules and hub genes of the PPI-network were then identified. Another dataset, GSE79768 was examined to verify the hub genes. DrugBank was used to detect the potential target drugs. Results In GSE115574 dataset, a total of 1818 coexpression genes (769 positive and 1049 negative) were identified, enriched in 120 biological processes (BP), 38 cellular components (CC), 36 molecular functions (MF), and 39 KEGG pathways. A PPI-network with average 12.2-degree nodes was constructed. The genes clustered in the top module constructed from this network mainly play a role in PI3K-Akt signaling pathway, viral myocarditis, inflammatory bowel disease, and platelet activation. CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 were identified and finally verified as the hub genes, mainly enriched in pathways like leukocyte transendothelial migration, PI3K-Akt signaling pathway, viral myocarditis, rheumatoid arthritis, and platelet activation. Pegcetacoplan, ocriplasmin, and carvedilol were the potential target drugs. Conclusions We used microdataset to identify the potential functions and mechanisms of the TGFBI and its coexpression genes in AF patients. Our findings suggest that CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 may be the hub genes.
Collapse
|
13
|
Dooling LJ, Saini K, Anlaş AA, Discher DE. Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biol 2022; 111:153-188. [PMID: 35764212 PMCID: PMC9990088 DOI: 10.1016/j.matbio.2022.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
Fibrillar proteins are principal components of extracellular matrix (ECM) that confer mechanical properties to tissues. Fibrosis can result from wound repair in nearly every tissue in adults, and it associates with increased ECM density and crosslinking as well as increased tissue stiffness. Such fibrotic tissues are a major biomedical challenge, and an emerging view posits that the altered mechanical environment supports both synthetic and contractile myofibroblasts in a state of persistent activation. Here, we review the matrisome in several fibrotic diseases, as well as normal tissues, with a focus on physicochemical properties. Stiffness generally increases with the abundance of fibrillar collagens, the major constituent of ECM, with similar mathematical trends for fibrosis as well as adult tissues from soft brain to stiff bone and heart development. Changes in expression of other core matrisome and matrisome-associated proteins or proteoglycans contribute to tissue stiffening in fibrosis by organizing collagen, crosslinking ECM, and facilitating adhesion of myofibroblasts. Understanding how ECM composition and mechanics coevolve during fibrosis can lead to better models and help with antifibrotic therapies.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Karanvir Saini
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Alişya A Anlaş
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 2022; 25:103865. [PMID: 35243228 PMCID: PMC8861636 DOI: 10.1016/j.isci.2022.103865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Timothy K. Starr
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
15
|
Wagner JUG, Dimmeler S. The endothelial niche in heart failure: from development to regeneration. Eur Heart J 2021; 42:4277-4279. [PMID: 34392349 DOI: 10.1093/eurheartj/ehab304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian U G Wagner
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
16
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
17
|
de Oliveira Camargo R, Abual'anaz B, Rattan SG, Filomeno KL, Dixon IMC. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair Regen 2021; 29:667-677. [PMID: 34076932 DOI: 10.1111/wrr.12947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Heart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFRα and are hypersecretory ECM components. These cells facilitate both acute wound healing (infarct site) and chronic cardiac fibrosis. Quiescent fibroblasts are associated with normal myocardial tissue and provide relatively slow turnover of the ECM. Deactivation of activated myofibroblasts is a much less studied phenomenon. In this context, SKI is a known negative regulator of TGFb1 /Smad signalling, and thus may share functional similarity to PPARγ activation. The discovery of SKI's potent anti-fibrotic role, and its ability to deactivate and/or myofibroblasts is featured and contrasted with PPARγ. While myofibroblasts are typically recruited from pools of potential precursor cells in a variety of organs, the importance of activation of resident cardiac fibroblasts has been recently emphasised. Myofibroblasts deposit ECM components at an elevated rate and contribute to both systolic and diastolic dysfunction with attendant cardiac fibrosis. A major knowledge gap exists as to specific proteins that may signal for fibroblast deactivation. As SKI may be a functionally pluripotent protein, we suggest that it serves as a scaffold to proteins other than R-Smads and associated Smad signal proteins, and thus its anti-fibrotic effects may extend beyond binding R-Smads. While cardiac fibrosis is causal to heart failure, the treatment of cardiac fibrosis is hampered by the lack of availability of effective pharmacological anti-fibrotic agents. The current review will provide an overview of work highlighting novel factors which cause fibroblast activation and deactivation to underscore putative therapeutic avenues for improving disease outcomes in cardiac patients with fibrosed hearts.
