1
|
Matley JK, Meyer L, Barnett A, Scott M, Dinsdale EA, Doane MP, Harasti D, Hoopes LA, Huveneers C. Where giants roam: The importance of remote islands and seamount corridors to adult tiger sharks in the South Pacific Ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107026. [PMID: 40023078 DOI: 10.1016/j.marenvres.2025.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
The movements of tiger sharks (Galeocerdo cuvier) across their global distribution are diverse and complex, and there remains a dearth of information about the cues that influence migrations of adults to and from offshore islands. We aimed to delineate broad-scale movements of a seasonally abundant tiger shark aggregation at Norfolk Island, a remote small island in the South Pacific Ocean, by identifying migratory pathways and important areas, as well as quantifying the association between space use and environmental factors. We satellite tracked 35 tiger sharks, consisting of some of the largest individuals ever monitored (median total length: 4.0 m), between February 2020 and April 2023. Tracking periods averaging 305 days (14 - 686 days) showed movements throughout large parts of the South Pacific Ocean including near New Caledonia, the Great Barrier Reef, Papua New Guinea, Chesterfield Islands, Vanuatu, Fiji, and New Zealand. The longest track was close to 17,000 km over 468 days. There was high seasonal fidelity to Norfolk Island with 88% of sharks tracked across multiple seasons returning at least once, mainly from New Caledonia. The median date of arrival and departure from Norfolk Island were in December and May, respectively. Coastal use of islands was the most important factor across monthly habitat suitability models, whereas sea surface temperature explained seasonal departures/arrivals from/to Norfolk Island. The findings of our study show diverse potential movement trajectories and cues used by tiger sharks, but importantly highlight the critical role of Norfolk Island and other nearshore areas in supporting large adult female tiger sharks.
Collapse
Affiliation(s)
- Jordan K Matley
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia.
| | - Lauren Meyer
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia; Georgia Aquarium, Atlantic, GA, USA
| | - Adam Barnett
- Biopixel Oceans Foundation, Cairns, 4878, Australia; Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
| | - Mark Scott
- Norfolk Island National Park, Burnt Pine, Norfolk Island, 2899, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - David Harasti
- Fisheries Research, NSW DPIRD, Port Stephens Fisheries Institute. Taylors Beach, NSW, Australia
| | - Lisa A Hoopes
- IUCN Center for Species Survival, Georgia Aquarium, Atlanta, GA, USA
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
2
|
Ferreira AS, Naré MA, Robalo JI, Baylina ND. Evaluating techniques for determining elasmobranch body size: a review of current methodologies. PeerJ 2024; 12:e18646. [PMID: 39726740 PMCID: PMC11670763 DOI: 10.7717/peerj.18646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
There is global awareness that many species of elasmobranchs (sharks and rays) have life history characteristics that make them susceptible to overexploitation. The study of these animals is critical, as it contributes to increasing knowledge of these specimens and aids in their conservation. In particular, growth rate, age, fecundity, and size at maturity are key parameters for defining management and conservation strategies in elasmobranchs. Biometric data collection allows these parameters to be determined and considered in the evaluation of population demography. Over the last decades, several methodologies for measuring elasmobranch size have evolved, progressing from traditional capture-based methods to sophisticated, non-intrusive photographic techniques. The present review aims to understand and analyse all the existing non-invasive techniques that currently allow the collection of zoometric data in elasmobranchs and, later, to highlight the advantages and limitations of each technique, with comments on their application to fieldwork. To this end, 49 articles were selected, encompassing seven measurement techniques: photogrammetry using distance to the individual, bar photogrammetry, laser photogrammetry, stereo-DOV, stereo-BRUV, stereo-ROV, and aerial photogrammetry. Globally, the last four techniques are excellent alternatives to methods that involve animal capture or death, as they are practical, simple to use, minimally invasive, and potentially highly accurate. Each technique's requirements related to equipment and cost, limitations, and distinctive features are presented here and summarized to guide researchers on what's available and how to select the most appropriate for their studies.
Collapse
Affiliation(s)
| | - Márcia A. Naré
- Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), Lisbon, Portugal
| | - Joana I. Robalo
- Marine and Environmental Sciences Centre/ ARNET - Aquatic Research Network, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), Lisbon, Portugal
| | | |
Collapse
|
3
|
Vossgaetter L, Dudeck T, Crouch J, Cope M, Ivanova T, Siyan I, Niyaz A, Riyaz M, Araujo G. Non-invasive methods characterise the world's largest tiger shark aggregation in Fuvahmulah, Maldives. Sci Rep 2024; 14:21998. [PMID: 39313535 PMCID: PMC11420367 DOI: 10.1038/s41598-024-73079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Tiger sharks are apex predators with a circumglobal tropical and warm-temperate distribution, with a general lack of population data for the central Indian Ocean. In Fuvahmulah, Maldives, tiger sharks display frequent use of the harbour area, attracted by discarded fish waste. Here, we document the population structure, residency, and reproductive characteristics of the world's largest known tiger shark aggregation in a geographically-restricted area. Using non-invasive methods, photo identification and laser photogrammetry, we identified 239 individual tiger sharks over a 7-year study period. The aggregation was female-dominated (84.5%), with both large juveniles and adults present. Adult females were resighted over the entire study period displaying strong inter- and intra-annual site fidelity. Modelled residency using maximum likelihood methods suggests they spent 60.7 ± S.E. 7.5 days in Fuvahmulah, with a larger aggregation size, shorter residence periods and longer absence periods compared to juvenile females. Prolonged abdominal distensions of adult females indicate they likely stay near Fuvahmulah during gestation and reproduce biennially. Fuvahmulah seems to provide suitable conditions for gestation given the year-round provision of food and warm waters, exhibited by strong site fidelity and temporal residency. Our results show indications of a thriving population within the confines of protected waters.
