1
|
Suleman M, Yaseen AR, Ahmed S, Khan Z, Irshad A, Pervaiz A, Rahman HH, Azhar M. Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 2025; 17:240-252. [PMID: 39023701 DOI: 10.1007/s12602-024-10322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa significantly induces health-associated infections in a variety of species other than humans. Over the years, the opportunistic pathogen has developed resistance against commonly used antibiotics. Since most P. aeruginosa strains are multi-drug resistant, regular antibiotic treatment of its infections is becoming a dire concern, shifting the global focus towards the development of alternate antimicrobial approaches. Pyocins are one of the most diverse antimicrobial peptide combinations produced by bacteria. They have potent antimicrobial properties, mainly against bacteria from the same phylogenetic group. P. aeruginosa, whether from clinical or environmental origins, produce several different pyocins that show inhibitory activity against other multi-drug-resistant strains of P. aeruginosa. They are, therefore, good candidates for alternate therapeutic antimicrobials because they have a unique mode of action that kills antibiotic-resistant bacteria by attacking their biofilms. Here, we review pseudomonas-derived antimicrobial pyocins with great therapeutic potential against multi-drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Shahbaz Ahmed
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Asma Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Afsah Pervaiz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiza Hiba Rahman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muteeba Azhar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Jantarit N, Tanaka H, Lin Y, Lee Y, Kurisu G. Crystal structure of pectocin M1 reveals diverse conformations and interactions during its initial step via the ferredoxin uptake system. FEBS Open Bio 2024; 14:1731-1745. [PMID: 39123319 PMCID: PMC11452297 DOI: 10.1002/2211-5463.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.
Collapse
Affiliation(s)
- Nawee Jantarit
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Yuxi Lin
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
| | - Young‐Ho Lee
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
- Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonSouth Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggiSouth Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
- Institute of ScienceSuranaree University of TechnologyNakohn RatchasimaThailand
| |
Collapse
|
3
|
Chaudhary S, Ali Z, Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2282-2300. [PMID: 38685599 PMCID: PMC11258990 DOI: 10.1111/pbi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
4
|
Kim H, Jang JH, Jung IY, Kim HR, Cho JH. Novel Genetically Engineered Probiotics for Targeted Elimination of Pseudomonas aeruginosa in Intestinal Colonization. Biomedicines 2023; 11:2645. [PMID: 37893018 PMCID: PMC10604247 DOI: 10.3390/biomedicines11102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The intestinal carriage rates of Pseudomonas aeruginosa are notably elevated in immunosuppressed individuals and hospitalized patients, increasing the risk of infection and antibiotic-associated diarrhea. A potential solution to this issue lies in autonomous antibacterial therapy, remaining inactive until a pathogen is detected, and releasing antibacterial compounds on demand to eliminate the pathogen. This study focuses on the development of genetically engineered probiotics capable of detecting and eradicating P. aeruginosa by producing and secreting PA2-GNU7, a P. aeruginosa-selective antimicrobial peptide (AMP), triggered by the presence of P. aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL). To achieve this goal, plasmid-based systems were constructed to produce AMPs in response to 3OC12HSL and secrete them into the extracellular medium using either the microcin V secretion system or YebF as a carrier protein. Following the transfer of these plasmid-based systems to Escherichia coli Nissle 1917 (EcN), we successfully demonstrated the ability of the engineered EcN to express and secrete PA2-GNU7, leading to the inhibition of P. aeruginosa growth in vitro. In addition, in a mouse model of intestinal P. aeruginosa colonization, the administration of engineered EcN resulted in reduced levels of P. aeruginosa in both the feces and the colon. These findings suggest that engineered EcN holds promise as a potential option for combating intestinal P. aeruginosa colonization, thus mitigating the risk of future endogenous infections in vulnerable patients.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
| | - Ha Rang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.K.); (J.H.J.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.J.); (H.R.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Green Fabrication, Characterization of Zinc Oxide Nanoparticles Using Plant Extract of Momordica charantia and Curcuma zedoaria and Their Antibacterial and Antioxidant Activities. Appl Biochem Biotechnol 2023; 195:3546-3565. [PMID: 36622631 DOI: 10.1007/s12010-022-04309-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
