1
|
Conde-Bravo JC, Fernández-Bravo M, Garrido-Jurado I, Yousef-Yousef M, Quesada-Moraga E. Targeting the Xylella fastidiosa spittlebug vector Neophilaenus campestris in the olive cover crops with the entomopathogenic fungus Metarhizium brunneum. FRONTIERS IN INSECT SCIENCE 2025; 5:1579244. [PMID: 40330532 PMCID: PMC12051512 DOI: 10.3389/finsc.2025.1579244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Introduction Neophilaenus campestris (Fallén) (Hemiptera: Aphrophoridae) is among the most abundant, highly dispersible, and widely distributed Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae) vectors to olive tree in Europe, with emphasis in Andalucía. The development of efficient and environmentally friendly vector management strategies is greatly needed. Entomopathogenic ascomycetes are among the few alternatives for the microbial control of pierce-sucking spittlebugs due to their unique contact mode and ability to endophytically colonize crops. These characteristics allow for several strategic uses aimed at reducing vector populations and/or their disease transmission potential. This study included a two-year field experiment to evaluate the Metarhizium brunneum Petch. (Ascomycota: Hypocreales) strain EAMa 01/58-Su sprayed onto N. campestris population naturally present in the olive grove cover in Cordoba (Spain). Methods Experiments were conducted in early spring, and efficacy was evaluated using the Henderson-Tilton formula, as well as by analyzing changes in the relative population density of both nymphs and adults. Results and discussion The fungus was detected in the soil and endophytically in the natural cover throughout the 8 days monitoring period, in which the fungal treatment significantly reduced both the nymph and the adult populations. Notably, the efficacy of the fungal treatment was 100.0% and 85.0% for foams and adults in 2023, and 62.5% and 72.0% for foams and adults in 2024, respectively. Results indicate a significant reduction in the population density of both vector developmental stages, highlighting the potential of this fungal strain for managing X. fastidiosa vectors in olive cover crops.
Collapse
|
2
|
Ma C, Hao L, Li Z, Ma Y, Wang R. Preparation and Application of Biocontrol Formulation of Housefly-Entomopathogenic Fungus- Metarhizium brunneum. Vet Sci 2025; 12:308. [PMID: 40284809 PMCID: PMC12031259 DOI: 10.3390/vetsci12040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Utilizing entomopathogenic fungi as a biological control method for parasitic houseflies in livestock presents a promising and innovative alternative. This study aimed to evaluate the control efficacy of a lyophilized Metarhizium brunneum preparation, both alone and in combination with the insecticide low-dose deltamethrin, to control houseflies in Hu sheep on a farm based in Gansu Province, northwestern China. The experimental design included four groups: M. brunneum wettable powder (WP) treatment group, M. brunneum + deltamethrin combination WP treatment group, deltamethrin group, and a control group. By observing the mortality rate of houseflies at 1, 3, 5, and 7 days post-treatment, the data were analyzed, and control efficacy was calculated to evaluate the effectiveness of each treatment group on houseflies at different time points. On day 7, the combination of WP with deltamethrin resulted in 79.2% control of housefly larvae and pupae and 85.42% control of adult houseflies, respectively, surpassing the efficacy observed in the deltamethrin-only group. The incorporation of low-dose insecticides into the fungal treatment increased the mortality rate by 17.1% compared to the use of M. brunneum alone, significantly reducing the overall pesticide usage while enhancing the efficacy of biological control.
Collapse
Affiliation(s)
- Chengyu Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot 010018, China
| | - Luyao Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot 010018, China
| | - Zhengyi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot 010018, China
| | - Yuan Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot 010018, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot 010018, China
| |
Collapse
|
3
|
Ghaffari S, Karimi J, Cheniany M, Seifi A, Loverodge J, Butt TM. Endophytic entomopathogenic fungi enhance plant immune responses against tomato leafminer. J Invertebr Pathol 2025; 209:108270. [PMID: 39800113 DOI: 10.1016/j.jip.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta). Both B. bassiana and M. anisopliae colonized tomato endophytically. Plants treated with B. bassiana had greater biomass than the untreated control and M. anisopliae treated plants. Oviposition was lower on plants treated with B. bassiana and M. anisopliae than on untreated controls in both choice and no-choice studies, and both endophytic EPF also affected the development of leafminer larvae. Gene expression analysis of tomato leaves inoculated with endophytic EPF provided evidence of triggering plant immune response genes, and of priming genes for herbivore attack, making plants more resistant to herbivory. These findings provide important insights into the mechanisms by which B. bassiana and M. anisopliae promote tomato plant growth and rapidly respond to T. absoluta infestation by priming the immune system. This knowledge could improve the development of entomopathogenic fungi for use in plant-protection strategies.
Collapse
Affiliation(s)
- Sepideh Ghaffari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Seifi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel Loverodge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
4
|
Wang Y, Xiang S, Chen R, Chen L, Lan W, Fang J, Xiao Y. Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117745. [PMID: 39823674 DOI: 10.1016/j.ecoenv.2025.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B. bassiana FE14 significantly enhanced the growth of M. floridulus, substantially decreased Cd content in soil by 79.39 %, and modified enzyme activities (superoxide dismutase, peroxidase, and catalase) to alleviate Cd-induced oxidative stress in plants, determined by the physical and chemical indicators and enzyme activities of soil and plant. Based on microbiome analysis, this study also found significant changes in the composition, structure, and molecular ecological network of endophytic bacterial communities in roots, but this study had little effect on the bacterial and fungal communities in rhizosphere soil. In addition, the key genera (including Sphingomonas, unclassified_Comamonadaceae, Massilia, Bradyrhizobium, and Paraglomus) and key genes/enzymes (including cadC, zinc transporter, zinc and cadmium transporter, exoZ/Y/Z, catalase-peroxidase, superoxide dismutase, nitrite reductase, acid phosphatase, etc.) were involved in promoting plant growth and alleviating Cd stress. These findings revealed the potential of B. bassiana FE14 and M. floridulus working in synergy to enhance the phytoremediation efficiency of Cd-contaminated soils, thus presenting a promising approach for integrated plant-microbe remediation strategies.
