1
|
Structural and Functional Analysis of Toxin and Small RNA Gene Promoter Regions in Bacillus anthracis. J Bacteriol 2022; 204:e0020022. [PMID: 36043862 PMCID: PMC9487513 DOI: 10.1128/jb.00200-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that anthrax toxin activator (AtxA) binds directly to the σA-like promoter region of pagA (encoding protective antigen, PA) immediately upstream of the RNA polymerase binding site. In this study, using electrophoretic mobility shift assays and in vivo analyses, we identified AtxA-binding sites in the promoter regions of the lef and cya genes (encoding lethal and edema factors, respectively) and of two Bacillus anthracis small RNAs (XrrA and XrrB). Activities of all four newly studied promoters were enhanced in the presence of CO2/bicarbonate and AtxA, as previously seen for the pagA promoter. Notably, the cya promoter was less activated by AtxA and CO2/bicarbonate conditions. The putative promoter of a recently described third small RNA, XrrC, showed a negligible response to AtxA and CO2/bicarbonate. RNA polymerase binding sites of the newly studied promoters show no consensus and differ from the σA-like promoter region of pagA. In silico analysis of the probable AtxA binding sites in the studied promoters revealed several palindromes. All the analyzed palindromes showed very little overlap with the σA-like pagA promoter. It remains unclear as to how AtxA and DNA-dependent RNA-polymerase identify such diverse DNA-sequences and differentially regulate promoter activation of the studied genes. IMPORTANCE Anthrax toxin activator (AtxA) is the major virulence regulator of Bacillus anthracis, the causative agent of anthrax. Understanding AtxA's mechanism of regulation could facilitate the development of therapeutics for B. anthracis infection. We provide evidence that AtxA binds to the promoters of the cya, lef, xrrA, and xrrB genes. In vivo assays confirmed the activities of all four promoters were enhanced in the presence of AtxA and CO2/bicarbonate, as previously seen for the pagA promoter. The cya and lef genes encode important toxin components. The xrrA and xrrB genes encode sRNAs with a suggested function as cell physiology regulators. Our data provides further evidence for the direct regulatory role of AtxA that was previously shown with the pagA promoter.
Collapse
|
2
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|
3
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
McCall RM, Sievers ME, Fattah R, Ghirlando R, Pomerantsev AP, Leppla SH. Bacillus anthracis Virulence Regulator AtxA Binds Specifically to the pagA Promoter Region. J Bacteriol 2019; 201:e00569-19. [PMID: 31570528 PMCID: PMC6832065 DOI: 10.1128/jb.00569-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Anthrax toxin activator (AtxA) is the master virulence gene regulator of Bacillus anthracis It regulates genes on the chromosome as well as the pXO1 and pXO2 plasmids. It is not clear how AtxA regulates these genes, and direct binding of AtxA to its targets has not been shown. It has been previously suggested that AtxA and other proteins in the Mga/AtxA global transcriptional regulators family bind to the curvature of their DNA targets, although this has never been experimentally proven. Using electrophoretic mobility shift assays, we demonstrate that AtxA binds directly to the promoter region of pagA upstream of the RNA polymerase binding site. We also demonstrate that in vitro, CO2 appears to have no role in AtxA binding. However, phosphomimetic and phosphoablative substitutions in the phosphotransferase system (PTS) regulation domains (PRDs) do appear to influence AtxA binding and pagA regulation. In silico, in vitro, and in vivo analyses demonstrate that one of two hypothesized stem-loops located upstream of the RNA polymerase binding site in the pagA promoter region is important for AtxA binding in vitro and pagA regulation in vivo Our study clarifies the mechanism by which AtxA interacts with one of its targets.IMPORTANCE Anthrax toxin activator (AtxA) regulates the major virulence genes in Bacillus anthracis The bacterium produces the anthrax toxins, and understanding the mechanism of toxin production may facilitate the development of therapeutics for B. anthracis infection. Since the discovery of AtxA 25 years ago, the mechanism by which it regulates its targets has largely remained a mystery. Here, we provide evidence that AtxA binds to the promoter region of the pagA gene encoding the main central protective antigen (PA) component of the anthrax toxin. These data suggest that AtxA binding plays a direct role in gene regulation. Our work also assists in clarifying the role of CO2 in AtxA's gene regulation and provides more evidence for the role of AtxA phosphorylation in virulence gene regulation.
Collapse
Affiliation(s)
- Rita M McCall
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary E Sievers
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrei P Pomerantsev
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Momben Abolfath S, Kolberg M, Karginov VA, Leppla SH, Nestorovich EM. Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophys J 2019; 117:1751-1763. [PMID: 31587826 PMCID: PMC6838753 DOI: 10.1016/j.bpj.2019.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.