In recent years, the rapid increase in the resistance of microorganisms to antibiotics has produced major health issues. Novel applications for these compounds have been developed by integrating modern technologies such as nanotechnology and material science with the innate antibacterial activity of metals. The current study demonstrated the synthesis of zinc oxide nanoparticles (ZnO NPs) from Momordica charantia and Curcuma zedoaria plant extracts, as well as their antibacterial properties. The synthesis of ZnO NPs was confirmed via UV-visible spectroscopy, showing clear peaks at 375 and 350 nm for M. charantia and C. zedoaria, respectively. Scanning electron microscopy (SEM) analysis revealed crystals of irregular shapes for the majority of the nanoparticles synthesized from both plants. The existence of ZnO NPs was confirmed using X-ray diffraction while the particle size was calculated using Scherrer's equation, which was 19.65 for C. zedoaria and 17.02 for M. charantia. Different functional groups were detected through Fourier transform infrared spectroscopy analysis. The antibacterial activity of the ZnO NPs at three different concentrations (250, 500, and 1000 µg/ml) was assessed against three different bacterial strains, i.e., Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), using disc diffusion methods. The ZnO nanoparticles showed promising antibacterial activity against bacterial strains. For C. zedoaria, the highest growth inhibition was observed at a concentration of 1000 µg/ml, which was 18, 19, and 18 mm as compared to antibiotics (15, 11, and 15.6 mm) against E. coli, P. aeruginosa, and S. aureus, respectively. Similarly, at 1000 µg/ml of NPs, M. charantia showed the highest growth inhibition (18, 15, and 17 mm) as compared to antibiotics (15, 11, and 14.6 mm) against E. coli, P. aeruginosa, and S. aureus, respectively. In conclusion, compared to pure plant extract and antibiotics, ZnO NPs at a higher concentration (1000 µg/ml) exhibited a significant difference in zone of inhibition against all the bacterial strains. Different concentrations of ZnO using M. charantia and C. zedoaria caused increments in the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The nanoparticles extracted using C. zedoaria exhibited higher antioxidant activity than M. charantia. Greenly synthesized ZnO nanoparticles have remarkable antibacterial properties and antioxidant activity, making them a promising contender for future pharmaceutical application.
Collapse
|
6
|
The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:antibiotics11101366. [PMID: 36290026 PMCID: PMC9598984 DOI: 10.3390/antibiotics11101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa can cause several life-threatening infections among immunocompromised patients (e.g., cystic fibrosis) due to its ability to adapt and develop resistance to several antibiotics. In recent years, P. aeruginosa infections has become difficult to treat using conventional antibiotics due to the increase multidrug-resistant P. aeruginosa strains. Therefore, there is a growing interest to develop novel treatments against antibiotic-resistance P. aeruginosa strains. One novel method includes the application of antimicrobial peptides secreted by P. aeruginosa strains, known as pyocins. In this review, we will discuss the structure, function, and use of pyocins in the pathogenesis and treatment of P. aeruginosa infection.
Collapse
|
7
|
Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022; 13:5856. [PMID: 36195597 PMCID: PMC9532397 DOI: 10.1038/s41467-022-33516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.
Collapse
Affiliation(s)
- Matthijs P Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Utrecht University, Pharmaceutical sciences, Pharmaceutics, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Silvia Calderone
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Zachary Taylor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Neoplants, 630 Rue Noetzlin Bâtiment, 91190, Gif-sur-Yvette, France
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
8
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
9
|
Paškevičius Š, Dapkutė V, Misiūnas A, Balzaris M, Thommes P, Sattar A, Gleba Y, Ražanskienė A. Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Sci Rep 2022; 12:5865. [PMID: 35440606 PMCID: PMC9018753 DOI: 10.1038/s41598-022-09865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Rampant rise of multidrug resistant strains among Gram-negative bacteria has necessitated investigation of alternative antimicrobial agents with novel modes of action including antimicrobial proteins such as bacteriocins. The main hurdle in the clinical development of bacteriocin biologics is their narrow specificity and limited strain activity spectrum. Genome mining of bacteria for broadly active bacteriocins have identified a number of promising candidates but attempts to improve these natural multidomain proteins further, for example by combining domains of different origin, have so far met with limited success. We have found that domain swapping of Pseudomonas bacteriocins of porin type, when carried out between phylogenetically related molecules with similar mechanism of activity, allows the generation of highly active molecules with broader spectrum of activity, for example by abolishing strain resistance due to the presence of immunity proteins. The most broadly active chimera engineered in this study, S5-PmnH, exhibits excellent control of Pseudomonas aeruginosa infection in validated murine keratitis and lung infection models.
