1
|
Hulugalla K, Shofolawe-Bakare O, Toragall VB, Mohammad SA, Mayatt R, Hand K, Anderson J, Chism C, Misra SK, Shaikh T, Tanner EEL, Smith AE, Sharp JS, Fitzkee NC, Werfel T. Glycopolymeric Nanoparticles Enrich Less Immunogenic Protein Coronas, Reduce Mononuclear Phagocyte Clearance, and Improve Tumor Delivery Compared to PEGylated Nanoparticles. ACS NANO 2024; 18:30540-30560. [PMID: 39436672 DOI: 10.1021/acsnano.4c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanoparticles (NPs) offer significant promise as drug delivery vehicles; however, their in vivo efficacy is often hindered by the formation of a protein corona (PC), which influences key physiological responses such as blood circulation time, biodistribution, cellular uptake, and intracellular localization. Understanding NP-PC interactions is crucial for optimizing NP design for biomedical applications. Traditional approaches have utilized hydrophilic polymer coatings like polyethylene glycol (PEG) to resist protein adsorption, but glycopolymer-coated nanoparticles have emerged as potential alternatives due to their biocompatibility and ability to reduce the adsorption of highly immunogenic proteins. In this study, we synthesized and characterized glycopolymer-based poly[2-(diisopropylamino)ethyl methacrylate-b-poly(methacrylamidoglucopyranose) (PDPA-b-PMAG) NPs as an alternative to PEGylated NPs. We characterized the polymers using a range of techniques to establish their molecular weight and chemical composition. PMAG and PEG-based NPs showed equivalent physicochemical properties with sizes of ∼100 nm, spherical morphology, and neutral surface charges. We next assessed the magnitude of protein adsorption on both NPs and catalogued the identity of the adsorbed proteins using mass spectrometry-based techniques. The PMAG NPs were found to adsorb fewer proteins in vitro as well as fewer immunogenic proteins such as Immunoglobulins and Complement proteins. Flow cytometry and confocal microscopy were employed to examine cellular uptake in RAW 264.7 macrophages and MDA-MB-231 tumor cells, where PMAG NPs showed higher uptake into tumor cells over macrophages. In vivo studies in BALB/c mice with orthotopic 4T1 breast cancer xenografts showed that PMAG NPs exhibited prolonged circulation times and enhanced tumor accumulation compared to PEGylated NPs. The biodistribution analysis also revealed greater selectivity for tumor tissue over the liver for PMAG NPs. These findings highlight the potential of glycopolymeric NPs to improve tumor targeting and reduce macrophage uptake compared to PEGylated NPs, offering significant advancements in cancer nanomedicine and immunotherapy.
Collapse
Affiliation(s)
- Kenneth Hulugalla
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Oluwaseyi Shofolawe-Bakare
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Veeresh B Toragall
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Kelsie Hand
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua Anderson
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Claylee Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Tanveer Shaikh
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Adam E Smith
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Thomas Werfel
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| |
Collapse
|
2
|
Zeng M, Zhang X, Tang J, Liu X, Lin Y, Guo D, Zhang Y, Ju S, Fernández-Varo G, Wang YC, Zhou X, Casals G, Casals E. Conservation of the enzyme-like activity and biocompatibility of CeO 2 nanozymes in simulated body fluids. NANOSCALE 2023; 15:14365-14379. [PMID: 37609757 DOI: 10.1039/d3nr03524g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cerium oxide nanozymes (CeO2NZs) are attracting vast attention due to their antioxidant and catalytic properties and mimic the activities of multiple endogenous enzymes. However, as is the case for nanomedicines in general, the success in showing their unique medical applications has not been matched by an understanding of their pharmacokinetics, which is delaying their implementation in clinical settings. Furthermore, the data of their modifications in body fluids and the impact on their activity are scarce. Herein, two types of widely used CeO2NZs, electrostatically stabilized and coated with a mesoporous silica shell, were exposed to simulated saliva and lung, gastric and intestinal fluids, and cell culture media. Their physicochemical modifications and bioactivity were tracked over time up to 15 days combining the data of different characterization techniques and biological assays. The results show that the biocompatibility and antioxidant activity are retained in all cases despite the different evolution behaviors in different fluids, including agglomeration. This work provides an experimental basis from a pharmacokinetic perspective that supports the therapeutic effectiveness of CeO2NZs observed in vivo for the treatment of many conditions related to chronic inflammation and cancer, and suggests that they can be safely administered through different portals of entry including intravenous injection, oral ingestion or inhalation.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai 200011, China.