Collapse
Affiliation(s)
| | - Michelle Kolberg
- Department of Biology, The Catholic University of America, Washington DC
| | | | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
6
|
Elvina Xavier MA, Liu S, Bugge TH, Torres JB, Mosley M, Hopkins SL, Allen PD, Berridge G, Vendrell I, Fischer R, Kersemans V, Smart S, Leppla SH, Cornelissen B. Tumor Imaging Using Radiolabeled Matrix Metalloproteinase-Activated Anthrax Proteins. J Nucl Med 2019; 60:1474-1482. [PMID: 30954944 PMCID: PMC6785798 DOI: 10.2967/jnumed.119.226423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Increased activity of matrix metalloproteinases (MMPs) is associated with worse prognosis in different cancer types. The wild-type protective antigen (PA-WT) of the binary anthrax lethal toxin was modified to form a pore in cell membranes only when cleaved by MMPs (to form PA-L1). Anthrax lethal factor (LF) is then able to translocate through these pores. Here, we used a 111In-radiolabeled form of LF with the PA/LF system for noninvasive in vivo imaging of MMP activity in tumor tissue by SPECT. Methods: MMP-mediated activation of PA-L1 was correlated to anthrax receptor expression and MMP activity in a panel of cancer cells (HT1080, MDA-MB-231, B8484, and MCF7). Uptake of 111In-radiolabeled PA-L1, 111In-PA-WTK563C, or 111In-LFE687A (a catalytically inactive LF mutant) in tumor and normal tissues was measured using SPECT/CT imaging in vivo. Results: Activation of PA-L1 in vitro correlated with anthrax receptor expression and MMP activity (HT1080 > MDA-MB-231 > B8484 > MCF7). PA-L1-mediated delivery of 111In-LFE687A was demonstrated and was corroborated using confocal microscopy with fluorescently labeled LFE687A Uptake was blocked by the broad-spectrum MMP inhibitor GM6001. In vivo imaging showed selective accumulation of 111In-PA-L1 in MDA-MB-231 tumor xenografts (5.7 ± 0.9 percentage injected dose [%ID]/g) at 3 h after intravenous administration. 111In-LFE687A was selectively delivered to MMP-positive MDA-MB-231 tumor tissue by MMP-activatable PA-L1 (5.98 ± 0.62 %ID/g) but not by furin-cleavable PA-WT (1.05 ± 0.21 %ID/g) or a noncleavable PA variant control, PA-U7 (2.74 ± 0.24 %ID/g). Conclusion: Taken together, our results indicate that radiolabeled forms of mutated anthrax lethal toxin hold promise for noninvasive imaging of MMP activity in tumor tissue.
Collapse
Affiliation(s)
- Mary-Ann Elvina Xavier
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Shihui Liu
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Julia Baguña Torres
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L Hopkins
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Phillip D Allen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iolanda Vendrell
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Xavier MAE, Liu S, Leppla SH, Cornelissen B. Pre-labelling versus direct labelling of anthrax proteins for imaging of matrix metalloproteinases activity using DOTA-GA. Nucl Med Biol 2019; 72-73:49-54. [PMID: 31330412 PMCID: PMC7730038 DOI: 10.1016/j.nucmedbio.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Increased activity of matrix metalloproteases (MMPs) is associated with reduced survival in several cancer subtypes. Aiming to produce an MMP tumour cell-selective cytotoxin, we genetically modified both components of the AB-type lethal toxin from Bacillus anthracis. Component A, Protective Antigen (PA-WT), was re-engineered to form an oligomeric pore in cell membranes only when cleaved by MMPs (PA-L1). The pore-translocation domain (LFn - N-terminal, 30 kDa) of the Lethal Factor (LF), component B, was fused to the catalytic domain of Pseudomonas exotoxin-A to increase its cytotoxic effect when delivered to cancerous cells. Here, we develop radiolabelled forms of LFn for MMP activity imaging by SPECT using the LFn/PA-L1 system. METHODS DOTA-GA-maleimide was conjugated to LFn to allow radiolabelling with 111In via two different routes: (1) LFn was conjugated with maleimide-DOTA-GA under mild conditions, and then radiolabelled in acidic conditions at 95°C, or (2) 111In was coordinated to maleimide-DOTA-GA first and then conjugated via maleimide chemistry to LFn. Circular Dichroism Spectroscopy of LFn was performed to evaluate changes in its secondary structure. Cell uptake assays using the differently labelled forms of [111In]In-DOTA-GA-LFn in the presence or not of PA-WT or PA-L1 were performed. RESULTS LFn was successfully radiolabelled by either strategy. Comparison of the secondary structure content of LFn exposed to 37°C or 95°C, showed a loss of alpha helix content at higher temperatures. Cell uptake of both forms of [111In]In-DOTA-GA-LFn, labelled directly or indirectly, was significantly higher in MMP-positive cells, in the presence of PA-L1, compared to controls. Notably, despite being exposed to high temperatures, uptake of directly labelled [111In]In-DOTA-GA-LFndir was higher than indirectly labelled [111In]In-DOTA-GA-LFnindir. CONCLUSIONS 111In-radiolabelling of LFn results in a functional molecule that targets MMP-activity in cells when combined with PA-L1. [111In]In-LFn/PA-L1 is a promising MMP activity imaging agent for SPECT imaging.