Collapse
Affiliation(s)
- Rebeca de Oliveira Camargo
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Besher Abual'anaz
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sunil G Rattan
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Krista L Filomeno
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada
| | - Ian M C Dixon
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Razin T, Melamed-Book N, Argaman J, Galin I, Lowy Y, Anuka E, Naftali-Shani N, Kandel-Kfir M, Garfinkel BP, Brielle S, Granot Z, Apte RN, Conway SJ, Molkentin JD, Kamari Y, Leor J, Orly J. Interleukin-1α dependent survival of cardiac fibroblasts is associated with StAR/STARD1 expression and improved cardiac remodeling and function after myocardial infarction. J Mol Cell Cardiol 2021; 155:125-137. [PMID: 33130150 PMCID: PMC11492233 DOI: 10.1016/j.yjmcc.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
AIMS One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.
Collapse
Affiliation(s)
- Talya Razin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Naomi Melamed-Book
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Jasmin Argaman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iris Galin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yosef Lowy
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nili Naftali-Shani
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Tamman Cardiovascular Research Institute, and Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Michal Kandel-Kfir
- Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Israel. Michal.KandelKfir-@sheba.health.gov.il
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Shlomi Brielle
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, 91120 Jerusalem, Israel.
| | - Ron N Apte
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University, Beer-Sheva, Israel.
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, United States.
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, United States.
| | - Yehuda Kamari
- Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Tamman Cardiovascular Research Institute, and Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
19
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
20
|
Lee SG, Kim JS, Kim HJ, Schlaepfer DD, Kim IS, Nam JO. Endothelial angiogenic activity and adipose angiogenesis is controlled by extracellular matrix protein TGFBI. Sci Rep 2021; 11:9644. [PMID: 33958649 PMCID: PMC8102489 DOI: 10.1038/s41598-021-88959-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have suggested that extracellular matrix (ECM) remodeling and the microenvironment are tightly associated with adipogenesis and adipose angiogenesis. In the present study, we demonstrated that transforming growth factor-beta induced (TGFBI) suppresses angiogenesis stimulated by adipocyte-conditioned medium (Ad-CM), both in vitro and in vivo. TGFBI knockout (KO) mice exhibited increased numbers of blood vessels in adipose tissue, and blood vessels from these mice showed enhanced infiltration into Matrigel containing Ad-CM. The treatment of Ad-CM-stimulated SVEC-10 endothelial cells with TGFBI protein reduced migration and tube-forming activity. TGFBI protein suppressed the activation of the Src and extracellular signaling-related kinase signaling pathways of these SVEC-10 endothelial cells. Our findings indicated that TGFBI inhibited adipose angiogenesis by suppressing the activation of Src and ERK signaling pathways, possibly because of the stimulation of the angiogenic activity of endothelial cells.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin Soo Kim
- National Institute for Korean Medicine Development, Kyeongsan, 38540, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - David D Schlaepfer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
21
|
Tsuru H, Ishida H, Narita J, Ishii R, Suginobe H, Ishii Y, Wang R, Kogaki S, Taira M, Ueno T, Miyashita Y, Kioka H, Asano Y, Sawa Y, Ozono K. Cardiac Fibroblasts Play Pathogenic Roles in Idiopathic Restrictive Cardiomyopathy. Circ J 2021; 85:677-686. [PMID: 33583869 DOI: 10.1253/circj.cj-20-1008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood. METHODS AND RESULTS This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three of four patients hadTNNI3mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardiomyocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expression profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients. CONCLUSIONS The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect pathological behavior of cardiomyocytes in RCM.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Yoichiro Ishii
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine
- Department of Pediatrics and Neonatology, Osaka General Medical Center
| | - Masaki Taira
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yohei Miyashita
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Hidetaka Kioka
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshihiro Asano
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine
| |
Collapse
|
22
|