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08007, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
3
|
Portilla Y, Mulens-Arias V, Daviu N, Paradela A, Pérez-Yagüe S, Barber DF. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478159 PMCID: PMC10401511 DOI: 10.1021/acsami.3c05555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied in vitro and in vivo, there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages. We performed a comparative proteomic analysis to identify common proteins from the three sera that adsorb to each IONP coating and the 10 most strongly represented proteins in PCs. We demonstrated that the PC composition is dependent on the origin of the serum rather than the nature of the coating. The PC composition critically affects the interaction of IONPs with macrophages in self- or non-self identity models, influencing the activation and polarization of macrophages. However, such effects were more consistent for DMSA-IONPs. As such, a self biological identity of IONPs promotes the activation and M2 polarization of murine macrophages, while a non-self biological identity favors M1 polarization, producing larger quantities of ROS. In a human context, we observed the opposite effect, whereby a self biological identity of DMSA-IONPs promotes a mixed M1/M2 polarization with an increase in ROS production. Conversely, a non-self biological identity of IONPs provides nanoparticles with a stealthy character as no clear effects on human macrophages were evident. Thus, the biological identity of IONPs profoundly affects their interaction with macrophages, ultimately defining their biological impact on the immune system.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Reichstein IS, König M, Wojtysiak N, Escher BI, Henneberger L, Behnisch P, Besselink H, Thalmann B, Colas J, Hörchner S, Hollert H, Schiwy A. Replacing animal-derived components in in vitro test guidelines OECD 455 and 487. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161454. [PMID: 36638987 DOI: 10.1016/j.scitotenv.2023.161454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.
Collapse
Affiliation(s)
- Inska S Reichstein
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | | | | | - Julien Colas
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Hörchner
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| | - Andreas Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| |
Collapse
|
5
|
Fernández‐Rhodes M, Adlou B, Williams S, Lees R, Peacock B, Aubert D, Jalal AR, Lewis MP, Davies OG. Defining the influence of size-exclusion chromatography fraction window and ultrafiltration column choice on extracellular vesicle recovery in a skeletal muscle model. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e85. [PMID: 38939692 PMCID: PMC11080914 DOI: 10.1002/jex2.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre-concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co-isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1-5) and total EV abundance (fractions 2-10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Collapse
Affiliation(s)
- María Fernández‐Rhodes
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Bahman Adlou
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | | | | | | | - Aveen R. Jalal
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Mark P. Lewis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
6
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
8
|
Ezzat AA, Tammam SN, Hanafi RS, Rashad O, Osama A, Abdelnaby E, Magdeldin S, Mansour S. Different Serum, Different Protein Corona! The Impact of the Serum Source on Cellular Targeting of Folic Acid-Modified Chitosan-Based Nanoparticles. Mol Pharm 2022; 19:1635-1646. [PMID: 35380849 DOI: 10.1021/acs.molpharmaceut.2c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nanoparticle (NP) protein corona represents an interface between biological components and NPs, dictating their cellular interaction and biological fate. To assess the success of cellular targeting, NPs modified with targeting ligands are incubated with target cells in serum-free culture medium or in the presence of fetal bovine serum (FBS). In the former, the role of the corona is overlooked, and in the latter, the effects of a corona that does not represent the one forming in humans nor the respective disease state are considered. Via proteomic analysis, we demonstrate how the difference in the composition of FBS, sera from healthy human volunteers, and breast cancer patients (BrCr Pt) results in the formation of completely different protein coronas around the same NP. Successful in vitro targeting of breast cancer cells was only observed when NPs were incubated with target cells in the presence of BrCr Pt sera only. In such cases, the success of targeting was not attributed to the targeting ligand itself, but to the adsorption of specific serum proteins that facilitate NP uptake by cancer cells in the presence of BrCr Pt sera. This work therefore demonstrates how the serum source affects the reliability of in vitro experiments assessing NP-cell interactions and the consequent success or failure of active targeting and may in fact indicate an additional reason for the limited clinical success of drug targeting by NPs in cancer.