Collapse
Affiliation(s)
- Šarūnas Paškevičius
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | - Viktorija Dapkutė
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | | | | | - Pia Thommes
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Abdul Sattar
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, 06120, Halle (Saale), Germany
| | | |
Collapse
|
10
|
Paškevičius Š, Gleba Y, Ražanskienė A. Stenocins: novel modular bacteriocins from opportunistic pathogen Stenotrophomonas maltophilia. J Biotechnol 2022; 351:9-12. [DOI: 10.1016/j.jbiotec.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
11
|
The Biology of Colicin M and Its Orthologs. Antibiotics (Basel) 2021; 10:antibiotics10091109. [PMID: 34572691 PMCID: PMC8469651 DOI: 10.3390/antibiotics10091109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The misuse of antibiotics during the last decades led to the emergence of multidrug resistant pathogenic bacteria. This phenomenon constitutes a major public health issue. Consequently, the discovery of new antibacterials in the short term is crucial. Colicins, due to their antibacterial properties, thus constitute good candidates. These toxin proteins, produced by E. coli to kill enteric relative competitors, exhibit cytotoxicity through ionophoric activity or essential macromolecule degradation. Among the 25 colicin types known to date, colicin M (ColM) is the only one colicin interfering with peptidoglycan biosynthesis. Accordingly, ColM develops its lethal activity in E. coli periplasm by hydrolyzing the last peptidoglycan precursor, lipid II, into two dead-end products, thereby leading to cell lysis. Since the discovery of its unusual mode of action, several ColM orthologs have also been identified based on sequence alignments; all of the characterized ColM-like proteins display the same enzymatic activity of lipid II degradation and narrow antibacterial spectra. This publication aims at being an exhaustive review of the current knowledge on this new family of antibacterial enzymes as well as on their potential use as food preservatives or therapeutic agents.
Collapse
|
12
|
Chai R, Rooney WM, Milner JJ, Walker D. Challenges of using protein antibiotics for pathogen control. PEST MANAGEMENT SCIENCE 2021; 77:3836-3840. [PMID: 33527621 DOI: 10.1002/ps.6312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Bacterial phytopathogens represent a significant threat to many economically important crops. Current control measures often inflict harm on the environment and may ultimately impact on human health through the spread of antibiotic resistance. Antimicrobial proteins such as bacteriocins have been suggested as the next generation of disease control agents since they are able to specifically target the pathogen of interest with minimal impact on the wider microbial community and environment. However, substantial gaps in knowledge with regards to the efficacy and application of bacteriocins to combat phytopathogenic bacteria remain. Here we highlight the immediate challenges the community must address to ensure maximum exploitation of antimicrobial proteins in the field. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ray Chai
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - William M Rooney
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
- Plant Science Group, College of Molecular, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Joel J Milner
- Plant Science Group, College of Molecular, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel Walker
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Alqahtani A, Mena L, Scholl D, Kruczek C, Colmer-Hamood JA, Jeter RM, Hamood AN. Recombinant R2-pyocin cream is effective in treating Pseudomonas aeruginosa-infected wounds. Can J Microbiol 2021; 67:919-932. [PMID: 34437812 DOI: 10.1139/cjm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is one of the major species isolated from infected chronic wounds. The multidrug resistance exhibited by P. aeruginosa and its ability to form biofilms that are difficult to eradicate, along with the rising cost of producing new antibiotics, has necessitated the search for alternatives to standard antibiotics. Pyocins are antimicrobial compounds produced by P. aeruginosa that protect themselves from their competitors. We synthesized and purified recombinant P. aeruginosa R2 pyocin and used it in an aqueous solution (rR2P) or formulated in polyethylene glycol (rR2PC) to treat P. aeruginosa-infected wounds. Clinical strains of P. aeruginosa were found to be sensitive (completely), partially sensitive, or resistant to rR2P. In the in vitro biofilm model, rR2P inhibited biofilm development by rR2P-sensitive isolates, while rR2PC eliminated partial biofilms formed by these strains in an in vitro wound biofilm model. In the murine model of excision wounds, and at 24 h post-infection, rR2PC application significantly reduced the bioburden of the clinical isolate BPI86. Application of rR2PC containing two glycoside hydrolase antibiofilm agents eliminated BPI86 from infected wounds. These results suggest that the topical application of rR2PC is an effective therapy for treating wounds infected with R2P-senstive P. aeruginosa strains.