Xu F, Tanabe N, Vasilescu DM, McDonough JE, Coxson HO, Ikezoe K, Kinose D, Ng KW, Verleden SE, Wuyts WA, Vanaudenaerde BM, Verschakelen J, Cooper JD, Lenburg ME, Morshead KB, Abbas AR, Arron JR, Spira A, Hackett TL, Colby TV, Ryerson CJ, Ng RT, Hogg JC. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EBioMedicine 2021; 66:103325. [PMID: 33862585 PMCID: PMC8054143 DOI: 10.1016/j.ebiom.2021.103325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition from normal lung anatomy to minimal and established fibrosis is an important feature of the pathology of idiopathic pulmonary fibrosis (IPF). The purpose of this report is to examine the molecular and cellular mechanisms associated with this transition. METHODS Pre-operative thoracic Multidetector Computed Tomography (MDCT) scans of patients with severe IPF (n = 9) were used to identify regions of minimal(n = 27) and established fibrosis(n = 27). MDCT, Micro-CT, quantitative histology, and next-generation sequencing were used to compare 24 samples from donor controls (n = 4) to minimal and established fibrosis samples. FINDINGS The present results extended earlier reports about the transition from normal lung anatomy to minimal and established fibrosis by showing that there are activations of TGFBI, T cell co-stimulatory genes, and the down-regulation of inhibitory immune-checkpoint genes compared to controls. The expression patterns of these genes indicated activation of a field immune response, which is further supported by the increased infiltration of inflammatory immune cells dominated by lymphocytes that are capable of forming lymphoid follicles. Moreover, fibrosis pathways, mucin secretion, surfactant, TLRs, and cytokine storm-related genes also participate in the transitions from normal lung anatomy to minimal and established fibrosis. INTERPRETATION The transition from normal lung anatomy to minimal and established fibrosis is associated with genes that are involved in the tissue repair processes, the activation of immune responses as well as the increased infiltration of CD4, CD8, B cell lymphocytes, and macrophages. These molecular and cellular events correlate with the development of structural abnormality of IPF and probably contribute to its pathogenesis.
Collapse
Affiliation(s)
- Feng Xu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Naoya Tanabe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dragos M Vasilescu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - John E McDonough
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Harvey O Coxson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Kohei Ikezoe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Daisuke Kinose
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Stijn E Verleden
- Laboratory of Respiratory Diseases, BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | | | - Johny Verschakelen
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Joel D Cooper
- Division of Thoracic Surgery, University of Pennsylvania, USA
| | | | | | | | | | - Avrum Spira
- Boston University Medical Center, Boston, MA, USA
| | - Tillie-Louise Hackett
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Thomas V Colby
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, USA
| | - Christopher J Ryerson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Raymond T Ng
- Department of Computer Science, The University of British Columbia, Vancouver, Canada
| | - James C Hogg
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Liu M, Iosef C, Rao S, Domingo-Gonzalez R, Fu S, Snider P, Conway SJ, Umbach GS, Heilshorn SC, Dewi RE, Dahl MJ, Null DM, Albertine KH, Alvira CM. Transforming Growth Factor-induced Protein Promotes NF-κB-mediated Angiogenesis during Postnatal Lung Development. Am J Respir Cell Mol Biol 2021; 64:318-330. [PMID: 33264084 PMCID: PMC7909333 DOI: 10.1165/rcmb.2020-0153oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary angiogenesis is a key driver of alveolarization. Our prior studies showed that NF-κB promotes pulmonary angiogenesis during early alveolarization. However, the mechanisms regulating temporal-specific NF-κB activation in the pulmonary vasculature are unknown. To identify mechanisms that activate proangiogenic NF-κB signaling in the developing pulmonary vasculature, proteomic analysis of the lung secretome was performed using two-dimensional difference gel electrophoresis. NF-κB activation and angiogenic function was assessed in primary pulmonary endothelial cells (PECs) and TGFBI (transforming growth factor-β-induced protein)-regulated genes identified using RNA sequencing. Alveolarization and pulmonary angiogenesis was assessed in wild-type and Tgfbi null mice exposed to normoxia or hyperoxia. Lung TGFBI expression was determined in premature lambs supported by invasive and noninvasive respiratory support. Secreted factors from the early alveolar, but not the late alveolar or adult lung, promoted proliferation and migration in quiescent, adult PECs. Proteomic analysis identified TGFBI as one protein highly expressed by the early alveolar lung that promoted PEC migration by activating NF-κB via αvβ3 integrins. RNA sequencing identified Csf3 as a TGFBI-regulated gene that enhances nitric oxide production in PECs. Loss of TGFBI in mice exaggerated the impaired pulmonary angiogenesis induced by chronic hyperoxia, and TGFBI expression was disrupted in premature lambs with impaired alveolarization. Our studies identify TGFBI as a developmentally regulated protein that promotes NF-κB-mediated angiogenesis during early alveolarization by enhancing nitric oxide production. We speculate that dysregulation of TGFBI expression may contribute to diseases marked by impaired alveolar and vascular growth.