Collapse
Affiliation(s)
- Ying Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; College of Life Science, Central South University, Changsha 410083, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
5
|
Aravinthraju K, Shanthi M, Murugan M, Srinivasan R, Maxwell LA, Manikanda Boopathi N, Anandham R. Endophytic Entomopathogenic Fungi: Their Role in Enhancing Plant Resistance, Managing Insect Pests, and Synergy with Management Routines. J Fungi (Basel) 2024; 10:865. [PMID: 39728361 DOI: 10.3390/jof10120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
The interaction between plants and microorganisms plays a major role in plant growth promotion and disease management. While most microorganisms directly influence plant health, some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic fungi are diverse, easily localized, and have long-lasting effects on insect pests. When inhabiting plants, these fungi alter secondary metabolites, volatile organic compounds, and microbiomes, enhancing plant resistance to pests and diseases and sometimes improving growth. However, their persistence in plant systems may be challenged by the plant's defense mechanisms or by human interventions such as insecticides, fungicides, herbicides, and phyto-insecticides, which are common in agriculture. As effective biocontrol agents, endophytic entomopathogenic fungi can also be integrated with other pest management strategies like predators, parasitoids, and chemicals. This review will explore the impact of endophytic entomopathogens on plant systems and their compatibility with other management practices.
Collapse
Affiliation(s)
- Krishnamoorthy Aravinthraju
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Safe and Sustainable Value Chains, World Vegetable Center, Tainan 74151, Taiwan
| | - Mookiah Shanthi
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Ramasamy Srinivasan
- Safe and Sustainable Value Chains, World Vegetable Center, Tainan 74151, Taiwan
| | | | | | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
6
|
Panwar N, Szczepaniec A. Endophytic entomopathogenic fungi as biological control agents of insect pests. PEST MANAGEMENT SCIENCE 2024; 80:6033-6040. [PMID: 39046187 DOI: 10.1002/ps.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Entomopathogenic fungi capable of establishing mutualistic endophytic relationships with plants have a tremendous potential as biocontrol agents of insect pests. While fungi have long played an important and highly effective role in pest suppression, the utility of endophytic entomopathogenic fungi in pest management is a relatively new and emerging topic of biocontrol. Here we discuss the relevance of endophytic fungi to plant health in general, synthesize the current knowledge of the effectiveness of endophytic entomopathogenic fungi against diverse insect pests, discuss the indirect plant-mediated effects of endophytic entomopathogenic fungi on arthropods, and describe the diverse benefits of endophytic fungi to plants that are likely to affect herbivores and plant pathogens as well. Lastly, we consider major challenges to incorporating endophytic entomopathogenic fungi in biocontrol, such as their non-target effects and field efficacy, which can be variable and influenced by environmental factors. Continued research on endophyte-insect-plant-environment interactions is critical to advancing our knowledge of these fungi as a sustainable pest management tactic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Panwar
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Adrianna Szczepaniec
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
8
|
Ramírez-Ordorica A, Adame-Garnica SG, Ramos-Aboites HE, Winkler R, Macías-Rodríguez L. Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Fungi (Basel) 2024; 10:438. [PMID: 38921424 PMCID: PMC11204931 DOI: 10.3390/jof10060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Robert Winkler
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| |
Collapse
|
9
|
Senthil Kumar CM, D'Silva S, Praveena R, Kaprakkaden A, Athira Krishnan LR, Balaji Rajkumar M, Srinivasan V, Dinesh R. Zinc solubilization and organic acid production by the entomopathogenic fungus, Metarhizium pingshaense sheds light on its key ecological role in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171348. [PMID: 38438046 DOI: 10.1016/j.scitotenv.2024.171348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
We report for the first-time higher zinc (Zn) solubilization efficiency and plant growth promotion by an entomopathogenic fungus (EPF), Metarhizium pingshaense IISR-EPF-14, which was earlier isolated from Conogethes punctiferalis, a pest of global importance. The Zn solubilizing efficiency of the fungus varied depending on the type of insoluble source of Zn used, which was observed to be 1.6 times higher in Zn3(PO4)2-amended media compared to ZnO media. In liquid media, there was a 6.2-fold increase in available Zn in ZnO-amended media, whereas a 20.2-fold increase in available Zn was recorded in Zn3(PO4)2 medium. We ascribe the production of various organic acids such as gluconic, keto-gluconic, oxalic, tartaric, malonic, succinic and formic acids, which in general, interact with insoluble Zn sources and make them soluble by forming metal cations and displacing anions as the major mechanism for Zn solubilization by M. pingshaense. However, the type and amount of organic acid produced in the media varied depending on the source of Zn used and the incubation period. Application of the fungus alone and in combination with insoluble Zn sources enhanced various plant growth parameters in rice and cardamom plants. Moreover, the uptake of Zn in rice plants was enhanced up to ~2.5-fold by fungal application. The fungus also exhibited various other plant growth-promoting traits, such as production of Indole-3-acetic acid, ammonia, siderophores, solubilization of mineral phosphate, and production of hydrolytic enzymes such as α-amylase, protease, and pectinase. Hence, apart from its use as a biological control agent, M. pingshaense has the potential to be used as a bio-fortifier to enhance the solubilization and uptake of Zn from nutrient poor soils under field conditions. Our findings shed light on the broader ecological role played by this fungus and widen its scope for utilization in sustainable agriculture.