Collapse
Affiliation(s)
- Aya A Ezzat
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Omar Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt
| | - Eman Abdelnaby
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Al Obour, Egypt
| |
Collapse
|
9
|
Zirath H, Spitz S, Roth D, Schellhorn T, Rothbauer M, Müller B, Walch M, Kaur J, Wörle A, Kohl Y, Mayr T, Ertl P. Bridging the academic-industrial gap: application of an oxygen and pH sensor-integrated lab-on-a-chip in nanotoxicology. LAB ON A CHIP 2021; 21:4237-4248. [PMID: 34605521 DOI: 10.1039/d1lc00528f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Translation of advanced cell-based assays exhibiting a higher degree of automation, miniaturization, and integration of complementary sensing functions is mainly limited by the development of industrial-relevant prototypes that can be readily produced in larger volumes. Despite the increasing number of academic publications in recent years, the manufacturability of these microfluidic cell cultures systems is largely ignored, thus severely restricting their implementation in routine toxicological applications. We have developed a dual-sensor integrated microfluidic cell analysis platform using industrial specifications, materials, and fabrication methods to conduct risk assessment studies of engineered nanoparticles to overcome this academic-industrial gap. Non-invasive and time-resolved monitoring of cellular oxygen uptake and metabolic activity (pH) in the absence and presence of nanoparticle exposure is accomplished by integrating optical sensor spots into a cyclic olefin copolymer (COC)-based microfluidic platform. Results of our nanotoxicological study, including two physiological cell barriers that are essential in the protection from exogenous factors, the intestine (Caco-2) and the vasculature (HUVECs) showed that the assessment of the cells' total energy metabolism is ideally suited to rapidly detect cytotoxicities. Additional viability assay verification using state-of-the-art dye exclusion assays for nanotoxicology demonstrated the similarity and comparability of our results, thus highlighting the benefits of employing a compact and cost-efficient microfluidic dual-sensor platform as a pre-screening tool in nanomaterial risk assessment and as a rapid quality control measure in medium to high-throughput settings.
Collapse
Affiliation(s)
- Helene Zirath
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Doris Roth
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tobias Schellhorn
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| | - Mario Rothbauer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Manuel Walch
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Jatinder Kaur
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Alexander Wörle
- kdg opticomp GmbH, Am kdg Campus, Dorf 91, 6652 Elbigenalp, Austria
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
10
|
Yang K, Reker‐Smit C, Stuart MCA, Salvati A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv Healthc Mater 2021; 10:e2100370. [PMID: 34050634 PMCID: PMC11469121 DOI: 10.1002/adhm.202100370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Corona formation in biological fluids strongly affects nanomedicine interactions with cells. However, relatively less is known on additional effects from the free proteins in solution. Within this context, this study aims to gain a better understanding of nanomaterial-cell interactions in different biological fluids and, more specifically, to disentangle effects due to corona composition and those from the free proteins in solution. To this aim, the uptake of liposomes in medium with bovine and human serum are compared. Uptake efficiency in the two media differs strongly, as also corona composition. However, in contrast with similar studies on other nanomaterials, despite the very different corona, when the two corona-coated liposomes are exposed to cells in serum free medium, their uptake is comparable. Thus, in this case, the observed differences in uptake depend primarily on the presence and source of the free proteins. Similar results are obtained when testing the liposomes on different human cells, as well as in murine cells and in the presence of murine serum. Overall, these results show that the protein source affects nanomedicine uptake not only due to effects on corona composition, but also due to the presence and composition of the free proteins in solution.
Collapse
Affiliation(s)
- Keni Yang
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
- Present address:
Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Catharina Reker‐Smit
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marc C. A. Stuart
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 74Groningen9747 AGThe Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| |
Collapse
|
11
|
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. NATURE NANOTECHNOLOGY 2021; 16:617-629. [PMID: 34117462 DOI: 10.1038/s41565-021-00924-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 05/02/2023]
Abstract
The adsorption of biomolecules to the surface of engineered nanomaterials, known as corona formation, defines their biological identity by altering their surface properties and transforming the physical, chemical and biological characteristics of the particles. In the first decade since the term protein corona was coined, studies have focused primarily on biomedical applications and human toxicity. The relevance of the environmental dimensions of the protein corona is still emerging. Often referred to as the eco-corona, a biomolecular coating forms upon nanomaterials as they enter the environment and may include proteins, as well as a diverse array of other biomolecules such as metabolites from cellular activity and/or natural organic matter. Proteins remain central in studies of eco-coronas because of the ease of monitoring and structurally characterizing proteins, as well as their crucial role in receptor engagement and signalling. The proteins within the eco-corona are optimal targets to establish the biophysicochemical principles of corona formation and transformation, as well as downstream impacts on nanomaterial uptake, distribution and impacts on the environment. Moreover, proteins appear to impart a biological identity, leading to cellular or organismal recognition of nanomaterials, a unique characteristic compared with natural organic matter. We contrast insights into protein corona formation from clinical samples with those in environmentally relevant systems. Principles specific to the environment are also explored to gain insights into the dynamics of interaction with or replacement by other biomolecules, including changes during trophic transfer and ecotoxicity. With many challenges remaining, we also highlight key opportunities for method development and impactful systems on which to focus the next phase of eco-corona studies. By interrogating these environmental dimensions of the protein corona, we offer a perspective on how mechanistic insights into protein coronas in the environment can lead to more sustainable, environmentally safe nanomaterials, as well as enhancing the efficacy of nanomaterials used in remediation and in the agri-food sector.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA.