Collapse
Affiliation(s)
- Min Liu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | - Cristiana Iosef
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | - Shailaja Rao
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | | | - Sha Fu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
- Liuyang People’s Hospital, Hunan, China
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J. Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gray S. Umbach
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
- University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Ruby E. Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Mar J. Dahl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Donald M. Null
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kurt H. Albertine
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Cristina M. Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| |
Collapse
|
24
|
Gao QY, Zhang HF, Chen ZT, Li YW, Wang SH, Wen ZZ, Xie Y, Mai JT, Wang JF, Chen YX. Construction and Analysis of a ceRNA Network in Cardiac Fibroblast During Fibrosis Based on in vivo and in vitro Data. Front Genet 2021; 11:503256. [PMID: 33552116 PMCID: PMC7859616 DOI: 10.3389/fgene.2020.503256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aims Activation of cardiac fibroblasts (CF) is crucial to cardiac fibrosis. We constructed a cardiac fibroblast-related competing endogenous RNA (ceRNA) network. Potential functions related to fibrosis of “hub genes” in this ceRNA network were explored. Materials and Methods The Gene Expression Omnibus database was searched for eligible datasets. Differentially expressed messenger (m)RNA (DE-mRNA) and long non-coding (lnc)RNA (DE-lncRNA) were identified. microRNA was predicted and validated. A predicted ceRNA network was constructed and visualized by Cytoscape, and ceRNA crosstalk was validated. A Single Gene Set Enrichment Analysis (SGSEA) was done, and the Comparative Toxicogenomics Database (CTD) was employed to analyze the most closely associated pathways and diseases of DE-mRNA in the ceRNA network. The functions of DE-mRNA and DE-lncRNA in the ceRNA network were validated by small interfering (si)RNA depletion. Results The GSE97358 and GSE116250 datasets (which described differentially expressed genes in human cardiac fibroblasts and failing ventricles, respectively) were used for analyses. Four-hundred-and-twenty DE-mRNA and 39 DE-lncRNA, and 369 DE-mRNA and 93 DE-lncRNA were identified, respectively, in the GSE97358 and GSE116250 datasets. Most of the genes were related to signal transduction, cytokine activity, and cell proliferation. Thirteen DE-mRNA with the same expression tendency were overlapped in the two datasets. Twenty-three candidate microRNAs were predicted and the expression of 11 were different. Only two DE-lncRNA were paired to any one of 11 microRNA. Finally, two mRNA [ADAM metallopeptidase domain 19, (ADAM19) and transforming growth factor beta induced, (TGFBI)], three microRNA (miR-9-5p, miR-124-3p, and miR-153-3p) and two lncRNA (LINC00511 and SNHG15) constituted our ceRNA network. siRNA against LINC00511 increased miR-124-3p and miR-9-5p expression, and decreased ADAM19 and TGFBI expression, whereas siRNA against SNHG15 increased miR-153-3p and decreased ADAM19 expression. ADAM19 and TGFBI were closely related to the TGF-β1 pathway and cardiac fibrosis, as shown by SGSEA and CTD, respectively. Depletion of two mRNA or two lncRNA could alleviate CF activation. Conclusions The CF-specific ceRNA network, including two lncRNA, three miRNA, and two mRNA, played a crucial role during cardiac fibrosis, which provided potential target genes in this field.