Collapse
Affiliation(s)
- C M Senthil Kumar
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India.
| | - Sharon D'Silva
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - R Praveena
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - Anees Kaprakkaden
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - L R Athira Krishnan
- Division of Crop Protection, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - M Balaji Rajkumar
- ICAR - Indian Institute of Spices Research, Regional Station, Appangala, Madikeri - 571 201, Karnataka, India
| | - V Srinivasan
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| | - R Dinesh
- Division of Crop Production and Post-Harvest Technology, ICAR - Indian Institute of Spices Research, Marikunnu P.O., Kozhikode 673 012, Kerala, India
| |
Collapse
|
10
|
Quesada-Moraga E, Garrido-Jurado I, González-Mas N, Yousef-Yousef M. Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 2023; 201:108015. [PMID: 37924859 DOI: 10.1016/j.jip.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Entomopathogenic ascomycetes (EA) are an important part of the microbiota in most terrestrial ecosystems, where they can be found regulating natural populations of arthropod pests in both epigeous and hypogeous habitats while also establishing unique relationships with plants. These fungi offer direct benefits to agriculture and human welfare. In the present work, we conducted a systematic review to comprehensively assess the range of ecosystem services provided by EA, including direct and indirect pest biocontrol, plant growth promotion, plant defense against other biotic and abiotic stresses, nutrient cycling, and the production of new bioactive compounds with agricultural, pharmaceutical and medical importance. Moreover, EA are compatible with the ecosystem services provided by other microbial and macrobial biocontrol agents. This systematic review identified the need for future research to focus on evaluating the economic value of the ecological services provided by EA with a special emphasis on hypocrealean fungi. This evaluation is essential not only for the conservation but also for better regulation and exploitation of the benefits of EA in promoting agricultural sustainability, reducing the use of chemicals that enter the environment, and minimizing the negative impacts of crop protection on the carbon footprint and human health.
Collapse
Affiliation(s)
- Enrique Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Inmaculada Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Natalia González-Mas
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Meelad Yousef-Yousef
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| |
Collapse
|
11
|
García-Espinoza F, García MJ, Quesada-Moraga E, Yousef-Yousef M. Entomopathogenic Fungus-Related Priming Defense Mechanisms in Cucurbits Impact Spodoptera littoralis (Boisduval) Fitness. Appl Environ Microbiol 2023; 89:e0094023. [PMID: 37439674 PMCID: PMC10467339 DOI: 10.1128/aem.00940-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Entomopathogenic fungi (EPF) exhibit direct and indirect mechanisms to increase plant resistance against biotic and abiotic stresses. Plant responses to these stresses are interconnected by common regulators such as ethylene (ET), which is involved in both iron (Fe) deficiency and induced systemic resistance responses. In this work, the roots of cucurbit seedlings were primed with Metarhizium brunneum (EAMa 01/58-Su strain), and relative expression levels of 18 genes related to ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) synthesis, as well as pathogen-related (PR) protein genes, were studied by reverse transcription-quantitative PCR (qRT-PCR). Effects of priming on Spodoptera littoralis were studied by feeding larvae for 15 days with primed and control plants. Genes showed upregulation in studied species; however, the highest relative expression was observed in roots and shoots of plants with Fe deficiency, demonstrating the complexity and the overlapping degree of the regulatory network. EIN2 and EIN3 should be highlighted; both are key genes of the ET transduction pathway that enhanced their expression levels up to eight and four times, respectively, in shoots of primed cucumber. Also, JA and SA synthesis and PR genes showed significant upregulation during the observation period (e.g., the JA gene LOX1 increased 506 times). Survival and fitness of S. littoralis were affected with significant effects on mortality of larvae fed on primed plants versus controls, length of the larval stage, pupal weight, and the percentage of abnormal pupae. These results highlight the role of the EAMa 01/58-Su strain in the induction of resistance, which could be translated into direct benefits for plant development. IMPORTANCE Entomopathogenic fungi are multipurpose microorganisms with direct and indirect effects on insect pests. Also, EPF provide multiple benefits to plants by solubilizing minerals and facilitating nutrient acquisition. A very interesting and novel effect of these fungi is the enhancement of plant defense systems by inducing systematic and acquired resistance. However, little is known about this function. This study sheds light on the molecular mechanisms involved in cucurbits plants' defense activation after being primed by the EPF M. brunneum. Furthermore, the subsequent effects on the fitness of the lepidopteran pest S. littoralis are shown. In this regard, a significant upregulation was recorded for the genes that regulate JA, SA, and ET pathways. This increased expression of defense genes caused lethal and sublethal effects on S. littoralis. This could be considered an added value for the implementation of EPF in integrated pest management programs.
Collapse
Affiliation(s)
- F. García-Espinoza
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Departamento de Parasitología. Universidad Autónoma Agraria Antonio Narro – Unidad Laguna, Torreón, Coahuila, Mexico
| | - M. J. García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - E. Quesada-Moraga
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - M. Yousef-Yousef
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
12
|
Rasool S, Markou A, Hannula SE, Biere A. Effects of tomato inoculation with the entomopathogenic fungus Metarhizium brunneum on spider mite resistance and the rhizosphere microbial community. Front Microbiol 2023; 14:1197770. [PMID: 37293220 PMCID: PMC10244576 DOI: 10.3389/fmicb.2023.1197770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Entomopathogenic fungi have been well exploited as biocontrol agents that can kill insects through direct contact. However, recent research has shown that they can also play an important role as plant endophytes, stimulating plant growth, and indirectly suppressing pest populations. In this study, we examined the indirect, plant-mediated, effects of a strain of entomopathogenic fungus, Metarhizium brunneum on plant growth and population growth of two-spotted spider mites (Tetranychus urticae) in tomato, using different inoculation methods (seed treatment, soil drenching and a combination of both). Furthermore, we investigated changes in tomato leaf metabolites (sugars and phenolics), and rhizosphere microbial communities in response to M. brunneum inoculation and spider mite feeding. A significant reduction in spider mite population growth was observed in response to M. brunneum inoculation. The reduction was strongest when the inoculum was supplied both as seed treatment and soil drench. This combination treatment also yielded the highest shoot and root biomass in both spider mite-infested and non-infested plants, while spider mite infestation increased shoot but reduced root biomass. Fungal treatments did not consistently affect leaf chlorogenic acid and rutin concentrations, but M. brunneum inoculation via a combination of seed treatment and soil drenching reinforced chlorogenic acid (CGA) induction in response to spider mites and under these conditions the strongest spider mite resistance was observed. However, it is unclear whether the M. brunneum-induced increase in CGA contributed to the observed spider mite resistance, as no general association between CGA levels and spider mite resistance was observed. Spider mite infestation resulted in up to two-fold increase in leaf sucrose concentrations and a three to five-fold increase in glucose and fructose concentrations, but these concentrations were not affected by fungal inoculation. Metarhizium, especially when applied as soil drench, impacted the fungal community composition but not the bacterial community composition which was only affected by the presence of spider mites. Our results suggest that in addition to directly killing spider mites, M. brunneum can indirectly suppress spider mite populations on tomato, although the underlying mechanism has not yet been resolved, and can also affect the composition of the soil microbial community.
