1
|
Hazarika H, Krishnatreyya H. Technological Advancements in Mosquito Repellents: Challenges and Opportunities in Plant-Based Repellents. Acta Parasitol 2025; 70:117. [PMID: 40434490 DOI: 10.1007/s11686-025-01054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE The worldwide distribution of mosquitoes and their significant role in the transmission of diseases such as malaria, dengue, and chikungunya have resulted in substantial mortality, morbidity, and economic loss. This review aims to explore the challenges and opportunities associated with plant-based mosquito repellents as sustainable alternatives to conventional chemical insecticides. METHODS A comprehensive analysis of recent literature was conducted to investigate the conventional technology available as well as novel techniques utilized to minimize man-mosquito contact and also to assess the efficacy, safety, and mechanisms of plant-derived mosquito repellents. Special attention was given to essential oils and their active constituents, as well as current advancements in formulation technologies, stability issues, and standardization practices. RESULTS The utilization of conventional chemical insecticides for controlling mosquitoes has resulted in the development of biological resistance and has detrimental environmental impacts. Consequently, researchers have made significant efforts in recent years to develop sustainable and economical alternatives, with a particular focus on botanical mosquito-repellent compounds. This has led to a marked increase in interest in the use of plant derieved products as mosquito repellents. Limonene, citronellol, eucalyptol, geraniol, eugenol, carvacrol, and citronellal are the primary essential oil components extracted from plants that exhibit mosquito repellent activity. Owing to their complex chemical structures, mosquitoes are unable to develop resistance to these molecules. CONCLUSION Plant-based mosquito repellents represent a promising and sustainable alternative to synthetic repellents. However, challenges such as variability in composition, lack of standardization, stability issues, and limited mechanistic understanding hinder their widespread adoption. Molecular and cellular mechanistic studies may increase product safety and efficacy by identifying specific targets and detoxification pathways.
Collapse
Affiliation(s)
- Hemanga Hazarika
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Constituent campus-Tezpur, Tezpur, 784501, Assam, India.
| | - Harshita Krishnatreyya
- National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Guwahati, 781101, Assam, India
| |
Collapse
|
2
|
Steketee RW. Attractive targeted sugar baits series in Malaria Journal. Malar J 2025; 24:70. [PMID: 40033339 DOI: 10.1186/s12936-025-05309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
|
3
|
Okumu F, Moore SJ, Selvaraj P, Yafin AH, Juma EO, Shirima GG, Majambere S, Hardy A, Knols BGJ, Msugupakulya BJ, Finda M, Kahamba N, Thomsen E, Ahmed A, Zohdy S, Chaki P, DeChant P, Fornace K, Govella N, Gowelo S, Hakizimana E, Hamainza B, Ijumba JN, Jany W, Kafy HT, Kaindoa EW, Kariuki L, Kiware S, Kweka EJ, Lobo NF, Marrenjo D, Matoke-Muhia D, Mbogo C, McCann RS, Monroe A, Ndenga BA, Ngowo HS, Ochomo E, Opiyo M, Reithinger R, Sikaala CH, Tatarsky A, Takudzwa D, Trujillano F, Sherrard-Smith E. Elevating larval source management as a key strategy for controlling malaria and other vector-borne diseases in Africa. Parasit Vectors 2025; 18:45. [PMID: 39915825 PMCID: PMC11803969 DOI: 10.1186/s13071-024-06621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 02/09/2025] Open
Abstract
Larval source management (LSM) has a long history of advocacy and successes but is rarely adopted where funds are limited. The World Health Organization (WHO) guidelines on malaria prevention recommend the use of LSM as a supplementary intervention to the core vector control methods (insecticide-treated nets and indoor residual spraying), arguing that its feasibility in many settings can be limited by larval habitats being numerous, transient, and difficult to find or treat. Another key argument is that there is insufficient high-quality evidence for its effectiveness to support wide-scale implementation. However, the stagnation of progress towards malaria elimination demands that we consider additional options to the current emphasis on insecticidal commodities targeting adult mosquitoes inside homes. This letter is the result of a global, crossdisciplinary collaboration comprising: (a) detailed online expert discussions, (b) a narrative review of countries that have eliminated local malaria transmission, and (c) a mathematical modeling exercise using two different approaches. Together, these efforts culminated in seven key recommendations for elevating larval source management as a strategy for controlling malaria and other mosquito-borne diseases in Africa (Box 1). LSM encompasses the use of larvicide (a commodity) as well as various environmental sanitation measures. Together, these efforts lead to the long-term reduction of mosquito populations, which benefits the entire community by controlling both disease vector and nuisance mosquitoes. In this paper, we argue that the heavy reliance on large-scale cluster-randomized controlled trials (CRTs) to generate evidence on epidemiological endpoints restricts the recommendation of approaches to only those interventions that can be measured by functional units and deliver relatively uniform impact and, therefore, are more likely to receive financial support for conducting these trials. The explicit impacts of LSM may be better captured by using alternative evaluation approaches, especially high-quality operational data and a recognition of locally distinct outcomes and tailored strategies. LSM contributions are also evidenced by the widespread use of LSM strategies in nearly all countries that have