Collapse
Affiliation(s)
- Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yue-Wei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Shao-Hua Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Zhu-Zhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| |
Collapse
|
25
|
Nikoloudaki G, Snider P, Simmons O, Conway SJ, Hamilton DW. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol 2020; 94:31-56. [PMID: 32777343 DOI: 10.1016/j.matbio.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Although the matricellular protein periostin is prominently upregulated in skin and gingival healing, it plays contrasting roles in myofibroblast differentiation and matrix synthesis respectively. Palatal healing is associated with scarring that can alter or restrict maxilla growth, but the expression pattern and contribution of periostin in palatal healing is unknown. Using periostin-knockout (Postn-/-) and wild-type (WT) mice, the contribution of periostin to palatal healing was investigated through 1.5 mm full-thickness excisional wounds in the hard palate. In WT mice, periostin was upregulated 6 days post-wounding, with mRNA levels peaking at day 12. Genetic deletion of periostin significantly reduced wound closure rates compared to WT mice. Absence of periostin reduced mRNA levels of pivotal genes in wound repair, including α-SMA/acta2, fibronectin and βigh3. Recruitment of fibroblasts and inflammatory cells, as visualized by immunofluorescent staining for fibroblast specific factor-1, vimentin, and macrophages markers Arginase-1 and iNOS was also impaired in Postn-/-, but not WT mice. Palatal fibroblasts isolated from the hard palate of mice were cultured on collagen gels and prefabricated silicon substrates with varying stiffness. Postn-/- fibroblasts showed a significantly reduced ability to contract a collagen gel, which was rescued by the exogenous addition of recombinant periostin. As the stiffness increased, Postn-/- fibroblasts increasingly differentiated into myofibroblasts, but not to the same degree as the WT. Pharmacological inhibition of Rac rescued the deficient myofibroblastic phenotype of Postn-/- cells. Low stiffness substrates (0.2 kPa) resulted in upregulation of fibronectin in WT cells, an effect which was significantly reduced in Postn-/- cells. Quantification of immunostaining for vinculin and integrinβ1 adhesions revealed that Periostin is required for the formation of focal and fibrillar adhesions in mPFBs. Our results suggest that periostin modulates myofibroblast differentiation and contraction via integrinβ1/RhoA pathway, and fibronectin synthesis in an ECM stiffness dependent manner in palatal healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Paige Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Olga Simmons
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
26
|
Boehm M, Tian X, Mao Y, Ichimura K, Dufva MJ, Ali K, Dannewitz Prosseda S, Shi Y, Kuramoto K, Reddy S, Kheyfets VO, Metzger RJ, Spiekerkoetter E. Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding. Cardiovasc Res 2020; 116:1700-1709. [PMID: 31738411 PMCID: PMC7643543 DOI: 10.1093/cvr/cvz310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
AIMS The temporal sequence of events underlying functional right ventricular (RV) recovery after improvement of pulmonary hypertension-associated pressure overload is unknown. We sought to establish a novel mouse model of gradual RV recovery from pressure overload and use it to delineate RV reverse-remodelling events. METHODS AND RESULTS Surgical pulmonary artery banding (PAB) around a 26-G needle induced RV dysfunction with increased RV pressures, reduced exercise capacity and caused liver congestion, hypertrophic, fibrotic, and vascular myocardial remodelling within 5 weeks of chronic RV pressure overload in mice. Gradual reduction of the afterload burden through PA band absorption (de-PAB)-after RV dysfunction and structural remodelling were established-initiated recovery of RV function (cardiac output and exercise capacity) along with rapid normalization in RV hypertrophy (RV/left ventricular + S and cardiomyocyte area) and RV pressures (right ventricular systolic pressure). RV fibrotic (collagen, elastic fibres, and vimentin+ fibroblasts) and vascular (capillary density) remodelling were equally reversible; however, reversal occurred at a later timepoint after de-PAB, when RV function was already completely restored. Microarray gene expression (ClariomS, Thermo Fisher Scientific, Waltham, MA, USA) along with gene ontology analyses in RV tissues revealed growth factors, immune modulators, and apoptosis mediators as major cellular components underlying functional RV recovery. CONCLUSION We established a novel gradual de-PAB mouse model and used it to demonstrate that established pulmonary hypertension-associated RV dysfunction is fully reversible. Mechanistically, we link functional RV improvement to hypertrophic normalization that precedes fibrotic and vascular reverse-remodelling events.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Disease Models, Animal
- Exercise Tolerance
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Myocardium/metabolism
- Myocardium/pathology
- Pulmonary Arterial Hypertension/etiology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/physiopathology
- Pulmonary Artery/surgery
- Recovery of Function
- Suture Techniques
- Time Factors
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Mario Boehm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefei Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Yuqiang Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Kenzo Ichimura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Melanie J Dufva
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA
- Section of Cardiology, Department of Pediatrics, Children’s Hospital Colorado, Denver, CO, USA
| | - Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Yiwei Shi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vitaly O Kheyfets
- Department of Bioengineering, University of Colorado Denver, Denver, CO, USA
- Section of Cardiology, Department of Pediatrics, Children’s Hospital Colorado, Denver, CO, USA
| | - Ross J Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Grand Bld Rm S126B, Stanford, CA 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
|
28
|
Azharuddin M, Adil M, Ghosh P, Kapur P, Sharma M. Periostin as a novel biomarker of cardiovascular disease: A systematic evidence landscape of preclinical and clinical studies. J Evid Based Med 2019; 12:325-336. [PMID: 31769219 DOI: 10.1111/jebm.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 11/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Periostin is a matricellular protein, expressed in various normal adult and fetal tissues. Recently, elevated periostin levels have been reported in heart failure, coronary artery disease, and stroke. However, there is lack of clinical studies to clarify the prognostic significance of systemic periostin levels in cardiovascular diseases (CVDs). The aim of the study was to perform a systematic review of published evidence on periostin and CVDs, and to clarify the diagnostic and prognostic significance of systemic periostin levels in CVDs. METHODS A systematic search on PubMed was performed to identify relevant articles from inception to December 2018. The eligible studies evaluating the periostin expression and periostin levels in animal and human studies. RESULTS A total of 24 relevant studies, including both animal and human data, were included. Periostin is significantly observed in myocardium tissue of failing hearts compared with control, and is also expressed in atherosclerotic plaques. Systemic periostin levels were significantly correlated with cardiac function and severity of CVD in several studies. A clinical study also observed positive correlation between periostin and N-terminal pro b-type natriuretic peptide (NT-proBNP), highly sensitive troponin (hsTnT), and ST2 cardiac biomarker. Studies reported limited adjustment for potential confounders. CONCLUSIONS The evidence of current review support potential role of periostin in the pathophysiology of CVD. However, scarcity of data regarding the clinical use of periostin levels in the current management of CVDs further creates room for the future investigation. Therefore, further studies warrant to clarify its potential role, if any, as a novel cardiac biomarker.