Collapse
Affiliation(s)
- Shumaila Rasool
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andreas Markou
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
13
|
Qiao L, Liu J, Zhou Z, Li Z, Zhou Y, Xu S, Yang Z, Qu J, Zou X. Positive effects of Cordyceps cateniannulata colonization in tobacco: Growth promotion and resistance to abiotic stress. Front Microbiol 2023; 14:1131184. [PMID: 37125180 PMCID: PMC10140308 DOI: 10.3389/fmicb.2023.1131184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background Entomopathogenic fungi can live in insects to cause disease and death and are the largest group of entomopathogenic microorganisms. Therefore, these fungi are best known for their microbial control potential. Importantly, they also have other beneficial effects, including promoting plant growth and development by colonizing plant. Here, the study sought to identify specific strains of the entomopathogenic fungus, Cordyceps cateniannulata that would form endophytic associations with tobacco, thus benefiting plant growth and resistance to abiotic stresses, thereby highlighting the application of entomopathogenic fungi in tobacco. Methods The C. cateniannulata-tobacco symbiont was constructed by root irrigation. The effects of C. cateniannulata on tobacco growth were evaluated by measuring the maximum leaf length, maximum leaf width, number of leaves, plant height, stem thickness, stem circumference, dry and fresh shoot weight 7, 14, 21, and 28 days after colonization. The peroxidase, catalase, superoxide dismutase, and malondialdehyde were measured to observe the impact of C. cateniannulata on tobacco defense enzyme activity. Finally, high-throughput sequencing was used to access microbial communities in the rhizosphere, with data subsequently linked to growth indicators. Results After tobacco was inoculated with C. cateniannulata X8, which significantly promoted growth and related enzyme activity, malondialdehyde was decreased. The most significant impact was on peroxidase, with its activity being upregulated by 98.20, 154.42, 180.65, and 170.38% in the four time periods, respectively. The high throughput sequencing results indicated that C. cateniannulata had changed the rhizosphere microbial relative abundances, such as increasing Acidobacteria and Ascomycetes, and decreasing Actinomycetes and Basidiomycetes. The redundancy analysis showed that C. cateniannulata significantly boosted tobacco growth by reducing the abundance of specific dominant genera such as Stachybotrys, Cephalotrichum, Streptomyces, Isoptericola, and Microbacterium. Conclusion Specific strains of C. cateniannulata can be introduced into host plants as endophytes, resulting in promotion of host plant growth and increased resistance to abiotic stress and microbial pathogens. The study provides a foundation for future studies of C. cateniannulata as an ecological agent.
Collapse
Affiliation(s)
- Lu Qiao
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Jing Liu
- Zunyi Tobacco Company of Guizhou Province, Zunyi, China
| | | | - Zhimo Li
- Zunyi Tobacco Company of Guizhou Province, Zunyi, China
| | - Yeming Zhou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Shaohuan Xu
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Zhengkai Yang
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Ndou N, Rakgotho T, Nkuna M, Doumbia IZ, Mulaudzi T, Ajayi RF. Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1425. [PMID: 37050053 PMCID: PMC10096534 DOI: 10.3390/plants12071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due to their environmental friendliness and affordability while serving as potential biofertilizers. This study investigates the role of hematite (αFe2O3) NPs, synthesized from Aspalathus linearis (rooibos), to improve Sorghum bicolor growth under drought stress. About 18 nm, spherical, and highly agglomerated hematite (αFe2O3) NPs were obtained. Sorghum seeds were primed with 5, 10, and 15 mg/L αFe2O3 NPs, and, after seven days of germination, the seedlings were transferred into potting soil, cultivated for fourteen days, and were subsequently water deprived (WD) for a further seven days. A reduction in plant height (78%), fresh (FW; 35%) and dry (DW; 36%) weights, and chlorophyll (chl) content ((total chl (81%), chla (135%), and chlb (1827%)) was observed in WD plants, and this correlated with low nutrients (Mg, Si, P, and K) and alteration in the anatomic structure (epidermis and vascular bundle tissues). Oxidative damage was observed as deep blue (O2●-) and brown (H2O2) spots on the leaves of WD plants, in addition to a 25% and 40% increase in oxidative stress markers (H2O2 and MDA) and osmolytes (proline and total soluble sugars), respectively. Seed priming with 10 mg/L αFe2O3 NPs improved plant height (70%), FW (56%), DW (34%), total Chl (104%), chla (160%) and chlb (1936%), anatomic structure, and nutrient distribution. Priming with 10 mg/L αFe2O3 NPs also protected sorghum plants from drought-induced oxidative damage by reducing ROS formation and osmolytes accumulation and prevented biomolecule degradation. The study concludes that green synthesized hematite NPs positively influenced sorghum growth and prevented oxidative damage of biomolecules by improving nutrient uptake and osmoregulation under drought stress.