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kira M Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Brian S Hong
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Jose A Tochihuitl
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Lilah A Foster
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
12
|
Sanchez-Guzman D, Boland S, Brookes O, Mc Cord C, Lai Kuen R, Sirri V, Baeza Squiban A, Devineau S. Long-term evolution of the epithelial cell secretome in preclinical 3D models of the human bronchial epithelium. Sci Rep 2021; 11:6621. [PMID: 33758289 PMCID: PMC7988136 DOI: 10.1038/s41598-021-86037-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
The human bronchial epithelium is the first line of defense against atmospheric particles, pollutants, and respiratory pathogens such as the novel SARS-CoV-2. The epithelial cells form a tight barrier and secrete proteins that are major components of the mucosal immune response. Functional in vitro models of the human lung are essential for screening the epithelial response and assessing the toxicity and barrier crossing of drugs, inhaled particles, and pollutants. However, there is a lack of models to investigate the effect of chronic exposure without resorting to animal testing. Here, we developed a 3D model of the human bronchial epithelium using Calu-3 cell line and demonstrated its viability and functionality for 21 days without subculturing. We investigated the effect of reduced Fetal Bovine Serum supplementation in the basal medium and defined the minimal supplementation needed to maintain a functional epithelium, so that the amount of exogenous serum proteins could be reduced during drug testing. The long-term evolution of the epithelial cell secretome was fully characterized by quantitative mass spectrometry in two preclinical models using Calu-3 or primary NHBE cells. 408 common secreted proteins were identified while significant differences in protein abundance were observed with time, suggesting that 7-10 days are necessary to establish a mature secretome in the Calu-3 model. The associated Reactome pathways highlight the role of the secreted proteins in the immune response of the bronchial epithelium. We suggest this preclinical 3D model can be used to evaluate the long-term toxicity of drugs or particles on the human bronchial epithelium, and subsequently to investigate their effect on the epithelial cell secretions.
Collapse
Affiliation(s)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | - Oliver Brookes
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | - Claire Mc Cord
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | - René Lai Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm-3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valentina Sirri
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | | | | |
Collapse
|
13
|
Kembuan C, Oliveira H, Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:35-48. [PMID: 33489665 PMCID: PMC7801781 DOI: 10.3762/bjnano.12.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 05/07/2023]
Abstract
Upconversion nanoparticles (UCNPs), consisting of NaYF4 doped with 18% Yb and 2% Er, were coated with microporous silica shells with thickness values of 7 ± 2 and 21 ± 3 nm. Subsequently, the negatively charged particles were functionalized with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane (AHAPS), which provide a positive charge to the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that, over the course of 24h, particles with thicker shells release fewer lanthanide ions than particles with thinner shells. However, even a 21 ± 3 nm thick silica layer does not entirely block the disintegration process of the UCNPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and cell cytometry measurements performed on macrophages (RAW 264.7 cells) indicate that cells treated with amino-functionalized particles with a thicker silica shell have a higher viability than those incubated with UCNPs with a thinner silica shell, even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. Cell cycle analyses with amino-functionalized particles also confirm that thicker silica shells reduce cytotoxicity. Thus, growing silica shells to a sufficient thickness is a simple approach to minimize the cytotoxicity of UCNPs.
Collapse
Affiliation(s)
- Cynthia Kembuan
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christina Graf
- Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany
| |
Collapse
|
14
|
Comparative study on formation of protein coronas under three different serum origins. Biointerphases 2020; 15:061002. [PMID: 33187398 DOI: 10.1116/6.0000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanomaterials form a complex called "protein corona" by contacting with protein-containing biological fluids such as serum when they are exposed to physiological environments. The characteristics of these proteins, which are one of the substantial factors in cellular response, are affected by the interactions between the nanomaterials and the biological systems. Many studies have investigated the biological behaviors of nanomaterials by conducting experiments in vitro and in vivo; however, the origin of the biological materials used is rather inconsistent. This is due to the fact that the composition of the protein coronas may differ depending on the animal origin, not on the composition or size of the nanoparticles. The resulting differences in the composition of the protein coronas can lead to different conclusions. To identify the differences in protein corona formation among sera of different species, we investigated protein coronas of gold and silica nanoparticles in serum obtained from various species. Using comparative proteomic analysis, common proteins adsorbed onto each nanoparticle among the three different sera were identified as highly abundant proteins in the serum. These findings indicate that protein corona formation is dependent on the serum population rather than the size or type of the nanoparticles. Additionally, in the physiological classification of protein coronas, human serum (HS) was found to be rich in apolipoproteins. In conclusion, our data indicate that HS components are different from those of bovine or mouse, indicating that the serum species origin should be carefully considered when selecting a biological fluid.