Collapse
Affiliation(s)
- Lennart Vossgaetter
- Leibniz Centre for Tropical Marine Research, 28334, Bremen, Germany.
- University of Bremen, 28334, Bremen, Germany.
| | - Tim Dudeck
- Leibniz Centre for Tropical Marine Research, 28334, Bremen, Germany
- University of Bremen, 28334, Bremen, Germany
| | - Jamie Crouch
- Fuvahmulah Dive School, Fuvahmulah, 18011, Maldives
| | - Maiah Cope
- Fuvahmulah Dive School, Fuvahmulah, 18011, Maldives
| | | | | | | | | | - Gonzalo Araujo
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Lovell MS, Polito MJ, Schuster JA, Shallow EE, Janosik AM, Falterman BJ, Dance MA. Seasonal variability in the feeding ecology of an oceanic predator. Sci Rep 2024; 14:17353. [PMID: 39075103 PMCID: PMC11286940 DOI: 10.1038/s41598-024-63557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/30/2024] [Indexed: 07/31/2024] Open
Abstract
Complementary approaches (stomach contents, DNA barcoding, and stable isotopes) were used to examine seasonal shifts in the feeding ecology of an oceanic predator, yellowfin tuna (Thunnus albacares, n = 577), in the northern Gulf of Mexico. DNA barcoding greatly enhanced dietary resolution and seasonally distinct prey assemblages were observed for both sub-adults and adults. In general, diet was characterized by ommastrephid squids and exocoetids in spring, juvenile fishes (i.e., carangids and scombrids) in summer, migratory coastal fishes during fall, and an increased consumption of planktonic prey (e.g., amphipods) in winter. Seasonal variability in bulk stable isotope values (δ13C, δ15N, and δ34S) was also observed, with low δ15N values and high δ34S values during late summer/early fall and high δ15N values (low δ34S) during late winter/early spring. Bayesian stable isotope mixing models corroborated seasonal diet shifts, highlighting the importance of oceanic nekton in spring/summer, coastal nekton during fall, and oceanic plankton during winter. Seasonal shifts in diet appeared to be influenced by prey reproductive cycles, habitat associations, and environmental conditions. Findings highlight the complex food web dynamics supporting an opportunistic oceanic predator and the importance of seasonal cycles in prey availability to predator resource utilization in open-ocean ecosystems.
Collapse
Affiliation(s)
- Mitchell S Lovell
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Michael J Polito
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Josef A Schuster
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emily E Shallow
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexis M Janosik
- Department of Biology, University of West Florida, Pensacola, FL, 32514, USA
| | | | - Michael A Dance
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
5
|
Salinas-de-León P, Vaudo J, Logan R, Suarez-Moncada J, Shivji M. Longest recorded migration of a silky shark (Carcharhinus falciformis) reveals extensive use of international waters of the Tropical Eastern Pacific. JOURNAL OF FISH BIOLOGY 2024; 105:378-381. [PMID: 38757771 DOI: 10.1111/jfb.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Despite being a heavily fished species, little is known about the movements of silky sharks (Carcharhinus falciformis). In this study, we report the longest (in duration and distance traveled) and most spatially extensive recorded migration for a silky shark. This shark, tagged with a fin-mount satellite transmitter at the Galapagos Islands, traveled >27,666 km over 546 days, making two westerly migrations into international waters as far as 4755 km from the tagging location. These extensive movements in an area with high international fishing effort highlights the importance of understanding silky shark migrations to inform management practices.
Collapse
Affiliation(s)
- Pelayo Salinas-de-León
- Charles Darwin Research Station, Charles Darwin Foundation, Galapagos Islands, Ecuador
- Guy Harvey Research Institute and Save Our Seas Foundation Shark Research Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Jeremy Vaudo
- Guy Harvey Research Institute and Save Our Seas Foundation Shark Research Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Ryan Logan
- Guy Harvey Research Institute and Save Our Seas Foundation Shark Research Center, Nova Southeastern University, Dania Beach, Florida, USA
| | | | - Mahmood Shivji
- Guy Harvey Research Institute and Save Our Seas Foundation Shark Research Center, Nova Southeastern University, Dania Beach, Florida, USA
| |
Collapse
|
6
|
Blanluet A, Game ET, Dunn DC, Everett JD, Lombard AT, Richardson AJ. Evaluating ecological benefits of oceanic protected areas. Trends Ecol Evol 2024; 39:175-187. [PMID: 37778906 DOI: 10.1016/j.tree.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Oceans beyond the continental shelf represent the largest yet least protected environments. The new agreement to increase protection targets to 30% by 2030 and the recent United Nations (UN) High Seas Treaty try to address this gap, and an increase in the declaration of oceanic Marine Protected Areas (oMPAs) in waters beyond 200 m in depth is likely. Here we find that there is contradictory evidence concerning the benefits of oMPAs in terms of protecting pelagic habitats, providing refuge for highly mobile species, and potential fisheries benefits. We discover a mismatch between oMPA management objectives focusing on protection of pelagic habitats and biodiversity, and scientific research focusing on fisheries benefits. We suggest that the solution is to harness emerging technologies to monitor inside and outside oMPAs.