Collapse
Affiliation(s)
- Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Tessia Rakgotho
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Ibrahima Zan Doumbia
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
15
|
Entomopathogenic Fungi-Mediated Solubilization and Induction of Fe Related Genes in Melon and Cucumber Plants. J Fungi (Basel) 2023; 9:jof9020258. [PMID: 36836372 PMCID: PMC9960893 DOI: 10.3390/jof9020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Endophytic insect pathogenic fungi have a multifunctional lifestyle; in addition to its well-known function as biocontrol agents, it may also help plants respond to other biotic and abiotic stresses, such as iron (Fe) deficiency. This study explores M. brunneum EAMa 01/58-Su strain attributes for Fe acquisition. Firstly, direct attributes include siderophore exudation (in vitro assay) and Fe content in shoots and in the substrate (in vivo assay) were evaluated for three strains of Beauveria bassiana and Metarhizium bruneum. The M. brunneum EAMa 01/58-Su strain showed a great ability to exudate iron siderophores (58.4% surface siderophores exudation) and provided higher Fe content in both dry matter and substrate compared to the control and was therefore selected for further research to unravel the possible induction of Fe deficiency responses, Ferric Reductase Activity (FRA), and relative expression of Fe acquisition genes by qRT-PCR in melon and cucumber plants.. In addition, root priming by M. brunneum EAMa 01/58-Su strain elicited Fe deficiency responses at transcriptional level. Our results show an early up-regulation (24, 48 or 72 h post inoculation) of the Fe acquisition genes FRO1, FRO2, IRT1, HA1, and FIT as well as the FRA. These results highlight the mechanisms involved in the Fe acquisition as mediated by IPF M. brunneum EAMa 01/58-Su strain.
Collapse
|
16
|
Samal I, Bhoi TK, Majhi PK, Murmu S, Pradhan AK, Kumar D, Saini V, Paschapur AU, Raj MN, Ankur, Manik S, Behera PP, Mahanta DK, Komal J, Alam P, Balawi TA. Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1098673. [PMID: 36743574 PMCID: PMC9894630 DOI: 10.3389/fpls.2022.1098673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023]
Abstract
Horticultural production is a vital catalyst for economic growth, yet insect infestations reduce horticultural crop yield and quality. Pesticides and other pest control methods are used during planting to eliminate pests that cause direct and indirect losses. In such situations, endophytic entomo-pathogenic fungi (EEPF) can act as a potential tools for biological control. They protect plants by boosting growth, nutrition, morpho-physiology and salt or iron tolerance. Antixenosis, antibiosis and plant tolerance change insect performance and preferences. EEPF- plant colonisation slows herbivore development, food consumption, oviposition and larval survival. EEPF changes plant physio-chemical properties like volatile emission profile and secondary metabolite production to regulate insect pest defences. EEPF produces chitinases, laccases, amylases, and cellulases for plant defence. Recent studies focused on EEPF species' significance, isolation, identification and field application. Realizing their full potential is difficult due to insufficient mass production, storage stability and formulation. Genetic-molecular and bioinformatics can help to build EEPF-based biological control systems. Metagenomics helps study microbial EEPF taxonomy and function. Multi-omics and system biology can decode EEPF interactions with host plants and microorganisms. NGS (Next Generation Sequencing), comparative genomics, proteomics, transcriptomics, metabolomics, metatranscriptomics and microarrays are used to evaluate plant-EEPF relationships. IPM requires understanding the abiotic and biotic elements that influence plant-EEPF interaction and the physiological mechanisms of EEPF colonisation. Due to restricted research, there are hundreds of unexplored EEPFs, providing an urgent need to uncover and analyse them.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Sneha Murmu
- Division of Agricultural Bio-informatics, Indian Council of Agricultural Research (ICAR)- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Asit Kumar Pradhan
- Division, Social Science Division, Indian Council of Agricultural Research (ICAR)- National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Dilip Kumar
- Division of Computer Application and IT, National Institute for Agricultural Economics and Policy Research (NIAP), New Delhi, National Capital Territory of Delhi, India
| | - Varun Saini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR) - Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - M Nikhil Raj
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ankur
- Division of Entomology, Indian Council of Agricultural Research (ICAR-IARI)- Indian Agricultural Research Institute, New Delhi, India
| | - Suryakant Manik
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Partha Pratim Behera
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, India
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
17
|
Kramski DJ, Nowinski D, Kowalczuk K, Kruszyński P, Radzimska J, Greb-Markiewicz B. Beauveria bassiana Water Extracts' Effect on the Growth of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:326. [PMID: 36679039 PMCID: PMC9863656 DOI: 10.3390/plants12020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
For a long time, entomopathogenic fungi were considered alternative biological control factors. Recently, these organisms were shown to fulfill additional roles supporting plants' development, improving their resistance to disease and survival under stress conditions. Considering the documented interactions of B. bassiana with a wide range of plants, we aimed to evaluate the impact of aqueous extracts of the fungus on the growth of an agriculturally significant plant-wheat. The usage of fungal extracts instead of fungi could be beneficial especially in unfavorable, environmentally speaking, regions. Selected dilutions of the crude extract obtained under different pH and temperature conditions were used to establish the optimal method of extraction. Plant growth parameters such as length, total fresh weight, and chlorophyll composition were evaluated. Additionally, the antibacterial activity of extracts was tested to exclude negative impacts on the beneficial soil microorganisms. The best results were obtained after applying extracts prepared at 25 °C and used at 10% concentration. Enhancement of the tested wheat's growth seems to be related to the composition of the extracts, which we documented as a rich source of macro- and microelements. Our preliminary results are the first confirming the potential of fungal water extracts as factors promoting plant growth. Further detailed investigation needs to be carried out to confirm the effects in real environment conditions. Additionally, the consistency of the plant growth stimulation across different entomopathogenic fungi and agriculturally used plant species should be tested.