Collapse
|
15
|
McCann J, McCann T. 2018 Lush Science Prize. Altern Lab Anim 2020; 48:18S-25S. [PMID: 33106014 DOI: 10.1177/0261192920912054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Lush Prize supports animal-free testing by awarding money prizes of up to £350,000 per year to the most effective projects and individuals who have been working towards the goal of replacing animals in product or ingredient safety testing. Since its inception in 2012, the Lush Prize has distributed almost £2 million. Prizes are awarded for developments in five strategic areas: Science; Lobbying; Training; Public Awareness; and Young Researchers. In 2015, the judges also awarded a Black Box prize for the development of the skin sensitisation Adverse Outcome Pathway and its associated in vitro assays. The Science Prize is awarded to researchers whose work the judging panel believe to have made the most significant contribution, in the preceding year, to the replacement of animal testing. This 2018 Science Background paper outlines the research projects that were presented to the Prize judges as potential candidates for the 2018 Lush Science Prize award. To obtain an overview of developments in the field of animal replacement in toxicity research, recent work by the relevant scientific institutions and projects in this area, including the OECD, CAAT, ECVAM, UK NC3Rs, US Tox21 Programme, the ToxCast programme and EU-ToxRisk, was reviewed. Recent developments in toxicity testing research were investigated by searching the relevant literature. Abstracts from conferences focusing on animal replacement in toxicity testing that were held in the preceding 12 months, were also analysed, including those from the 2017 10th World Congress on Alternatives and Animals in the Life Sciences and the 2018 Society of Toxicology annual conference.
Collapse
|
16
|
Mohammad-Beigi H, Scavenius C, Jensen PB, Kjaer-Sorensen K, Oxvig C, Boesen T, Enghild JJ, Sutherland DS, Hayashi Y. Tracing the In Vivo Fate of Nanoparticles with a "Non-Self" Biological Identity. ACS NANO 2020; 14:10666-10679. [PMID: 32806026 DOI: 10.1021/acsnano.0c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
18
|
Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A 2020; 117:10492-10499. [PMID: 32332167 PMCID: PMC7229677 DOI: 10.1073/pnas.1919755117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The protein corona affects the clinical applications, organ targeting, and safety assessment of nanomaterials, and prediction of the protein corona would be valuable for the design of ideal nanomaterials. However, no methods to predict the protein corona are available. Overcoming the numerous quantitative and qualitative factors influencing corona formation, the present work builds models that precisely predict the functional composition of the protein corona and the cell recognition of nanoparticles (NPs) integrating machine learning and meta-analysis. This workflow provides an effective method to predict the functional composition of the protein corona that determines cell recognition to guide the synthesis and applications of NPs. Protein corona formation is critical for the design of ideal and safe nanoparticles (NPs) for nanomedicine, biosensing, organ targeting, and other applications, but methods to quantitatively predict the formation of the protein corona, especially for functional compositions, remain unavailable. The traditional linear regression model performs poorly for the protein corona, as measured by R2 (less than 0.40). Here, the performance with R2 over 0.75 in the prediction of the protein corona was achieved by integrating a machine learning model and meta-analysis. NPs without modification and surface modification were identified as the two most important factors determining protein corona formation. According to experimental verification, the functional protein compositions (e.g., immune proteins, complement proteins, and apolipoproteins) in complex coronas were precisely predicted with good R2 (most over 0.80). Moreover, the method successfully predicted the cellular recognition (e.g., cellular uptake by macrophages and cytokine release) mediated by functional corona proteins. This workflow provides a method to accurately and quantitatively predict the functional composition of the protein corona that determines cellular recognition and nanotoxicity to guide the synthesis and applications of a wide range of NPs by overcoming limitations and uncertainty.
Collapse
|
19
|
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:338-353. [PMID: 32117671 PMCID: PMC7034226 DOI: 10.3762/bjnano.11.25] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| |
Collapse
|
20
|
Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU, Langer K. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm 2019; 141:70-80. [PMID: 31082511 DOI: 10.1016/j.ejpb.2019.05.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 01/11/2023]
Abstract
Upon intravenous administration of nanoparticles (NP) into the bloodstream, proteins bind rapidly on their surface resulting in a formation of a so-called 'Protein Corona'. These proteins are strongly attached to the NP surface and provide a new biological identity which is crucial for the reaction at the nano-biointerface. The structure and composition of the protein corona is greatly determined by the physico-chemical properties of the NP and the characteristics of the biological environment. The overall objective of this study was to characterize the role of NP size/surface curvature and PEGylation on the formation of the protein corona. Therefore, we prepared NP in a size of 100 and 200 nm using the biodegradable polymers poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactide-co-glycolide)-co-polyethylene glycol diblock (PLGA-PEG) and subsequently incubated them with fetal bovine serum (FBS) to induce the formation of a protein corona. After removal of unbound protein, we employed different analytical approaches to study the corona in detail. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to gain a first impression about amount and composition of the corona proteins. Identification was carried out after tryptic in-solution digestion and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In addition, we successfully established the Bradford protein assay as a suitable colorimetric method to quantify total adsorbed protein amount after alkaline hydrolysis of PLGA based NP. Our results revealed that protein adsorption on PLGA- and PLGA-PEG-NP didn't depend on NP size within the range of 100 and 200 nm. PEGylation led to a significant reduced amount of bound proteins. The depletion of proteins which are involved in immune response was remarkable and indicated a prolonged circulation time in body.