Collapse
Affiliation(s)
| | - London Mena
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, California, USA
| | - Cassandra Kruczek
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Randall M Jeter
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
14
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Mirzaee H, Neira Peralta NL, Carvalhais LC, Dennis PG, Schenk PM. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. N Biotechnol 2021; 63:54-61. [PMID: 33766789 DOI: 10.1016/j.nbt.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/31/2023]
Abstract
Bacteriocins are a diverse group of bacterial antimicrobial peptides (AMPs) that represent potential replacements for current antibiotics due to their novel modes of action. At present, production costs are a key constraint to the use of bacteriocins and other AMPs. Here, we report the production of bacteriocins in planta - a potentially scalable and cost-effective approach for AMP production. Nine bacteriocin genes with three different modes of action and minimal or no post-translational modifications were synthesized, cloned and used to transform Arabidopsis thaliana. To confirm bacteriocin functionality and the potential to use these plants as biofactories, Arabidopsis T3 crude leaf extracts were subjected to inhibition assays against the bacterial pathogens Clavibacter michiganensis subsp. michiganensis (Cmm) and Pseudomonas syringae pv. tomato DC3000 (Pst). Six and seven of nine extracts significantly inhibited Cmm and Pst, respectively. Three bacteriocin genes (plantaricin, enteriocin, and leucocin) were then selected for over-expression in tomato (Solanum lycopersicum). In vitro plant pathogen inhibition assays of T0, T1 and T2 transgenic tomato leaf extracts confirmed antimicrobial activity against both pathogens for all three generations of plants, indicating their potential use as stable biopesticide biofactories. Plantaricin and leucocin-expressing T2 tomato plants were resistant to Cmm, and leucocin-expressing T2 plants were resistant to Pst. This study highlights that plants can be used as biofactories for AMP production and that the expression of bacteriocins in planta may offer new opportunities for disease control in agriculture.
Collapse
Affiliation(s)
- Hooman Mirzaee
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Noelia L Neira Peralta
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Lilia C Carvalhais
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia; Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
16
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1296-1306. [PMID: 31705720 PMCID: PMC7152609 DOI: 10.1111/pbi.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 05/20/2023]
Abstract
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhys W. Grinter
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
School of Biological SciencesCentre for Geometric BiologyMonash UniversityClaytonVictoria3800Australia
| | - Annapaula Correia
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Julian Parkhill
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley RoadCambridgeCB3 0ESUK
| | - Daniel C. Walker
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Joel J. Milner
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
18
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|
19
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
20
|
Denkovskienė E, Paškevičius Š, Misiūnas A, Stočkūnaitė B, Starkevič U, Vitkauskienė A, Hahn-Löbmann S, Schulz S, Giritch A, Gleba Y, Ražanskienė A. Broad and Efficient Control of Klebsiella Pathogens by Peptidoglycan-Degrading and Pore-Forming Bacteriocins Klebicins. Sci Rep 2019; 9:15422. [PMID: 31659220 PMCID: PMC6817936 DOI: 10.1038/s41598-019-51969-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Gram-negative bacteria belonging to the genus Klebsiella are important nosocomial pathogens, readily acquiring resistance to all known antibiotics. Bacteriocins, non-antibiotic antibacterial proteins, have been earlier proposed as potential therapeutic agents for control of other Gram-negative species such as Escherichia, Pseudomonas and Salmonella. This study is the first report describing pore-forming and peptidoglycan-degrading bacteriocins klebicins from Klebsiella. We have identified, cloned, expressed in plants and characterized nine pore-forming and peptidoglycan-degrading bacteriocins from different Klebsiella species. We demonstrate that klebicins can be used for broad and efficient control of 101 of the 107 clinical isolates representing five Klebsiella species, including multi-drug resistant pathovars and pathovars resistant to carbapenem antibiotics.