Collapse
Affiliation(s)
- Dawid J. Kramski
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Daria Nowinski
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department of Organic and Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kaja Kowalczuk
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Kruszyński
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jagoda Radzimska
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
18
|
Wilberts L, Vuts J, Caulfield JC, Thomas G, Birkett MA, Herrera-Malaver B, Verstrepen KJ, Sobhy IS, Jacquemyn H, Lievens B. Impact of endophytic colonization by entomopathogenic fungi on the behavior and life history of the tobacco peach aphid Myzus persicae var. nicotianae. PLoS One 2022; 17:e0273791. [PMID: 36067150 PMCID: PMC9447930 DOI: 10.1371/journal.pone.0273791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic fungi can adopt an endophytic lifestyle and provide protection against insect herbivores and plant pathogens. So far, most studies have focused on Beauveria bassiana to increase plant resistance against abiotic and biotic stresses, while only little is known for other entomopathogenic fungi. In this study, we investigated whether root inoculation of sweet pepper (Capsicum annuum L.) by the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128 and B. bassiana ARSEF 3097 can improve resistance against the tobacco peach aphid Myzus persicae var. nicotianae. First, dual-choice experiments were performed to test the hypothesis that the fungi deter aphids via modifying plant volatile profiles. Next, we tested the hypothesis that endophytic colonization negatively affects aphid life history traits, such as fecundity, development and mortality rate. Aphids were significantly attracted to the odor of plants inoculated with A. muscarius over non-inoculated plants. Plants inoculated with A. muscarius emitted significantly higher amounts of β-pinene than non-inoculated plants, and significantly higher amounts of indole than B. bassiana-inoculated and non-inoculated plants. Inoculation with the fungal strains also caused significantly higher emission of terpinolene. Further, both aphid longevity and fecundity were significantly reduced by 18% and 10%, respectively, when feeding on plants inoculated with A. muscarius, although intrinsic rate of population increase did not differ between inoculated and non-inoculated plants. Sweet pepper plants inoculated with B. bassiana ARSEF 3097 did not elicit a significant behavioral response nor affected the investigated life history traits. We conclude that endophytic colonization by entomopathogenic fungi has the potential to alter olfactory behavior and performance of M. persicae var. nicotianae, but effects are small and depend on the fungal strain used.
Collapse
Affiliation(s)
- Liesbet Wilberts
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - József Vuts
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John C. Caulfield
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Gareth Thomas
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Michael A. Birkett
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Beatriz Herrera-Malaver
- Department M2S, CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
- Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kevin J. Verstrepen
- Department M2S, CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
- Flanders Institute for Biotechnology (VIB), KU Leuven Center for Microbiology, Leuven, Belgium
| | - Islam S. Sobhy
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Faculty of Agriculture, Department of Plant Protection, Suez Canal University, Ismailia, Egypt
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Mseddi J, Ben Farhat-Touzri D, Azzouz H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae). PEST MANAGEMENT SCIENCE 2022; 78:2183-2195. [PMID: 35191162 DOI: 10.1002/ps.6844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cotton-melon aphid Aphis gossypii (Glover) causes severe damage mainly to cucurbits. Twenty-two Beauveria sp. isolates were simultaneously assessed for their pathogenicity and heat tolerance. The selected isolates were identified molecularly and characterized in terms of conidial germination rate, mycelial growth, conidial yield and endophytic activity. RESULTS Screening bioassays showed that the B. bassiana isolates B3, B7, B9 and B12 were the most toxic, inducing mortality equal to or slightly higher than the commercialized strain B. bassiana BNat (70.7%). Median lethal concentration (LC50 ) bioassays revealed that only isolate B12 had a significantly lower LC50 value (5.4 × 105 conidia ml-1 ) than strain BNat (5 × 106 conidia ml-1 ). The heat tolerance screening test (1 h of exposure to 45°C) allowed us to select isolates B3, B7, B9 and B12 with germination rates of 57.5% to 80.1% after 24 h incubation at 25°C, all significantly higher than strain BNat (22.1%). The germination rates of all isolates decreased significantly after 2 h of exposure to 45°C, with the exception of isolate B12 which displayed the highest thermotolerance (72% germination). The four selected isolates were able to endophytically colonize cucumber leaves when applied to the foliage. Inoculation of cucumber plants with isolate B12 did not affect cucumber plant growth. However, several plant growth parameters were improved 5 weeks after root inoculation. CONCLUSION On the basis of its potent toxicity and thermotolerance, isolate B12 is a good candidate for further development as a biopesticide for use in integrated pest management strategies for aphid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihen Mseddi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | | | - Hichem Azzouz
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
20
|
Zemek R, Konopická J, Jozová E, Skoková Habuštová O. Virulence of Beauveria bassiana Strains Isolated from Cadavers of Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2021; 12:1077. [PMID: 34940165 PMCID: PMC8703872 DOI: 10.3390/insects12121077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a serious, widely distributed pest of potato and other crops. This pest is able to defoliate the host plant and cause severe yield loss. Moreover, the pest quickly becomes resistant to many chemical pesticides. Therefore, the development of novel biopesticides targeting this pest is urgently needed. The purpose of this study was to obtain new strains of the entomopathogenic fungus Beauveria bassiana and assess their efficacy against L. decemlineata adults under laboratory conditions. Twelve strains were isolated from cadavers of Colorado potato beetles collected in potato fields in the Czech Republic. Test beetles were treated by suspensions of conidia at the concentration of 1 × 107 spores per milliliter and their survival was recorded daily for three weeks. The results of the bioassays revealed that all new native strains were pathogenic to L. decemlineata adults and caused mortality up to 100% at the end of the trial period with an LT50 of about 7 days. These strains were more virulent than a reference strain GHA and some of them can be recommended for the development of a new mycoinsecticide against L. decemlineata. Our findings also highlight the importance of searching for perspective strains of entomopathogenic fungi among naturally infected hosts.