Collapse
Affiliation(s)
- Katrin Partikel
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Robin Korte
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Nora C Stein
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Fabian C Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
21
|
Şeker Ş. Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods. Turk J Biol 2019; 42:435-446. [PMID: 30930627 PMCID: PMC6438124 DOI: 10.3906/biy-1802-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, the possible cellular effects of tin dioxide (SnO2) nanoparticles, together with its bulk form, on mouse dermal fibroblasts (DFs) were revealed using in vitro assays. Particle characterizations were carried out with AFM, Braun-Emmet-Teller, and DLS analyses. The cells were treated with nano and bulk SnO2 at concentrations of 0.1, 1, 10, 50, and 100 μg/mL for 6, 24, and 48 h. At the end of the exposure periods, the morphology, viability, particle uptake, and membrane leakage statuses of the cells were evaluated. Furthermore, real-time monitoring of cell responses was performed by using an impedance-based label-free system. Findings showed that at concentrations of 0.1-10 μg/mL, cells had similar doubling time to that of control cells (20.4 ± 2.6 h), while the doubling time of cells exposed to 100 μg/mL of nano and bulk SnO2 increased slightly (P ˃ 0.05) to 25.1 ± 3.9 h and 26.2 ± 5.9 h, respectively. The results indicated that DFs exhibited a similar toxicity response to nano and bulk SnO2; thus, 50 and 100 μg/mL of nano and bulk SnO2 had mild toxic effects on DFs. In conclusion, this study provides information and insight necessary for the safe use of SnO2 in medical and consumer products.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University, Stem Cell Institute , Ankara , Turkey.,Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Ankara University , Ankara , Turkey
| |
Collapse
|
22
|
Mišík M, Nersesyan A, Bolognesi C, Kundi M, Ferk F, Knasmueller S. Cytome micronucleus assays with a metabolically competent human derived liver cell line (Huh6): A promising approach for routine testing of chemicals? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:134-144. [PMID: 30408237 PMCID: PMC6492180 DOI: 10.1002/em.22254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 05/05/2023]
Abstract
One of the main problems of in vitro genotoxicity tests is the inadequate representation of drug metabolizing enzymes in most indicator cell lines which are currently used. We identified recently a human derived liver cell line (Huh6) which detected induction of DNA damage by representatives of different groups of promutagens without enzyme mix and showed that these cells are more suitable in terms of reproducibility and sensitivity as other currently used liver derived lines. We developed a protocol for micronucleus (MN) cytome assays with these cells and validated the procedure in experiments with representatives of different groups of directly and indirectly acting genotoxic carcinogens (MMS, cisplatin, PhIP, IQ, NDMA, B(a)P, AFB1, etoposide, and H2 O2 ). The optimal cytochalasin B concentration in combination with 48 hr treatment was found to be 1.5 μg/mL and leads to a cytokinesis block proliferation index in the range between 1.7 and 2.0. The morphological characteristics of different nuclear anomalies which reflect DNA damage (MN, nuclear bridges, and buds) and their baseline frequencies in untreated cells were characterized, and the rates which are required to cause significant effects were calculated. All compounds caused dose dependent induction of MN when the cells were treated for 24 hr, longer and shorter exposure times were less effective. Experiments with different serum levels (fetal bovine serum [FBS]) showed that 10% FBS in the medium (instead of 4%) causes a substantial increase of the sensitivity of the cells. Our results indicate that the new protocol is a promising approach for routine testing of chemicals. Environ. Mol. Mutagen. 60: 134-144, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine 1Medical University of ViennaViennaAustria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine 1Medical University of ViennaViennaAustria
| | - Claudia Bolognesi
- Environmental Carcinogenesis UnitOspedale Policlinico San MartinoGenoaItaly
| | - Michael Kundi
- Center for Public Health, Department of Environmental HealthMedical University of ViennaViennaAustria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Internal Medicine 1Medical University of ViennaViennaAustria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine 1Medical University of ViennaViennaAustria
| |
Collapse
|
23
|
Partikel K, Korte R, Mulac D, Humpf HU, Langer K. Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1002-1015. [PMID: 31165027 PMCID: PMC6541368 DOI: 10.3762/bjnano.10.101] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/26/2019] [Indexed: 05/03/2023]
Abstract