Collapse
Affiliation(s)
| | - Šarūnas Paškevičius
- Nomads UAB, Geležinio vilko 29A, LT-01112, Vilnius, Lithuania
- Vilnius University, Institute of Biotechnology, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | | | | | - Urtė Starkevič
- Nomads UAB, Geležinio vilko 29A, LT-01112, Vilnius, Lithuania
| | - Astra Vitkauskienė
- Lithuanian University of Health Sciences, Department of Laboratory Medicine, Eivenių g. 2, LT-50161, Kaunas, Lithuania
| | - Simone Hahn-Löbmann
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Steve Schulz
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Anatoli Giritch
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | | |
Collapse
|
21
|
McNulty MJ, Gleba Y, Tusé D, Hahn-Löbmann S, Giritch A, Nandi S, McDonald KA. Techno-economic analysis of a plant-based platform for manufacturing antimicrobial proteins for food safety. Biotechnol Prog 2019; 36:e2896. [PMID: 31443134 PMCID: PMC7027456 DOI: 10.1002/btpr.2896] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
Continuous reports of foodborne illnesses worldwide and the prevalence of antibiotic-resistant bacteria mandate novel interventions to assure the safety of our food. Treatment of a variety of foods with bacteriophage-derived lysins and bacteriocin-class antimicrobial proteins has been shown to protect against high-risk pathogens at multiple intervention points along the food supply chain. The most significant barrier to the adoption of antimicrobial proteins as a food safety intervention by the food industry is the high production cost using current fermentation-based approaches. Recently, plants have been shown to produce antimicrobial proteins with accumulation as high as 3 g/kg fresh weight and with demonstrated activity against major foodborne pathogens. To investigate potential economic advantages and scalability of this novel platform, we evaluated a highly efficient transgenic plant-based production process. A detailed process simulation model was developed to help identify economic "hot spots" for research and development focus including process operating parameters, unit operations, consumables, and/or raw materials that have the most significant impact on production costs. Our analyses indicate that the unit production cost of antimicrobial proteins in plants at commercial scale for three scenarios is $3.00-6.88/g, which can support a competitive selling price to traditional food safety treatments.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, California
| | | | | | | | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare® Initiative, University of California, Davis, California
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare® Initiative, University of California, Davis, California
| |
Collapse
|
22
|
Impact of FiuA Outer Membrane Receptor Polymorphism on the Resistance of Pseudomonas aeruginosa toward Peptidoglycan Lipid II-Targeting PaeM Pyocins. J Bacteriol 2019; 201:JB.00164-19. [PMID: 30988031 DOI: 10.1128/jb.00164-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Certain Pseudomonas aeruginosa strains produce a homolog of colicin M, namely, PaeM, that specifically inhibits peptidoglycan biosynthesis of susceptible P. aeruginosa strains by hydrolyzing the lipid II intermediate precursor. Two variants of this pyocin were identified whose sequences mainly differed in the N-terminal protein moiety, i.e., the region involved in the binding to the FiuA outer membrane receptor and translocation into the periplasm. The antibacterial activity of these two variants, PaeM1 and PaeM2, was tested against various P. aeruginosa strains comprising reference strains PAO1 and PA14, PaeM-producing strains, and 60 clinical isolates. Seven of these strains, including PAO1, were susceptible to only one variant (2 to PaeM1 and 5 to PaeM2), and 11 were affected by both. The remaining strains, including PA14 and four PaeM1 producers, were resistant to both variants. The differences in the antibacterial spectra of the two PaeM homologs prompted us to investigate the molecular determinants allowing their internalization into P. aeruginosa cells, taking the PAO1 strain that is susceptible to PaeM2 but resistant to PaeM1 as the indicator strain. Heterologous expression of fiuA gene orthologs from different strains into PAO1, site-directed mutagenesis experiments, and construction of PaeM chimeric proteins provided evidence that the cell susceptibility and discrimination differences between the PaeM variants resulted from a polymorphism of both the pyocin and the outer membrane receptor FiuA. Moreover, we found that a third component, TonB1, a protein involved in iron transport in P. aeruginosa, working together with FiuA and the ExbB/ExbD complex, was directly implicated in this discrimination.IMPORTANCE Bacterial antibiotic resistance constitutes a threat to human health, imposing the need for identification of new targets and development of new strategies to fight multiresistant pathogens. Bacteriocins and other weapons that bacteria have themselves developed to kill competitors are therefore of great interest and a valuable source of inspiration for us. Attention was paid here to two variants of a colicin M homolog (PaeM) produced by certain strains of P. aeruginosa that inhibit the growth of their congeners by blocking cell wall peptidoglycan synthesis. Molecular determinants allowing recognition of these pyocins by the outer membrane receptor FiuA were identified, and a receptor polymorphism affecting the susceptibility of P. aeruginosa clinical strains was highlighted, providing new insights into the potential use of these pyocins as an alternative to antibiotics.