Collapse
Affiliation(s)
- Rostislav Zemek
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| | - Jana Konopická
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| | - Eva Jozová
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic;
| | - Oxana Skoková Habuštová
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| |
Collapse
|
21
|
Bamisile BS, Siddiqui JA, Akutse KS, Ramos Aguila LC, Xu Y. General Limitations to Endophytic Entomopathogenic Fungi Use as Plant Growth Promoters, Pests and Pathogens Biocontrol Agents. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102119. [PMID: 34685928 PMCID: PMC8540635 DOI: 10.3390/plants10102119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
The multiple roles of fungal entomopathogens in host plants' growth promotion, pest and pathogen management have drawn huge attention for investigation. Endophytic species are known to influence various activities of their associated host plants, and the endophyte-colonized plants have been demonstrated to gain huge benefits from these symbiotic associations. The potential application of fungal endophytes as alternative to inorganic fertilizers for crop improvement has often been proposed. Similarly, various strains of insect pathogenic fungi have been formulated for use as mycopesticides and have been suggested as long-term replacement for the synthetic pesticides that are commonly in use. The numerous concerns about the negative effects of synthetic chemical pesticides have also driven attention towards developing eco-friendly pest management techniques. However, several factors have been underlined to be militating the successful adoption of entomopathogenic fungi and fungal endophytes as plant promoting, pests and diseases control bio-agents. The difficulties in isolation and characterization of novel strains, negative effects of geographical location, vegetation type and human disturbance on fungal entomopathogens, are among the numerous setbacks that have been documented. Although, the latest advances in biotechnology and microbial studies have provided means of overcoming many of these problems. For instance, studies have suggested measures for mitigating the negative effects of biotic and abiotic stressors on entomopathogenic fungi in inundative application on the field, or when applied in the form of fungal endophytes. In spite of these efforts, more studies are needed to be done to achieve the goal of improving the overall effectiveness and increase in the level of acceptance of entomopathogenic fungi and their products as an integral part of the integrated pest management programs, as well as potential adoption as an alternative to inorganic fertilizers and pesticides.
Collapse
Affiliation(s)
| | - Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, Nairobi 00100, Kenya;
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
22
|
Wang H, Peng H, Li W, Cheng P, Gong M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front Microbiol 2021; 12:705343. [PMID: 34512581 PMCID: PMC8430825 DOI: 10.3389/fmicb.2021.705343] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The long-term and excessive usage of pesticides is an enormous burden on the environment, which also increases pest resistance. To overcome this problem, research and application of entomopathogenic fungi, which are both environmentally friendly and cause lower resistance, have gained great momentum. Entomopathogenic fungi have a wide range of prospects. Apart from Bacillus thuringiensis, Beauveria bassiana is the most studied biopesticide. After invading insect hosts, B. bassiana produces a variety of toxins, which are secondary metabolites such as beauvericin, bassianin, bassianolide, beauverolides, tenellin, oosporein, and oxalic acid. These toxins help B. bassiana to parasitize and kill the hosts. This review unequivocally considers beauveria toxins highly promising and summarizes their attack mechanism(s) on the host insect immune system. Genetic engineering strategies to improve toxin principles, genes, or virulent molecules of B. bassiana have also been discussed. Lastly, we discuss the future perspective of Beauveria toxin research, including newly discovered toxins.
Collapse
Affiliation(s)
- Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China.,College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenjuan Li
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| |
Collapse
|
23
|
Land-Use Type Drives Soil Population Structures of the Entomopathogenic Fungal Genus Metarhizium. Microorganisms 2021; 9:microorganisms9071380. [PMID: 34202058 PMCID: PMC8303860 DOI: 10.3390/microorganisms9071380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Species of the fungal genus Metarhizium are globally distributed pathogens of arthropods, and a number of biological control products based on these fungi have been commercialized to control a variety of pest arthropods. In this study, we investigate the abundance and population structure of Metarhizium spp. in three land-use types—arable land, grassland, and forest—to provide detailed information on habitat selection and the factors that drive the occurrence and abundance of Metarhizium spp. in soil. At 10 sites of each land-use type, which are all part of the Swiss national soil-monitoring network (NABO), Metarhizium spp. were present at 8, 10, and 4 sites, respectively. On average, Metarhizium spp. were most abundant in grassland, followed by forest and then arable land; 349 Metarhizium isolates were collected from the 30 sites, and sequence analyses of the nuclear translation elongation factor 1α gene, as well as microsatellite-based genotyping, revealed the presence of 13 Metarhizium brunneum, 6 Metarhizium robertsii, and 3 Metarhizium guizhouense multilocus genotypes (MLGs). With 259 isolates, M. brunneum was the most abundant species, and significant differences were detected in population structures between forested and unforested sites. Among 15 environmental factors assessed, C:N ratio, basal respiration, total carbon, organic carbon, and bulk density significantly explained the variation among the M. brunneum populations. The information gained in this study will support the selection of best-adapted isolates as biological control agents and will provide additional criteria for the adaptation or development of new pest control strategies.