Collapse
Affiliation(s)
- Md Azharuddin
- Division of Pharmacology, Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Adil
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
29
|
Chen H, Moreno-Moral A, Pesce F, Devapragash N, Mancini M, Heng EL, Rotival M, Srivastava PK, Harmston N, Shkura K, Rackham OJL, Yu WP, Sun XM, Tee NGZ, Tan ELS, Barton PJR, Felkin LE, Lara-Pezzi E, Angelini G, Beltrami C, Pravenec M, Schafer S, Bottolo L, Hubner N, Emanueli C, Cook SA, Petretto E. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat Commun 2019; 10:3616. [PMID: 31399586 PMCID: PMC6689010 DOI: 10.1038/s41467-019-11551-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.
Collapse
Affiliation(s)
- Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Aida Moreno-Moral
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation (DETO), University of Bari, 70124, Bari, Italy
| | - Nithya Devapragash
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Massimiliano Mancini
- SOC di Anatomia Patologica, Ospedale San Giovanni di Dio, 50123, Florence, Italy
| | - Ee Ling Heng
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institute Pasteur, 75015, Paris, France
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, W12 0NN, UK
| | - Nathan Harmston
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, W12 0NN, UK
| | - Owen J L Rackham
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, BRC, A*STAR20 Biopolis Way, Singapore, 138668, Republic of Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK
| | | | - Elisabeth Li Sa Tan
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares - CNIC, 28029, Madrid, Spain
| | - Gianni Angelini
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, BS2 89HW, UK
| | - Cristina Beltrami
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 142 00, Praha 4, Czech Republic
| | - Sebastian Schafer
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Charité-Universitätsmedizin, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Trust, London, SW3 6NP, UK
| | - Stuart A Cook
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK
- National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore.
- MRC London Institute of Medical Sciences (LMC), Imperial College, London, W12 0NN, UK.
| |
Collapse
|
30
|
Radaeva O, Simbirtsev A. Investigating a correlation between the levels of peripheral blood cytokines and the risk for cardiovascular complications in patients with stage II essential hypertension. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Essential hypertension (EH) is one of the most common modifiable risk factors for cardiovascular diseases and death. The aim of this study was to investigate a correlation between the levels of some cytokines (interleukins, adhesion molecules, tumor necrosis and growth factors, etc.) in the peripheral blood of patients with stage II EH and the rate of complications (myocardial infarction, acute cerebrovascular events, and transient ischemic attacks) occurring in a 5-year follow-up period. Twenty-eight cytokines were measured using ELISA, including IL1β, IL1α, IL1ra, IL18, IL18BP, IL37, IL6, sIL6r, LIF, sLIFr, IGF-1, IGFBP-1, TNFα, sTNF-RI, sVCAM-1, IL17, IL2, IL4, IL10, TGF-β1, IL8, CX3CL1, CXCL10, INFγ, M-CSF, IL34, VEGF-A, and erythropoietin, and a few vasoactive peptides, including NО, iNOS, eNOS, ADMA, SDMA, Nt-proСNP, and Nt-proBNP, in the peripheral blood samples of 200 patients with stage II EH who had been suffering from this condition for 10 to 14 years and were receiving comparable therapies to bring their blood pressure down. The patients were followed up for 5 years to keep track of complications. The retrospective analysis revealed that the group of patients who developed complications during the 5-year follow-up period exhibited a decline in the levels of IL1ra (р < 0.001) and IL10 (р < 0.001) and a rise in IL1β (р < 0.001), TNFα (р < 0.001) and M-CSF (р < 0.001) in comparison with the group of those who did not develop any complications. The multivariate Cox regression analysis was applied to the following parameters: IL1β > 18.8 pg/ml; IL1ra < 511 pg/ml; IL6 > 23.8 pg/ml; IL10 < 26.3 pg/ml; 389 pg/ml < M-CSF < 453 pg/ml; ADMA > 0.86 μmol/L; total cholesterol > 4.9 mmol/L; LDL> 3.0 mmol/L; HDL in men < 1.0 mmol/L; HDL in women < 1.2 mmol/L. The analysis revealed that M-CSF in the range from 389 to 453 pg/ml (р < 0.001) and LDL above 3.0 mmol/L (р < 0.01) correlated with an increase in the risk for end-organ damage in stage II EH. Changes in the cytokine levels can be regarded as a predictor of myocardial and cerebral damage in patients with stage II EH. Measurement of peripheral blood M-CSF can be included into the classic risk assessment schemes for the cardiovascular complications in the studied cohort of patients.