Collapse
|
23
|
Ghequire MGK, De Mot R. LlpB represents a second subclass of lectin-like bacteriocins. Microb Biotechnol 2019; 12:567-573. [PMID: 30702207 PMCID: PMC6465234 DOI: 10.1111/1751-7915.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriocins are secreted bacterial proteins that selectively kill related strains. Lectin-like bacteriocins are atypical bacteriocins not requiring a cognate immunity factor and have been primarily studied in Pseudomonas. These so-called LlpAs are composed of a tandem of B-lectin domains. One domain interacts with d-rhamnose residues in the common polysaccharide antigen of Pseudomonas lipopolysaccharide (LPS). The other lectin domain is crucial for interference with the outer membrane protein assembly machinery by interacting with surface-exposed loops of its central component BamA. Via genome mining, we identified a second subclass of Pseudomonas lectin-like proteins, termed LlpB, consisting of a single B-lectin domain. We show that these proteins also display bactericidal activity. Among LlpB-resistant transposon mutants of an LlpB-susceptible Pseudomonas strain, a major subset was hit in an acyltransferase gene, predicted to be involved in LPS core modification, hereby suggesting that LlpBs equally attach to LPS for surface anchoring. This indicates that LPS binding and target strain specificity are condensed in a single B-lectin domain. The identification of this second subclass of lectin-like bacteriocins further expands the toolbox of antibacterial warfare deployed by bacteria and holds potential for their integration in biotechnological applications.
Collapse
Affiliation(s)
- Maarten G. K. Ghequire
- Centre of Microbial and Plant GeneticsKU LeuvenKasteelpark Arenberg 20 bus 24603001HeverleeBelgium
| | - René De Mot
- Centre of Microbial and Plant GeneticsKU LeuvenKasteelpark Arenberg 20 bus 24603001HeverleeBelgium
| |
Collapse
|
24
|
Hahn-Löbmann S, Stephan A, Schulz S, Schneider T, Shaverskyi A, Tusé D, Giritch A, Gleba Y. Colicins and Salmocins - New Classes of Plant-Made Non-antibiotic Food Antibacterials. FRONTIERS IN PLANT SCIENCE 2019; 10:437. [PMID: 31024601 PMCID: PMC6465592 DOI: 10.3389/fpls.2019.00437] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Recently, several plant-made recombinant proteins received favorable regulatory review as food antibacterials in the United States through the Generally Recognized As Safe (GRAS) regulatory procedure, and applications for others are pending. These food antimicrobials, along with approved biopharmaceuticals and vaccines, represent new classes of products manufactured in green plants as production hosts. We present results of new research and development and summarize regulatory, economic and business aspects of the antibacterial proteins colicins and salmocins as new food processing aids.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | | | | |
Collapse
|
25
|
Ghequire MGK, Öztürk B, De Mot R. Lectin-Like Bacteriocins. Front Microbiol 2018; 9:2706. [PMID: 30483232 PMCID: PMC6240691 DOI: 10.3389/fmicb.2018.02706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Bacteria produce a diverse array of antagonistic compounds to restrict growth of microbial rivals. Contributing to this warfare are bacteriocins: secreted antibacterial peptides, proteins and multi-protein complexes. These compounds typically eliminate competitors closely related to the producer. Lectin-like bacteriocins (LlpAs) constitute a distinct class of such proteins, produced by Pseudomonas as well as some other proteobacterial genera. LlpAs share a common architecture consisting of two B-lectin domains, followed by a short carboxy-terminal extension. Two surface-exposed moieties on susceptible Pseudomonas cells are targeted by the respective lectin modules. The carboxy-terminal domain binds D-rhamnose residues present in the lipopolysaccharide layer, whereas the amino-terminal domain interacts with a polymorphic external loop of the outer-membrane protein insertase BamA, hence determining selectivity. The absence of a toxin-immunity module as found in modular bacteriocins and other polymorphic toxin systems, hints toward a novel mode of killing initiated at the cellular surface, not requiring bacteriocin import. Despite significant progress in understanding the function of LlpAs, outstanding questions include the secretion machinery recruited by lectin-like bacteriocins for their release, as well as a better understanding of the environmental signals initiating their expression.