Collapse
|
24
|
Siqueira ACO, Mascarin GM, Gonçalves CRNCB, Marcon J, Quecine MC, Figueira A, Delalibera Í. Multi-Trait Biochemical Features of Metarhizium Species and Their Activities That Stimulate the Growth of Tomato Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Ahmad I, Jiménez-Gasco MDM, Luthe DS, Barbercheck ME. Systemic Colonization by Metarhizium robertsii Enhances Cover Crop Growth. J Fungi (Basel) 2020; 6:E64. [PMID: 32429548 PMCID: PMC7344985 DOI: 10.3390/jof6020064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022] Open
Abstract
Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect pathogens that can establish as endophytes and can benefit their host plant. In field experiments, we observed a positive correlation between the prevalence of M. robertsii and legume cover crops, and a negative relationship with brassicaceous cover crops and with increasing proportion of cereal rye in mixtures. Here, we report the effects of endophytic M. robertsii on three cover crop species under greenhouse conditions. We inoculated seeds of Austrian winter pea (Pisum sativum L., AWP), cereal rye (Secale cereale L.), and winter canola (Brassica napus L.) with conidia of M. robertsii to assess the effects of endophytic colonization on cover crop growth. We recovered M. robertsii from 59%, 46%, and 39% of seed-inoculated AWP, cereal rye, and canola plants, respectively. Endophytic M. robertsii significantly increased height and above-ground biomass of AWP and cereal rye but did not affect chlorophyll content of any of the cover crop species. Among inoculated plants from which we recovered M. robertsii, above-ground biomass of AWP was positively correlated with the proportion of colonized root but not leaf tissue sections. Our results suggest that winter cover crops may help to conserve Metarhizium spp. in annual cropping systems.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Dawn S. Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Mary E. Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
26
|
Hu S, Bidochka MJ. Root colonization by endophytic insect-pathogenic fungi. J Appl Microbiol 2019; 130:570-581. [PMID: 31667953 DOI: 10.1111/jam.14503] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 12/29/2022]
Abstract
Several ascomycetous insect-pathogenic fungi, including species in the genera Beauveria and Metarhizium, are plant root symbionts/endophytes and are termed as endophytic insect-pathogenic fungi (EIPF). The endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to plant hosts via fungal mycelia. In exchange for the insect-derived nitrogen, the plant provides photosynthate to the fungus. This symbiotic interaction offers other benefits to the plant-EIPF can improve plant growth, they are antagonistic to plant pathogens and herbivores and can enhance the plant tolerance to abiotic stresses. The mechanisms and underlying biochemical and genetic features of insect pathogenesis are generally well-established. However, there is a paucity of information regarding the underlying mechanisms in this plant-symbiotic association. Here we review five aspects of EIPF interactions with host plant roots: (i) rhizosphere colonization, (ii) signalling factors from the plant and EIPF, (iii) modulation of plant defence responses, (iv) nutrient exchange and (v) tripartite interactions with insects and other micro-organisms. The elucidation of these interactions is fundamental to understanding this symbiotic association for effective application of EIPF in an agricultural setting.
Collapse
Affiliation(s)
- S Hu
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - M J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
27
|
Non-Entomopathogenic Roles of Entomopathogenic Fungi in Promoting Plant Health and Growth. INSECTS 2019; 10:insects10090277. [PMID: 31480565 PMCID: PMC6780571 DOI: 10.3390/insects10090277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Multiple genera of hypocrealean fungi infect and kill a wide variety of arthropod pests. Several formulations based on these soilborne fungi are commercially available as biopesticides for controlling urban, garden, greenhouse, and agricultural pests. These fungi are an important part of integrated pest management strategies to maintain pest control efficacy, reduce the risk of chemical insecticide resistance, and offer environmentally sustainable pest suppression. While the entomopathogenic or pest management role of these fungi is well documented, several studies in the past decade or two have provided insights into their relationship with plants, soil, and plant pathogens, and their additional roles in promoting plant growth and health. This review highlights these endophytic, mycorrhiza-like, and disease-antagonizing roles of entomopathogenic fungi.
Collapse
|
28
|
Weng Q, Zhang X, Chen W, Hu Q. Secondary Metabolites and the Risks of Isaria fumosorosea and Isaria farinosa. Molecules 2019; 24:E664. [PMID: 30781844 PMCID: PMC6412548 DOI: 10.3390/molecules24040664] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Isaria fumosorosea and Isaria farinosa are important entomopathogenic fungi with a worldwide distribution and multiple host insects. However, the concerns about the safety risks of myco-pesticides have been attracting the attention of researchers and consumers. Secondary metabolites (SMs), especially the mycotoxins, closely affect the biosafety of Isaria myco-insecticides. In the last forty years, more than seventy SMs were identified and isolated from I. fumosorosea and I. farinose. The SMs of I. fumosorosea include the mycotoxins of non-ribosomal peptides (NRPs) (beauvericin and beauverolides), terpenes (trichocaranes and fumosorinone), lactone compounds (cepharosporolides), acids (dipicolinic acid and oxalic acid), etc. Meanwhile, the NRP mycotoxins (cycloaspeptides) and the terpene compounds (farinosones and militarinones) are the main SMs in I. farinosa. Although several researches reported the two Isaria have promised biosafety, the bioactivities and the safety risks of their SMs have not been studied in detail so far. However, based on existing knowledge, most SMs (i.e., mycotoxins) do not come from Isaria myco-insecticide itself, but are from the host insects infected by Isaria fungi, because only the hosts can provide the conditions for fungal proliferation. Furthermore, the SMs from Isaria fungi have a very limited possibility of entering into environments because many SMs are decomposed in insect cadavers. The biosafety of Isaria myco-insecticides and their SMs/mycotoxins are being monitored. Of course, SMs safety risks of Isaria myco-insecticides need further research.
Collapse
Affiliation(s)
- Qunfang Weng
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaofeng Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb Pathog 2018; 125:385-392. [PMID: 30290267 DOI: 10.1016/j.micpath.2018.09.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 01/27/2023]
Abstract
Entomopathogenic fungi (EPF) have primarily been applied as an inundative approach to manage pests. However, in recent decade multifunctional role of EPF have been documented which provide multiple benefits to host plants when colonized as an endophyte. In this study five fungal isolates from the genus Beauveria (three), Isaria (one) and Lecanicillium (one) were evaluated for their ability to colonize common bean, Phaseolus vulgaris and to assess their effects in planta on plant growth promotion and possible negative effects on the two-spotted spider mites, Tetranychus urticae. All the tested isolates in this study were able to endophytically colonize root, stem and even leaves of inoculated plants examined at 7 and 14 days post inoculation, indicating the systemic colonization of EPF. Colonized plants showed increased plant heights, fresh shoot and root weights compared to plants without inoculation. Survivorship of T. urticae significantly differed among the treatments with higher survival probability in control plants. Significant reduction in larval development, adult longevity and female fecundity of spider mites were observed when fed on treated plants compared to control plants. The negative effects were found to be carried over the second generation fed on fresh plants. Overall, our results show (i) the positive effects of fungal endophytes on plant growth, (ii) reduction in population growth rate and (iii) negative effects of endophytes on growth and reproduction of spider mites in successive generations. The study presents reports on the endophytic management of plant-feeding mites and highlights the possibility of utilizing entomopathogenic fungal endophytes in the integrated pest management program.
Collapse
|
30
|
Krell V, Unger S, Jakobs-Schoenwandt D, Patel AV. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|