Collapse
Affiliation(s)
- Arthur Blanluet
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia; The Nature Conservancy, South Brisbane, Queensland 4101, Australia.
| | - Edward T Game
- The Nature Conservancy, South Brisbane, Queensland 4101, Australia
| | - Daniel C Dunn
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Jason D Everett
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia; Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD 4067, Australia; Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW, Australia
| | - Amanda T Lombard
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Anthony J Richardson
- School of the Environment, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, 4072, QLD, Australia; Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD 4067, Australia
| |
Collapse
|
7
|
Díaz MP, Kunc HP, Houghton JDR. Anthropogenic noise predicts sea turtle behavioural responses. MARINE POLLUTION BULLETIN 2024; 198:115907. [PMID: 38061147 DOI: 10.1016/j.marpolbul.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Anthropogenic noise is a pollutant of global concern. While the effects of underwater noise pollution have been frequently studied in fish and mammals, our understanding of how this anthropogenic stressor affects marine reptiles is scant. Using a multichannel data logger equipped with a camera and hydrophone, we quantified behavioural responses of a free-ranging green turtle (Chelonia mydas) to vessel noise in the Galapagos Archipelago, an important nesting site in the eastern Pacific. We found that while travelling the turtle increased its vigilance with increasing vessel noise. However, when on the seabed the turtle did not increase its vigilance with increasing noise levels. Our findings illustrate that noise pollution has the potential to alter overall time budgets of animals. Identifying real-time responses of wild animals illustrate how in situ approaches allow to assess the effects of human activities on marine systems.
Collapse
Affiliation(s)
- Macarena Parra Díaz
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, Ecuador; School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Co. Antrim BT9 5DL, UK
| | - Hansjoerg P Kunc
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Co. Antrim BT9 5DL, UK.
| | - Jonathan D R Houghton
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Co. Antrim BT9 5DL, UK; Queen's University Belfast Marine Laboratory, 12-13 The Strand, Portaferry, Co. Down BT22 1PF, UK
| |
Collapse
|
8
|
Kohler J, Gore M, Ormond R, Johnson B, Austin T. Individual residency behaviours and seasonal long-distance movements in acoustically tagged Caribbean reef sharks in the Cayman Islands. PLoS One 2023; 18:e0293884. [PMID: 38011196 PMCID: PMC10681323 DOI: 10.1371/journal.pone.0293884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding how reef-associated sharks use coastal waters through their ontogeny is important for their effective conservation and management. This study used the horizontal movements of acoustically tagged Caribbean reef sharks (Carcharhinus perezi) to examine their use of coastal space around the Cayman Islands between 2009 and 2019. A total of 39 (59.1%) tagged sharks (male = 22, female = 17, immature = 18, mature = 21) were detected on the islands wide network of acoustic receivers. The detection data were used to calculate values of Residency Index (RI), Site-Fidelity Index (SFI) and minimum linear displacement (MLD), as well as for network analysis of individual shark movements to test for differences between demographics, seasons, and diel periods. Sharks were detected for up to 1,598 days post-tagging and some individuals showed resident behaviour but the majority of tagged individuals appear to have been one-off or only occasional transient visitors to the area. Generally, individuals showed strong site-fidelity to different areas displaying linear home ranges of < 20 km. The evidence indicates that there was no pattern of diel behaviour. Tagged sharks generally showed increased movements within and between islands during the summer (April-September), which may be related to breeding activity. Some individuals even made occasional excursions across 110 km of open water > 2,000 m deep between Grand Cayman and Little Cayman. One mature female shark showed a displacement of 148.21 km, the greatest distance reported for this species. The data shows that the distances over which some sharks moved, greatly exceeded the extent of any one of the islands' marine protected areas indicating that this species may be more mobile and dispersive than previously thought. This study provides support for the blanket protection to all sharks throughout Cayman waters, which was incorporated within the National Conservation Act in 2015.
Collapse
Affiliation(s)
- Johanna Kohler
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Mauvis Gore
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- Marine Conservation International, Edinburgh, Scotland, United Kingdom
| | - Rupert Ormond
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- Marine Conservation International, Edinburgh, Scotland, United Kingdom
| | - Bradley Johnson
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
| | - Timothy Austin
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
| |
Collapse
|
9
|
Lubitz N, Bradley M, Sheaves M, Hammerschlag N, Daly R, Barnett A. The role of context in elucidating drivers of animal movement. Ecol Evol 2022; 12:e9128. [PMID: 35898421 PMCID: PMC9309038 DOI: 10.1002/ece3.9128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Despite its consequences for ecological processes and population dynamics, intra-specific variability is frequently overlooked in animal movement studies. Consequently, the necessary resolution to reveal drivers of individual movement decisions is often lost as animal movement data are aggregated to infer average or population patterns. Thus, an empirical understanding of why a given movement pattern occurs remains patchy for many taxa, especially in marine systems. Nonetheless, movement is often rationalized as being driven by basic life history requirements, such as acquiring energy (feeding), reproduction, predator-avoidance, and remaining in suitable environmental conditions. However, these life history requirements are central to every individual within a species and thus do not sufficiently account for the high intra-specific variability in movement behavior and hence fail to fully explain the occurrence of multiple movement strategies within a species. Animal movement appears highly context dependent as, for example, within the same location, the behavior of both resident and migratory individuals is driven by life history requirements, such as feeding or reproduction, however different movement strategies are utilized to fulfill them. A systematic taxa-wide approach that, instead of averaging population patterns, incorporates and utilizes intra-specific variability to enable predictions as to which movement patterns can be expected under a certain context, is needed. Here, we use intra-specific variability in elasmobranchs as a case study to introduce a stepwise approach for studying animal movement drivers that is based on a context-dependence framework. We examine relevant literature to illustrate how this context-focused approach can aid in reliably identifying drivers of a specific movement pattern. Ultimately, incorporating behavioral variability in the study of movement drivers can assist in making predictions about behavioral responses to environmental change, overcoming tagging biases, and establishing more efficient conservation measures.