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Ghequire MGK, Öztürk B. A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Appl Environ Microbiol 2018; 84:e00716-18. [PMID: 29980560 PMCID: PMC6121995 DOI: 10.1128/aem.00716-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Pyocins are bacteriocins secreted by Pseudomonas aeruginosa, and they assist in the colonization of different niches. A major subset of these antibacterial proteins adopt a modular organization characteristic of polymorphic toxins. They include a receptor-binding domain, a segment enabling membrane passage, and a toxin module at the carboxy terminus, which eventually kills the target cells. To protect themselves from their own products, bacteriocin-producing strains express an immunity gene concomitantly with the bacteriocin. We show here that a pyocin equipped with a phylogenetically distinct ColM toxin domain, PaeM4, mediates antagonism against a large set of P. aeruginosa isolates. Immunity to PaeM4 is provided by the inner membrane protein PmiC, which is equipped with a transmembrane topology not previously described for the ColM family. Given that strains lacking a pmiC gene are killed by PaeM4, the presence of such an immunity partner likely is a key criterion for escaping cellular death mediated by PaeM4. The presence of a TonB box in PaeM4 and enhanced bacteriocin activity under iron-poor conditions strongly suggested the targeting of a TonB-dependent receptor. Evaluation of PaeM4 activities against TonB-dependent receptor knockout mutants in P. aeruginosa PAO1 revealed that the heme receptor HxuC (PA1302) serves as a PaeM4 target at the cellular surface. Because other ColM-type pyocins may target the ferrichrome receptor FiuA, our results illustrate the versatility in target recognition conferred by the polymorphic nature of ColM-type bacteriocins.IMPORTANCE The antimicrobial armamentarium of a bacterium is a major asset for colonizing competitive environments. Bacteriocins comprise a subset of these compounds. Pyocins are an example of such antibacterial proteins produced by Pseudomonas aeruginosa, killing other P. aeruginosa strains. A large group of these molecules show a modular protein architecture that includes a receptor-binding domain for initial target cell attachment and a killer domain. In this study, we have shown that a novel modular pyocin (PaeM4) that kills target bacteria via interference with peptidoglycan assembly takes advantage of the HxuC heme receptor. Cells can protect themselves from killing by the presence of a dedicated immunity partner, an integral inner membrane protein that adopts a transmembrane topology distinct from that of proteins currently known to provide immunity against such toxin activity. Understanding the receptors with which pyocins interact and how immunity to pyocins is achieved is a pivotal step toward the rational design of bacteriocin cocktails for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
27
|
Kazanavičiūtė V, Misiūnas A, Gleba Y, Giritch A, Ražanskienė A. Plant-expressed bacteriophage lysins control pathogenic strains of Clostridium perfringens. Sci Rep 2018; 8:10589. [PMID: 30002425 PMCID: PMC6043497 DOI: 10.1038/s41598-018-28838-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
The anaerobic spore-forming bacterium Clostridium perfringens is a source of one of the most common food-borne illnesses in the United States and Europe. The costs associated with disease management are high and interventions are limited; therefore, effective and safe antimicrobials are needed to control food contamination by C. perfringens. A viable solution to this problem could be bacteriophage lysins used as food additives or food processing aids. Such antimicrobials could be produced cost-effectively and in ample supply in green plants. By using edible plant species as production hosts the need for expensive product purification can be reduced or obviated. We describe the first successful expression in plants of C. perfringens-specific bacteriophage lysins. We demonstrate that six lysins belonging to two different families (N-acetylmuramoyl-L-alanine amidase and glycosyl hydrolase 25) are active against a panel of enteropathogenic C. perfringens strains under salinity and acidity conditions relevant to food preparation environments. We also demonstrate that plant-expressed lysins prevent multiplication of C. perfringens on cooked meat matrices far better than nisin, the only currently approved bacteriocin food preservative to control this pathogen.