Background: When nanoparticles (NPs) are applied into a biological fluid, such as blood, proteins bind rapidly to their surface forming a so-called "protein corona". These proteins are strongly attached to the NP surface and confers them a new biological identity that is crucial for the biological response in terms of body biodistribution, cellular uptake, and toxicity. The corona is dynamic in nature and it is well known that the composition varies in dependence of the physicochemical properties of the NPs. In the present study we investigated the protein corona that forms around poly(lactide-co-glycolide) (PLGA) NPs at different serum concentrations using two substantially different serum types, namely fetal bovine serum (FBS) and human serum. The corona was characterized by means of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), Bradford protein assay, zeta potential measurements, and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Additionally, the time-dependent cell interaction of PLGA NPs in the absence or presence of a preformed protein corona was assessed by in vitro incubation experiments with the human liver cancer cell line HepG2. Results: Our data revealed that the physiological environment critically affects the protein adsorption on PLGA NPs with significant impact on the NP-cell interaction. Under comparable conditions the protein amount forming the protein corona depends on the serum type used and the serum concentration. On PLGA NPs incubated with either FBS or human serum a clear difference in qualitative corona protein composition was identified by SDS-PAGE and LC-MS/MS in combination with bioinformatic protein classification. In the case of human serum a considerable change in corona composition was observed leading to a concentration-dependent desorption of abundant proteins in conjunction with an adsorption of high-affinity proteins with lower abundance. Cell incubation experiments revealed that the respective corona composition showed significant influence on the resulting nanoparticle-cell interaction. Conclusion: Controlling protein corona formation is still a challenging task and our data highlight the need for a rational future experimental design in order to enable a prediction of the corona formation on nanoparticle surfaces and, therefore, the resulting biodistribution in the body.
Collapse
Affiliation(s)
- Katrin Partikel
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Robin Korte
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstraße 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| |
Collapse
|
24
|
Silica nanoparticles induce conformational changes of tau protein and oxidative stress and apoptosis in neuroblastoma cell line. Int J Biol Macromol 2018; 124:1312-1320. [PMID: 30248427 DOI: 10.1016/j.ijbiomac.2018.09.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The adverse effects of SiO2 NPs on the biological systems like nervous system have not been well explored. This study aimed to evaluate the toxicity of SiO2 NPs on the nervous system in vitro. Therefore, human tau protein and neuroblastoma cell line (SH-SY5Y) were used as targets. In this study we examined the side effects of SiO2 NPs on tau protein structure using several techniques including CD, ANS fluorescence, UV-vis (360 nm), Congo red absorbance, TEM, and molecular dynamic. Also, the cytotoxicity effects of SiO2 NPs against SH-SY5Y cell line were evaluated using MTT, ROS and apoptotic assays. Spectroscopic and molecular dynamic investigations indicated that natively unfolded structure of tau in the presence of SiO2 NPs experienced a partially folded and amorphous aggregated structure. Cellular assay demonstrated that SiO2 NPs exerted cytotoxic effect on SH-SY5Y cells through ROS accumulation and induction of apoptosis. Overall, these findings proved that SiO2 NPs could induce adverse effects on tau structure and SH-SY5Y cell integrity. Moreover, further studies are required to elucidate the molecular mechanism of SiO2 NPs-induced side effects in vivo.
Collapse
|
25
|
Sun D, Gong L, Xie J, Gu X, Li Y, Cao Q, Li Q, A L, Gu Z, Xu H. Toxicity of silicon dioxide nanoparticles with varying sizes on the cornea and protein corona as a strategy for therapy. Sci Bull (Beijing) 2018; 63:907-916. [PMID: 36658972 DOI: 10.1016/j.scib.2018.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
Abstract
The human cornea is exposed directly to particulate matter (PM) in polluted air. This exposure can cause eye discomfort and corneal injury. Ultrafine PM (diameter <100 nm) is thought to be particularly harmful to health, but there is limited research investigating its toxicity to the eye. In this study, we evaluated toxicity differences among 30-, 40-, 100- and 150-nm silicon dioxide nanoparticles (SiO2 NPs) on the cornea. A 24-hour in vitro exposure of primary human corneal epithelial cells (hCECs) to ultrafine (30 and 40 nm) SiO2 NPs produced toxicity, as evidenced by cell membrane damage, reduced cell viability, increased cell death and mitochondrial dysfunction. In vivo exposure to the same nanoparticles produced observable corneal injury. These effects were more severe with ultrafine than with fine (100 and 150 nm) SiO2 NPs. Common antioxidant compounds, e.g., glutathione, did not protect the cornea from SiO2 NP-induced damage. However, foetal bovine serum (FBS) did significantly reduce toxicity, likely by forming a protective protein corona around the nanoparticles. This finding suggests that FBS (or its derivatives) may be a useful clinical therapy for corneal toxicity caused by ultrafine particulates.