Collapse
Affiliation(s)
- O.A. Radaeva
- National Research Mordovia State University, Saransk, Russia
| | - A.S. Simbirtsev
- State Research Institute of Highly Pure Biopreparations, FMBA, St. Petersburg, Russia
| |
Collapse
|
31
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
32
|
Donovan C, Starkey MR, Kim RY, Rana BMJ, Barlow JL, Jones B, Haw TJ, Mono Nair P, Budden K, Cameron GJM, Horvat JC, Wark PA, Foster PS, McKenzie ANJ, Hansbro PM. Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. J Leukoc Biol 2018; 105:143-150. [PMID: 30260499 PMCID: PMC6487813 DOI: 10.1002/jlb.3ab0518-178r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary inflammation in chronic obstructive pulmonary disease (COPD) is characterized by both innate and adaptive immune responses; however, their specific roles in the pathogenesis of COPD are unclear. Therefore, we investigated the roles of T and B lymphocytes and group 2 innate lymphoid cells (ILC2s) in airway inflammation and remodelling, and lung function in an experimental model of COPD using mice that specifically lack these cells (Rag1−/− and Rorafl/flIl7rCre [ILC2‐deficient] mice). Wild‐type (WT) C57BL/6 mice, Rag1−/−, and Rorafl/flIl7rCre mice were exposed to cigarette smoke (CS; 12 cigarettes twice a day, 5 days a week) for up to 12 weeks, and airway inflammation, airway remodelling (collagen deposition and alveolar enlargement), and lung function were assessed. WT, Rag1−/−, and ILC2‐deficient mice exposed to CS had similar levels of airway inflammation and impaired lung function. CS exposure increased small airway collagen deposition in WT mice. Rag1−/− normal air‐ and CS‐exposed mice had significantly increased collagen deposition compared to similarly exposed WT mice, which was associated with increases in IL‐33, IL‐13, and ILC2 numbers. CS‐exposed Rorafl/flIl7rCre mice were protected from emphysema, but had increased IL‐33/IL‐13 expression and collagen deposition compared to WT CS‐exposed mice. T/B lymphocytes and ILC2s play roles in airway collagen deposition/fibrosis, but not inflammation, in experimental COPD.