Collapse
Affiliation(s)
- Nicolas Lubitz
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michael Bradley
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Marcus Sheaves
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Ryan Daly
- Oceanographic Research InstituteDurbanSouth Africa
- South African Institute for Aquatic Biodiversity (SAIAB)MakhandaSouth Africa
| | - Adam Barnett
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
10
|
Manuzzi A, Jiménez-Mena B, Henriques R, Holmes BJ, Pepperell J, Edson J, Bennett MB, Huveneers C, Ovenden JR, Nielsen EE. Retrospective genomics highlights changes in genetic composition of tiger sharks (Galeocerdo cuvier) and potential loss of a south-eastern Australia population. Sci Rep 2022; 12:6582. [PMID: 35449439 PMCID: PMC9023511 DOI: 10.1038/s41598-022-10529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Over the last century, many shark populations have declined, primarily due to overexploitation in commercial, artisanal and recreational fisheries. In addition, in some locations the use of shark control programs also has had an impact on shark numbers. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report on temporal genomic analyses of tiger shark (Galeocerdo cuvier) DNA samples that were collected from eastern Australia over the past century. Using Single Nucleotide Polymorphism (SNP) loci, we documented a significant change in genetic composition of tiger sharks born between ~1939 and 2015. The change was most likely due to a shift over time in the relative contribution of two well-differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in the relative contribution of these two populations to the overall tiger shark abundance on the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.
Collapse
Affiliation(s)
- Alice Manuzzi
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.
| | - Belen Jiménez-Mena
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Romina Henriques
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Bonnie J Holmes
- School of Science, Technology & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Julian Pepperell
- Pepperell Research and Consulting, PO Box 1475, Noosaville DC, QLD, 4566, Australia
| | - Janette Edson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mike B Bennett
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Einar E Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
12
|
Cambra M, Lara-Lizardi F, Peñaherrera-Palma C, Hearn A, Ketchum JT, Zarate P, Chacón C, Suárez-Moncada J, Herrera E, Espinoza M. A first assessment of the distribution and abundance of large pelagic species at Cocos Ridge seamounts (Eastern Tropical Pacific) using drifting pelagic baited remote cameras. PLoS One 2021; 16:e0244343. [PMID: 34793440 PMCID: PMC8601560 DOI: 10.1371/journal.pone.0244343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the link between seamounts and large pelagic species (LPS) may provide important insights for the conservation of these species in open water ecosystems. The seamounts along the Cocos Ridge in the Eastern Tropical Pacific (ETP) ocean are thought to be ecologically important aggregation sites for LPS when moving between Cocos Island (Costa Rica) and Galapagos Islands (Ecuador). However, to date, research efforts to quantify the abundance and distribution patterns of LPS beyond the borders of these two oceanic Marine Protected Areas (MPAs) have been limited. This study used drifting-pelagic baited remote underwater video stations (BRUVS) to investigate the distribution and relative abundance of LPS at Cocos Ridge seamounts. Our drifting-pelagic BRUVS recorded a total of 21 species including elasmobranchs, small and large teleosts, dolphins and one sea turtle; of which four species are currently threatened. Depth of seamount summit was the most significant driver for LPS richness and abundance which were significantly higher at shallow seamounts (< 400 m) compared to deeper ones (> 400m). Distance to nearest MPA was also a significant predictor for LPS abundance, which increased at increasing distances from the nearest MPA. Our results suggest that the Cocos Ridge seamounts, specifically Paramount and West Cocos which had the highest LPS richness and abundance, are important aggregation sites for LPS in the ETP. However, further research is still needed to demonstrate a positive association between LPS and Cocos Ridge seamounts. Our findings showed that drifting pelagic BRUVS are an effective tool to survey LPS in fully pelagic ecosystems of the ETP. This study represents the first step towards the standardization of this technique throughout the region.