Collapse
Affiliation(s)
- Dayu Sun
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Linji Gong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xianliang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qinglin Cao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
26
|
Lara GG, Cipreste MF, Andrade GF, Silva WMD, Sousa EMBD. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles. Bioengineering (Basel) 2018; 5:bioengineering5010004. [PMID: 29315235 PMCID: PMC5874870 DOI: 10.3390/bioengineering5010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium–iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.
Collapse
Affiliation(s)
- Giovanna Gomes Lara
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Marcelo Fernandes Cipreste
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Gracielle Ferreira Andrade
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Wellington Marcos da Silva
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Edésia Martins Barros de Sousa
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
27
|
He X, Fu P, Aker WG, Hwang HM. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:21-42. [PMID: 29297743 DOI: 10.1080/10590501.2017.1418793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Engineered nanomaterials may adversely impact human health and environmental safety by nano-bio-eco interactions not fully understood. Their interaction with biotic and abiotic environments are varied and complicated, ranging from individual species to entire ecosystems. Their behavior, transport, fate, and toxicological profiles in these interactions, addressed in a pioneering study, are subsequently seldom reported. Biological, chemical, and physical dimension properties, the so-called multidimensional characterization, determine interactions. Intermediate species generated in the dynamic process of nanomaterial transformation increase the complexity of assessing nanotoxicity. We review recent progress in understanding these interactions, discuss the challenges of the study, and suggest future research directions.
Collapse
Affiliation(s)
- Xiaojia He
- a Department of Marine Sciences , The University of Georgia , Athens , GA , USA
| | - Peter Fu
- b National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Winfred G Aker
- c Department of Biology , Jackson State University , Jackson , MS , USA
| | - Huey-Min Hwang
- c Department of Biology , Jackson State University , Jackson , MS , USA
| |
Collapse
|
28
|
Pisani C, Rascol E, Dorandeu C, Charnay C, Guari Y, Chopineau J, Devoisselle JM, Prat O. Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology 2017; 11:871-890. [PMID: 28937306 DOI: 10.1080/17435390.2017.1378749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magnetic mesoporous silica nanoparticles (M-MSNs) are a promising class of nanoparticles for drug delivery. However, a deep understanding of the toxicological mechanisms of action of these nanocarriers is essential, especially in the liver. The potential toxicity on HepaRG cells of pristine, pegylated (PEG), and lipid (DMPC) M-MSNs were compared. Based on MTT assay and real-time cell impedance, none of these NPs presented an extensive toxicity on hepatic cells. However, we observed by transmission electron microscopy (TEM) that the DMPC and pristine M-MSNs were greatly internalized. In comparison, PEG M-MSNs showed a slower cellular uptake. Whole gene expression profiling revealed the M-MSNs molecular modes of action in a time- and dose-dependent manner. The lowest dose tested (1.6 µg/cm2) induced no molecular effect and was defined as 'No Observed Transcriptional Effect level.' The dose 16 µg/cm2 revealed nascent but transient effects. At the highest dose (80 µg/cm2), adverse effects have clearly arisen and increased over time. The limit of biocompatibility for HepaRG cells could be set at 16 µg/cm2 for these NPs. Thanks to a comparative pathway-driven analysis, we highlighted the sequence of events that leads to the disruption of hepatobiliary system, elicited by the three types of M-MSNs, at the highest dose. The Adverse Outcome Pathway of hepatic cholestasis was implicated. Toxicogenomics applied to cell cultures is an effective tool to characterize and compare the modes of action of many substances. We propose this strategy as an asset for upstream selection of the safest nanocarriers in the framework of regulation for nanobiosafety.
Collapse
Affiliation(s)
- Cédric Pisani
- a MACS, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France.,b Direction de la Recherche Fondamentale-BIAM , CEA , Bagnols-sur-Cèze , France
| | - Estelle Rascol
- a MACS, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Christophe Dorandeu
- a MACS, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Clarence Charnay
- c IMNO, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Yannick Guari
- c IMNO, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Joël Chopineau
- a MACS, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Jean-Marie Devoisselle
- a MACS, UMR 5253 CNRS-ENSCM-UM , Institut Charles Gerhardt de Montpellier , Montpellier , France
| | - Odette Prat
- b Direction de la Recherche Fondamentale-BIAM , CEA , Bagnols-sur-Cèze , France
| |
Collapse
|