Collapse
Affiliation(s)
| | | | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Anatoli Giritch
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | | |
Collapse
|
28
|
Plant-made Salmonella bacteriocins salmocins for control of Salmonella pathovars. Sci Rep 2018; 8:4078. [PMID: 29511259 PMCID: PMC5840360 DOI: 10.1038/s41598-018-22465-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica causes an estimated 1 million illnesses in the United States each year, resulting in 19,000 hospitalizations and 380 deaths, and is one of the four major global causes of diarrhoeal diseases. No effective treatments are available to the food industry. Much attention has been given to colicins, natural non-antibiotic proteins of the bacteriocin class, to control the related pathogen Escherichia coli. We searched Salmonella genomic databases for colicin analogues and cloned and expressed in plants five such proteins, which we call salmocins. Among those, SalE1a and SalE1b were found to possess broad antimicrobial activity against all 99 major Salmonella pathovars. Each of the two salmocins also showed remarkably high potency (>106 AU/µg recombinant protein, or >103 higher than colicins) against major pathogenic target strains. Treatment of poultry meat matrices contaminated with seven key pathogenic serovars confirmed salmocin efficacy as a food safety intervention against Salmonella.
Collapse
|
29
|
Abstract
Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM) targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.
Collapse
|
30
|
Ghequire MG, De Mot R. Turning Over a New Leaf: Bacteriocins Going Green. Trends Microbiol 2018; 26:1-2. [DOI: 10.1016/j.tim.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
31
|
Stephan A, Hahn-Löbmann S, Rosche F, Buchholz M, Giritch A, Gleba Y. Simple Purification of Nicotiana benthamiana-Produced Recombinant Colicins: High-Yield Recovery of Purified Proteins with Minimum Alkaloid Content Supports the Suitability of the Host for Manufacturing Food Additives. Int J Mol Sci 2017; 19:E95. [PMID: 29286298 PMCID: PMC5796045 DOI: 10.3390/ijms19010095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/04/2022] Open
Abstract
Colicins are natural non-antibiotic bacterial proteins with a narrow spectrum but an extremely high antibacterial activity. These proteins are promising food additives for the control of major pathogenic Shiga toxin-producing E. coli serovars in meats and produce. In the USA, colicins produced in edible plants such as spinach and leafy beets have already been accepted by the U. S. Food and Drug Administration (FDA) and U. S. Department of Agriculture (USDA) as food-processing antibacterials through the GRAS (generally recognized as safe) regulatory review process. Nicotiana benthamiana, a wild relative of tobacco, N. tabacum, has become the preferred production host plant for manufacturing recombinant proteins-including biopharmaceuticals, vaccines, and biomaterials-but the purification procedures that have been employed thus far are highly complex and costly. We describe a simple and inexpensive purification method based on specific acidic extraction followed by one chromatography step. The method provides for a high recovery yield of purified colicins, as well as a drastic reduction of nicotine to levels that could enable the final products to be used on food. The described purification method allows production of the colicin products at a commercially viable cost of goods and might be broadly applicable to other cost-sensitive proteins.
Collapse
Affiliation(s)
- Anett Stephan
- Nomad Bioscience GmbH, Biozentrum Halle, D-06120 Halle (Saale), Germany.
| | | | - Fred Rosche
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, D-06120 Halle (Saale), Germany.
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, D-06120 Halle (Saale), Germany.
| | - Anatoli Giritch
- Nomad Bioscience GmbH, Biozentrum Halle, D-06120 Halle (Saale), Germany.
| | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, D-06120 Halle (Saale), Germany.
| |
Collapse
|