Collapse
Affiliation(s)
- Marta Cambra
- Programa de Posgrado en Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Frida Lara-Lizardi
- MigraMar, Sir Francis Drake Boulevard, Olema, California, United States of America
- Pelagios Kakunjá, La Paz, Baja California Sur, México
| | | | - Alex Hearn
- MigraMar, Sir Francis Drake Boulevard, Olema, California, United States of America
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
| | - James T. Ketchum
- MigraMar, Sir Francis Drake Boulevard, Olema, California, United States of America
- Pelagios Kakunjá, La Paz, Baja California Sur, México
- Centro de Investigaciones Biológicas del Noroeste-CIBNOR, La Paz, Baja California Sur, México
| | - Patricia Zarate
- MigraMar, Sir Francis Drake Boulevard, Olema, California, United States of America
- División de Investigación Pesquera, Instituto de Fomento Pesquero, Valparaíso, Chile
| | - Carlos Chacón
- Fundación Pacífico, Sabana Norte, San José, Costa Rica
| | | | | | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
- MigraMar, Sir Francis Drake Boulevard, Olema, California, United States of America
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
13
|
Grorud-Colvert K, Sullivan-Stack J, Roberts C, Constant V, Horta E Costa B, Pike EP, Kingston N, Laffoley D, Sala E, Claudet J, Friedlander AM, Gill DA, Lester SE, Day JC, Gonçalves EJ, Ahmadia GN, Rand M, Villagomez A, Ban NC, Gurney GG, Spalding AK, Bennett NJ, Briggs J, Morgan LE, Moffitt R, Deguignet M, Pikitch EK, Darling ES, Jessen S, Hameed SO, Di Carlo G, Guidetti P, Harris JM, Torre J, Kizilkaya Z, Agardy T, Cury P, Shah NJ, Sack K, Cao L, Fernandez M, Lubchenco J. The MPA Guide: A framework to achieve global goals for the ocean. Science 2021; 373:eabf0861. [PMID: 34516798 DOI: 10.1126/science.abf0861] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kirsten Grorud-Colvert
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Marine Conservation Institute, Seattle, WA 98103, USA
| | - Jenna Sullivan-Stack
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA
| | - Callum Roberts
- Department of Environment and Geography, University of York, York YO10 5DD, UK
| | - Vanessa Constant
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA
| | - Barbara Horta E Costa
- Center of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Elizabeth P Pike
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Naomi Kingston
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Dan Laffoley
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,School of Public Policy, Oregon State University, Corvallis, OR 97330, USA
| | - Enric Sala
- National Geographic Society, Washington, DC, USA.,Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, 75005 Paris, France.,Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY 10460, USA
| | - Alan M Friedlander
- Hawai'i Institute of Marine Biology, University of Hawaii, Kāne'ohe, HI 96744, USA.,Pristine Seas, National Geography Society, Washington, DC 20036, USA
| | - David A Gill
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Sarah E Lester
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA
| | - Jon C Day
- ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - Emanuel J Gonçalves
- Pristine Seas, National Geography Society, Washington, DC 20036, USA.,Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA.,Marine and Environmental Sciences Centre (MARE), ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal.,Oceano Azul Foundation, Oceanário de Lisboa, Esplanada D. Carlos I,1990-005 Lisbon, Portugal
| | - Gabby N Ahmadia
- Ocean Conservation, World Wildlife Fund, Washington, DC 20037, USA.,School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Matt Rand
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Angelo Villagomez
- IUCN World Commission on Protected Areas, International Union for Conservation of Nature (IUCN), CH-1196 Gland, Switzerland.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Natalie C Ban
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK.,School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Georgina G Gurney
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Ana K Spalding
- ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia.,Marine and Environmental Sciences Centre (MARE), ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal.,School of Public Policy, Oregon State University, Corvallis, OR 97330, USA.,Smithsonian Tropical Research Institute, Panama City, Panama; Coiba Scientific Station (Coiba AIP), Panama City, Panama.,Marine Conservation Institute, Seattle, WA 98103, USA
| | - Nathan J Bennett
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, 75005 Paris, France.,The Peopled Seas Initiative, Vancouver, BC, Canada
| | - Johnny Briggs
- Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | | | - Russell Moffitt
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,Pew Bertarelli Ocean Legacy Project, The Pew Charitable Trusts, Washington, DC 20004-2008, USA
| | - Marine Deguignet
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Ellen K Pikitch
- National Geographic Society, Washington, DC, USA.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily S Darling
- School of Environmental Studies, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY 10460, USA
| | - Sabine Jessen
- Marine Protection Atlas, Marine Conservation Institute, Seattle, WA, 98103-9090, USA.,National Ocean Program, Canadian Parks and Wilderness Society, Ottawa, ON K2P 0A4, Canada
| | - Sarah O Hameed
- The Peopled Seas Initiative, Vancouver, BC, Canada.,Blue Parks Program, Marine Conservation Institute, Seattle, WA 98103, USA
| | | | - Paolo Guidetti
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Villa Comunale, 80121 Naples, Italy.,National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), V16149 Genoa, Italy
| | - Jean M Harris
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gomeroy Avenue, Summerstrand, Port Elizabeth 6031, South Africa
| | - Jorge Torre
- Comunidad y Biodiversidad, A.C. Isla del Peruano 215, Col. Lomas de Miramar, Guaymas, Sonora, 85454, Mexico