Collapse
Affiliation(s)
- Mary-Ann Elvina Xavier
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Shihui Liu
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
9
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
10
|
Setlow P. Observations on research with spores of Bacillales and Clostridiales species. J Appl Microbiol 2019; 126:348-358. [PMID: 30106202 PMCID: PMC6329651 DOI: 10.1111/jam.14067] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305 USA
| |
Collapse
|
11
|
Sharma AK, Leppla SH, Pomerantsev AP, Shiloach J. Effect of over expressing protective antigen on global gene transcription in Bacillus anthracis BH500. Sci Rep 2018; 8:16108. [PMID: 30382110 PMCID: PMC6208434 DOI: 10.1038/s41598-018-34196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023] Open
Abstract
Protective antigen (PA) of Bacillus anthracis is being considered as a vaccine candidate against anthrax and its production has been explored in several heterologous host systems. Since the systems tested introduced adverse issues such as inclusion body formation and endotoxin contamination, the production from B. anthracis is considered as a preferred method. The present study examines the effect of PA expression on the metabolism of B. anthracis producing strain, BH500, by comparing it with a control strain carrying an empty plasmid. The strains were grown in a bioreactor and RNA-seq analysis of the producing and non-producing strain was conducted. Among the observed differences, the strain expressing rPA had increased transcription of sigL, the gene encoding RNA polymerase σ54, sigB, the general stress transcription factor gene and its regulators rsbW and rsbV, as well as the global regulatory repressor ctsR. There were also decreased expression of intracellular heat stress related genes such as groL, groES, hslO, dnaJ, and dnaK and increased expression of extracellular chaperons csaA and prsA2. Also, major central metabolism genes belonging to TCA, glycolysis, PPP, and amino acids biosynthesis were up-regulated in the PA-producing strain during the lag phase and down-regulated in the log and late-log phases, which was associated with decreased specific growth rates. The information obtained from this study may guide genetic modification of B. anthracis to improve PA production.
Collapse
Affiliation(s)
- Ashish K Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestives and Kidney Diseases (NIDDK) NIH, Maryland, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious diseases (NIAID), NIH, Maryland, USA
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious diseases (NIAID), NIH, Maryland, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestives and Kidney Diseases (NIDDK) NIH, Maryland, USA.
| |
Collapse
|
12
|
Kalu N, Atsmon-Raz Y, Momben Abolfath S, Lucas L, Kenney C, Leppla SH, Tieleman DP, Nestorovich EM. Effect of late endosomal DOBMP lipid and traditional model lipids of electrophysiology on the anthrax toxin channel activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2192-2203. [PMID: 30409515 DOI: 10.1016/j.bbamem.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 08/19/2018] [Indexed: 01/26/2023]
Abstract
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Yoav Atsmon-Raz
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Laura Lucas
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda 20892, MD, USA
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA.
| |
Collapse
|
13
|
pheS* as a counter-selectable marker for marker-free genetic manipulations in Bacillus anthracis. J Microbiol Methods 2018; 151:35-38. [PMID: 29859216 DOI: 10.1016/j.mimet.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
Several genetic tools have been developed for use in Bacillus anthracis, but there is still a need for a more marker-free gene inactivation protocols. Thus, we report a method to generate unmarked mutations in B. anthracis. This approach was based on the counter-selectable pheS* gene with assistance by the I-SceI homing endonuclease. Using this strategy, the NprR gene, a transcriptional activator of B. anthracis, was deleted at an extremely high efficiency. Our study indicates that mutated pheS is a useful counter-selective marker to design a valuable genetic tool for in-frame and unmarked gene deletions of B. anthracis.
Collapse
|
14
|
Indication and Identification of Bacillus anthracis Isolates from the Middle Volga Region by Multi-Primer PCR. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|