Collapse
Affiliation(s)
- Chantal Donovan
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Batika M J Rana
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Jillian L Barlow
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Bernadette Jones
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Prema Mono Nair
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis Budden
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Guy J M Cameron
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew N J McKenzie
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,The Centenary Institute and the School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Barretto KT, Swanson CM, Nguyen CL, Annis DS, Esnault SJ, Mosher DF, Johansson MW. Control of cytokine-driven eosinophil migratory behavior by TGF-beta-induced protein (TGFBI) and periostin. PLoS One 2018; 13:e0201320. [PMID: 30048528 PMCID: PMC6062114 DOI: 10.1371/journal.pone.0201320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
Periostin, which is induced by interleukin (IL)-13, is an extracellular matrix (ECM) protein that supports αMβ2 integrin-mediated adhesion and migration of IL-5-stimulated eosinophils. Transforming growth factor (TGF)-β-induced protein (TGFBI) is a widely expressed periostin paralog known to support monocyte adhesion. Our objective was to compare eosinophil adhesion and migration on TGFBI and periostin in the presence of IL-5-family cytokines. Eosinophil adhesion after 1 h and random motility over 20 h in the presence of various concentrations of IL-5, IL-3, or granulocyte macrophage-colony stimulating factor (GM-CSF) were quantified in wells coated with various concentrations of TGFBI or periostin. Results were compared to video microscopy of eosinophils. Cytokine-stimulated eosinophils adhered equivalently well to TGFBI or periostin in a coating concentration-dependent manner. Adhesion was blocked by anti-αMβ2 and stimulated at the lowest concentration by GM-CSF. In the motility assay, periostin was more potent than TGFBI, the coating-concentration effect was bimodal, and IL-3 was the most potent cytokine. Video microscopy revealed that under the optimal coating condition of 5 μg/ml periostin, most eosinophils migrated persistently and were polarized and acorn-shaped with a ruffling forward edge and granules gathered together, in front of the nucleus. On 10 μg/ml periostin or TGFBI, more eosinophils adopted a flattened pancake morphology with dispersed granules and nuclear lobes, and slower migration. Conversion between acorn and pancake morphologies were observed. We conclude that TGFBI or periostin supports two modes of migration by IL-5 family cytokine-activated eosinophils. The rapid mode is favored by intermediate protein coatings and the slower by higher coating concentrations. We speculate that eosinophils move by haptotaxis up a gradient of adhesive ECM protein and then slow down to surveil the tissue.
Collapse
Affiliation(s)
- Karina T. Barretto
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Calvin M. Swanson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher L. Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Stephane J. Esnault
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
34
|
Poulsen ET, Runager K, Nielsen NS, Lukassen MV, Thomsen K, Snider P, Simmons O, Vorum H, Conway SJ, Enghild JJ. Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies. FEBS J 2017; 285:101-114. [PMID: 29117645 DOI: 10.1111/febs.14321] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
TGFBIp is a constituent of the extracellular matrix in many human tissues including the cornea, where it is one of the most abundant proteins expressed. TGFBIp interacts with Type I, II, IV, VI, and XII collagens as well as several members of the integrin family, suggesting it plays an important role in maintaining structural integrity and possibly corneal transparency as well. Significantly, more than 60 point mutations within the TGFBI gene have been reported to result in aberrant TGFBIp folding and aggregation in the cornea, resulting in severe visual impairment and blindness. Several studies have focused on targeting TGFBIp in the cornea as a therapeutic approach to treat TGFBI-linked corneal dystrophies, but the effect of this approach on corneal homeostasis and matrix integrity remained unknown. In the current study, we evaluated the histological and proteomic profiles of corneas from TGFBI-deficient mice as well as potential redundant functions of the paralogous protein POSTN. The absence of TGFBIp in mouse corneas did not grossly affect the collagen scaffold, and POSTN is unable to compensate for loss of TGFBIp. Proteomic comparison of wild-type and TGFBI-/- mice revealed 11 proteins were differentially regulated, including Type VI and XII collagens. However, as these alterations did not manifest at the macroscopic and behavioral levels, these data support partial or complete TGFBI knockdown as a potential therapy against TGFBI-linked corneal dystrophies. Lastly, in situ hybridization verified TGFBI mRNA in the epithelial cells but not in other cell types, supportive of a therapy directed specifically at this lineage.
Collapse
Affiliation(s)
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Karen Thomsen
- Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olga Simmons
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| |
Collapse
|
35
|
Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal 2017; 12:301-308. [PMID: 29086200 DOI: 10.1007/s12079-017-0422-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Periostin is a secretory protein with a multi-domain structure, comprising an amino-terminal cysteine-rich EMI domain, four internal FAS 1 domains, and a carboxyl-terminal hydrophilic domain. These adjacent domains bind to extracellular matrix proteins (type I collagen, fibronectin, tenascin-C, and laminin γ2), and BMP-1 that catalyzes crosslinking of type I collagen, and proteoglycans, which play a role in cell adhesion. The binding sites on periostin have been demonstrated to contribute to the mechanical strength of connective tissues, enhancing intermolecular interactions in close proximity and their assembly into extracellular matrix architectures, where periostin plays further essential roles in physiological maintenance and pathological progression. Furthermore, periostin also binds to Notch 1 and CCN3, which have functions in maintenance of stemness, thus opening up a new field of periostin action.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Showa University, Tokyo, 142-8555, Japan.
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chūō-ku, Kobe, Hyogo, 650-0047, Japan.,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| |
Collapse
|