| | - Zafer Kizilkaya
- Mediterranean Conservation Society, Bornova, Izmir 35100 Turkey
| | - Tundi Agardy
- Oceano Azul Foundation, Oceanário de Lisboa, Esplanada D. Carlos I,1990-005 Lisbon, Portugal.,Sound Seas, Colrain, MA 01340, USA
| | - Philippe Cury
- Center of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.,MARBEC, Montpellier University, CNRS, IRD, IFREMER, Sète, France
| | - Nirmal J Shah
- School of Public Policy, Oregon State University, Corvallis, OR 97330, USA.,Nature Seychelles, Centre for Environment and Education, Sanctuary at Roche Caiman, Mahe, Seychelles
| | - Karen Sack
- Ocean Conservation, World Wildlife Fund, Washington, DC 20037, USA.,Ocean Unite, Washington, DC 20007, USA
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 230000, China
| | - Miriam Fernandez
- Smithsonian Tropical Research Institute, Panama City, Panama; Coiba Scientific Station (Coiba AIP), Panama City, Panama.,Estación Costera de Investigaciones Marinas de Las Cruces and Departmento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jane Lubchenco
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, USA.,Marine Conservation Institute, Seattle, WA 98103, USA
| |
Collapse
|
14
|
Cambra M, Madrigal-Mora S, Chinchilla I, Golfín-Duarte G, Lowe CG, Espinoza M. First record of a potential neonate tiger shark (Galeocerdo cuvier) at a remote oceanic island in the Eastern Tropical Pacific. JOURNAL OF FISH BIOLOGY 2021; 99:1140-1144. [PMID: 33942302 DOI: 10.1111/jfb.14774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Tiger sharks (Galeocerdo cuvier) play an important ecological role as top predators, yet knowledge of their reproductive ecology is scarce. Here, the authors report the first observation of a potential neonate G. cuvier at Cocos Island, a predator-dominated oceanic island in the Eastern Tropical Pacific (ETP). The individual was detected using baited remote underwater video stations (BRUVS). The cameras also detected female individuals potentially pregnant, suggesting that parturition may take place at or near the island. Nonetheless, it is still unclear if the presence of a single neonate is an isolated event or evidence that the species is using the island for reproduction.
Collapse
Affiliation(s)
- Marta Cambra
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| | - Sergio Madrigal-Mora
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| | - Isaac Chinchilla
- Parque Nacional Isla del Coco, Área de Conservación Marina Cocos (ACMC), Sistema Nacional de Áreas de Conservación, San José, Costa Rica
| | - Geiner Golfín-Duarte
- Parque Nacional Isla del Coco, Área de Conservación Marina Cocos (ACMC), Sistema Nacional de Áreas de Conservación, San José, Costa Rica
| | | | - Mario Espinoza
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Universidad de Costa Rica, San José, Costa Rica
- Migramar, Olema, California, USA
| |
Collapse
|
15
|
Rangel BDS, Moreira RG, Niella YV, Sulikowski JA, Hammerschlag N. Metabolic and nutritional condition of juvenile tiger sharks exposed to regional differences in coastal urbanization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146548. [PMID: 34030348 DOI: 10.1016/j.scitotenv.2021.146548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 05/23/2023]
Abstract
How varying levels of human activity, such as proximity and size of the nearest market (i.e., market gravity), influence the nutritional ecology and physiological condition of highly migratory marine predators is poorly understood. In the present study, we used a non-lethal approach to compare the concentration of metabolic hormones (i.e. corticosteroids and thyroid hormones) and plasma fatty acids between juvenile female tiger sharks (Galeocerdo cuvier) sampled in two areas of the subtropical north Atlantic, which differed markedly in their levels of coastal urbanization, Florida and the Bahamas (high versus low, respectively). We hypothesized that juvenile female tiger sharks sampled in water surrounding high coastal urbanization (Florida), would exhibit evidence of lower prey quality and higher energetic demands as compared to individuals sampled in relatively less urbanized areas of Northern Bahamas. Results revealed that relative corticosteroid levels (a proxy for energy mobilization) were higher in juvenile female tiger sharks sampled in Florida; however, no differences were found in concentrations of thyroid hormones (proxies of energetic adjustments) between the two locations. We found higher percentages of omega-3 polyunsaturated fatty acids (indicative of high prey quality) in juvenile tiger sharks from Florida, whereas higher percentages of bacterial markers (often indicative of domestic sewage effluent) were detected in the individuals sampled in the Bahamas. Taken together, these findings do not suggest that the differences in nutritional quality and metabolic condition found between the two sampling locations can be fully attributed to foraging in areas exposed to differing levels of urbanization. We speculate that these patterns may be due to the highly migratory nature and generalist feeding strategy of this species, even at the juvenile life stage, as well as proximity of sampling locations from shore.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil.
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Yuri Vieira Niella
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2113, Australia
| | - James A Sulikowski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
16
|
Ajemian MJ, Drymon JM, Hammerschlag N, Wells RJD, Street G, Falterman B, McKinney JA, Driggers WB, Hoffmayer ER, Fischer C, Stunz GW. Movement patterns and habitat use of tiger sharks (Galeocerdo cuvier) across ontogeny in the Gulf of Mexico. PLoS One 2020; 15:e0234868. [PMID: 32667920 PMCID: PMC7363083 DOI: 10.1371/journal.pone.0234868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species’ movement dynamics and better elucidate the ecological significance of the core habitats identified here.
Collapse
Affiliation(s)
- Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- * E-mail:
| | - J. Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, United States of America
- Mississippi-Alabama Sea Grant, Ocean Springs, Mississippi, United States of America
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Causeway, Miami, Florida, United States of America
- Abess Center for Ecosystem Science & Policy, University of Miami, Miami, Florida, United States of America
| | - R. J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Garrett Street
- Quantitative Ecology & Spatial Technologies Laboratory, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Brett Falterman
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - Jennifer A. McKinney
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - William B. Driggers
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | - Eric R. Hoffmayer
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | | | - Gregory W. Stunz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| |
Collapse
|
17
|
Salinas-de-León P, Fierro-Arcos D, Suarez-Moncada J, Proaño A, Guachisaca-Salinas J, Páez-Rosas D. A matter of taste: Spatial and ontogenetic variations on the trophic ecology of the tiger shark at the Galapagos Marine Reserve. PLoS One 2019; 14:e0222754. [PMID: 31539419 PMCID: PMC6754146 DOI: 10.1371/journal.pone.0222754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Sharks are top predators across ocean food webs and have a major ecological role in marine ecosystems. Investigating the trophic ecology of this group of species is thus essential to understand ecosystem functioning and inform specific management actions aimed at shark conservation. The Galapagos Islands represent one of the last ocean wildernesses, where populations of sharks and other top marine predators come close to a pristine status. Here we provide the first study on the trophic ecology of the tiger shark (Galeocerdo cuvier) within the Galapagos Marine Reserve (GMR), using a combination of stable isotope analysis, satellite tracking, and passive acoustic telemetry to investigate ontogenetic and spatial variations at two regions. The mean estimated δ13C and δ15N at Isabela island (western region) were -13.9 ± 0.5‰ and 13.7 ± 0.7‰; and for Santa Cruz island (central region) were -13.8 ± 0.3‰ and 13.4 ± 0.7‰, respectively. Green sea turtles (Chelonia mydas) were the main prey item for large tiger sharks (>280 cm TL), while smaller sharks mainly fed on squid and pelagic fish. Tiger sharks exhibited a high degree of philopatry around green sea-turtle nesting areas, with the majority of sharks detected around green sea-turtle nesting areas for at least 10 months after their capture date, and some individuals were even present during the entire three-year study period. Although we did not report statistically significant differences between the two regions, isotopic and electronic tagging data suggest that tiger sharks in the Galapagos could be segregated into specific populations separated by geographical scales of <100 km. The high productivity of the archipelago, along with the protection from industrial fishing granted by the GMR, result in abundant and predictable sources of prey. This high food abundance, combined with the presence of suitable habitats throughout the tiger shark life cycle, might result in a reduction of migratory behaviours when compared to movement patterns of tiger sharks in other ocean basins. Additional studies using genetic tools could provide further evidence on the presence of separate management units, as it has been recently revealed for other shark species inhabiting the GMR.
Collapse
Affiliation(s)
- Pelayo Salinas-de-León
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- * E-mail:
| | - Denisse Fierro-Arcos
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Alberto Proaño
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Diego Páez-Rosas
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
- Universidad San Francisco de Quito, Galapagos Science Center, Isla San Cristóbal, Galapagos Islands, Ecuador
| |
Collapse
|
18
|
Rooker JR, Dance MA, Wells RJD, Ajemian MJ, Block BA, Castleton MR, Drymon JM, Falterman BJ, Franks JS, Hammerschlag N, Hendon JM, Hoffmayer ER, Kraus RT, McKinney JA, Secor DH, Stunz GW, Walter JF. Population connectivity of pelagic megafauna in the Cuba-Mexico-United States triangle. Sci Rep 2019; 9:1663. [PMID: 30733508 PMCID: PMC6367330 DOI: 10.1038/s41598-018-38144-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).
Collapse
Affiliation(s)
- Jay R Rooker
- Department of Marine Biology, Texas A&M University, 1001 Texas Clipper Road, Galveston, Texas, 77554, USA.
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, 77843, USA.
| | - Michael A Dance
- Department of Oceanography and Coastal Sciences, Louisiana State University, 2255 Energy, Coast and Environment Building, Baton Rouge, Louisiana, 70803, USA
| | - R J David Wells
- Department of Marine Biology, Texas A&M University, 1001 Texas Clipper Road, Galveston, Texas, 77554, USA
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Matthew J Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort. Pierce, Florida, 34946, USA
| | - Barbara A Block
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, California, 93950, USA
| | - Michael R Castleton
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, California, 93950, USA
| | - J Marcus Drymon
- Mississippi State University, Coastal Research and Extension Center, 1815 Popps Ferry Road, Biloxi, Mississippi, 39532, USA
| | - Brett J Falterman
- Louisiana Department of Wildlife and Fisheries, 2021 Lakeshore Dr., Suite 220, New Orleans, Louisiana, 70122, USA
| | - James S Franks
- Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive Ocean Springs, Mississippi, 39564, USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida, 33149, USA
| | - Jill M Hendon
- Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive Ocean Springs, Mississippi, 39564, USA
| | - Eric R Hoffmayer
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, P.O. Drawer 1207, Pascagoula, Mississippi, 39568, USA
| | - Richard T Kraus
- Lake Erie Biological Station, USGS, 6100 Columbus Avenue, Sandusky, Ohio, 44870, USA
| | - Jennifer A McKinney
- Louisiana Department of Wildlife and Fisheries, 2021 Lakeshore Dr., Suite 220, New Orleans, Louisiana, 70122, USA
| | - David H Secor
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, P.O. Box 38, Solomons, Maryland, 20688, USA
| | - Gregory W Stunz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, Texas, 78412, USA
| | - John F Walter
- NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida, 33149, USA
| |
Collapse
|
19
|
Daly R, Smale MJ, Singh S, Anders D, Shivji M, K. Daly CA, Lea JSE, Sousa LL, Wetherbee BM, Fitzpatrick R, Clarke CR, Sheaves M, Barnett A. Refuges and risks: Evaluating the benefits of an expanded MPA network for mobile apex predators. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ryan Daly
- Save Our Seas Foundation - D'Arros Research Centre (SOSF-DRC); Genève Switzerland
- Port Elizabeth Museum at Bayworld; Port Elizabeth South Africa
| | - Malcolm J. Smale
- Port Elizabeth Museum at Bayworld; Port Elizabeth South Africa
- Department of Zoology and Institute for Coastal and Marine Research; Nelson Mandela Metropolitan University; Port Elizabeth South Africa
| | - Sarika Singh
- Department of Environmental Affairs; Government of South Africa; Cape Town South Africa
| | - Darrell Anders
- Department of Environmental Affairs; Government of South Africa; Cape Town South Africa
| | - Mahmood Shivji
- Department of Biological Sciences; The Guy Harvey Research Institute; Nova Southeastern University; Dania Beach FL USA
| | - Clare A. K. Daly
- Save Our Seas Foundation - D'Arros Research Centre (SOSF-DRC); Genève Switzerland
| | | | - Lara L. Sousa
- Wildlife Conservation Research Unit; Department of Zoology; University of Oxford; Recanati-Kaplan Centre; Tubney UK
| | - Bradley M. Wetherbee
- Department of Biological Sciences; The Guy Harvey Research Institute; Nova Southeastern University; Dania Beach FL USA
- Department of Biological Sciences; University of Rhode Island; Kingston RI USA
| | - Richard Fitzpatrick
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| | | | - Marcus Sheaves
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| | - Adam Barnett
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| |
Collapse
|
20
|
Meyer CG, Anderson JM, Coffey DM, Hutchinson MR, Royer MA, Holland KN. Habitat geography around Hawaii's oceanic islands influences tiger shark (Galeocerdo cuvier) spatial behaviour and shark bite risk at ocean recreation sites. Sci Rep 2018; 8:4945. [PMID: 29563552 PMCID: PMC5862960 DOI: 10.1038/s41598-018-23006-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/05/2018] [Indexed: 11/28/2022] Open
Abstract
We compared tiger shark (Galeocerdo cuvier) spatial behaviour among 4 Hawaiian Islands to evaluate whether local patterns of movement could explain higher numbers of shark bites seen around Maui than other islands. Our sample consisted of 96 electronically-tagged (satellite and acoustic transmitters) tiger sharks, individually tracked for up to 6 years. Most individuals showed fidelity to a specific ‘home’ island, but also swam between islands and sometimes ranged far (up to 1,400 km) offshore. Movements were primarily oriented to insular shelf habitat (0–200 m depth) in coastal waters, and individual sharks utilized core-structured home ranges within this habitat. Core utilization areas of large tiger sharks were closer to high-use ocean recreation sites around Maui, than around Oahu. Tiger sharks routinely visited shallow ocean recreation sites around Maui and were detected on more days overall at ocean recreation sites around Maui (62–80%) than Oahu (<6%). Overall, our results suggest the extensive insular shelf surrounding Maui supports a fairly resident population of tiger sharks and also attracts visiting tiger sharks from elsewhere in Hawaii. Collectively these natural, habitat-driven spatial patterns may in-part explain why Maui has historically had more shark bites than other Hawaiian Islands.
Collapse
Affiliation(s)
- Carl G Meyer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA.
| | - James M Anderson
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA
| | - Daniel M Coffey
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA
| | - Melanie R Hutchinson
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA.,Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, 1845 Wasp Blvd. Bldg. 176, Honolulu, Hawaii, 96818, USA
| | - Mark A Royer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA
| | - Kim N Holland
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P. O. Box, 1346, Kaneohe, Hawaii, USA
| |
Collapse
|
21
|
Hammerschlag N, Meÿer M, Seakamela SM, Kirkman S, Fallows C, Creel S. Physiological stress responses to natural variation in predation risk: evidence from white sharks and seals. Ecology 2017; 98:3199-3210. [DOI: 10.1002/ecy.2049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Neil Hammerschlag
- Department of Marine Ecosystems and Society; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; Miami Florida 33149 USA
- Leonard and Jayne Abess Center for Ecosystem Science and Policy; University of Miami; Coral Gables Florida 33146 USA
| | - Michael Meÿer
- Branch: Oceans and Coasts; Department of Environmental Affairs; Private Bag X4390 Cape Town 8000 South Africa
| | - Simon Mduduzi Seakamela
- Branch: Oceans and Coasts; Department of Environmental Affairs; Private Bag X4390 Cape Town 8000 South Africa
| | - Steve Kirkman
- Branch: Oceans and Coasts; Department of Environmental Affairs; Private Bag X4390 Cape Town 8000 South Africa
| | - Chris Fallows
- Apex Shark Expeditions; Shop 3 Quayside Center Simonstown Cape Town 7975 South Africa
| | - Scott Creel
- Department of Ecology; Montana State University; Bozeman Montana 59717 USA
| |
Collapse
|