successfully achieved malaria elimination. Two modelling approaches demonstrate that a multifaceted strategy, which incorporates LSM as a central intervention alongside other vector control methods, can effectively mitigate key biological threats such as insecticide resistance and outdoor biting, leading to substantial reductions in malaria cases in representative African settings. This argument is extended to show that the available evidence is sufficient to establish the link between LSM approaches and reduced disease transmission of mosquito-borne illnesses. What is needed now is a significant boost in the financial resources and public health administration structures necessary to train, employ and deploy local-level workforces tasked with suppressing mosquito populations in scientifically driven and ecologically sensitive ways. In conclusion, having WHO guidelines that recognize LSM as a key intervention to be delivered in multiple contextualized forms would open the door to increased flexibility for funding and aid countries in implementing the strategies that they deem appropriate. Financially supporting the scale-up of LSM with high-quality operations monitoring for vector control in combination with other core tools can facilitate better health. The global health community should reconsider how evidence and funding are used to support LSM initiatives.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania.
| | - Sarah J Moore
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | | | - Elijah O Juma
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - GloriaSalome G Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | | | - Andy Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, UK
| | - Bart G J Knols
- K&S Consulting, Kalkestraat 20, 6669 CP, Dodewaard, The Netherlands
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Marceline Finda
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Najat Kahamba
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Edward Thomsen
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | - Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, 11111, Sudan
| | - Sarah Zohdy
- Division of Parasitic Diseases and Malaria, Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Prosper Chaki
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Peter DeChant
- DeChant Vector Solutions LLC, 1755 9th St, Columbia, OR, 97018, USA
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases and Centre for Climate Change and Planetary Health, London School Hygiene and Tropical Medicine, London, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Nicodem Govella
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Steven Gowelo
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Busiku Hamainza
- National Malaria Elimination Centre, P.O. Box 32509, 10101, Lusaka, Zambia
| | | | | | - Hmooda Toto Kafy
- Global Fund Program Management Unit, RSSH and Malaria Grant, Federal Ministry of Health, Khartoum, Sudan
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Lenson Kariuki
- Ministry of Health-Vector Borne and Neglected Tropical Diseases, Nairobi, Kenya
| | - Samson Kiware
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Pan-African Mosquito Control Association (PAMCA), Dar es Salaam, Tanzania
| | - Eliningaya J Kweka
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Neil F Lobo
- University of Notre Dame, Notre Dame, IN, USA
| | | | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Charles Mbogo
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Public Health Unit, KEMRI-Wellcome Trust Research Programme, PO Box 43640‑00100, Nairobi, Kenya
| | - Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - April Monroe
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | | | - Halfan S Ngowo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Eric Ochomo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Public Health Unit, KEMRI-Wellcome Trust Research Programme, PO Box 43640‑00100, Nairobi, Kenya
| | - Mercy Opiyo
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
- University of California San Francisco Malaria Elimination Initiative (UCSF MEI), San Francisco, USA
| | | | | | - Allison Tatarsky
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | | | - Fedra Trujillano
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ellie Sherrard-Smith
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- Malaria Modelling Group, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
4
|
Bi B, Wu L, Liu Y, Zhou XN, Shen T, Cao L, White M, Yang GJ. Intervention portfolios analysis of Plasmodium vivax control in central China. Malar J 2024; 23:242. [PMID: 39138510 PMCID: PMC11321059 DOI: 10.1186/s12936-024-05063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The effects of a diverse spectrum of malaria interventions were evaluated through a deterministic Plasmodium vivax transmission model. This approach aimed to provide theoretical evidence of the performance of these interventions once implemented for achieving malaria elimination. METHODS An integrated intervention portfolio, including mass drug administration, insecticide treatment, and untreated bed nets, was analyzed through modeling. Additionally, data-driven calibration was implemented to infer coverages that effectively reproduced historical malaria patterns in China from 1971 to 1983. RESULTS MDA utilizing primaquine emerged as the most effective single intervention, achieving a 70% reduction in malaria incidence when implemented at full coverage. Furthermore, a strategic combination of MDA with primaquine, chloroquine, untreated bed nets, and seasonal insecticide treatments effectively eradicated malaria, attaining elimination at a coverage level of 70%. It was conclusively demonstrated that an integrated approach combining MDA and vector control measures is essential for the successful elimination of malaria. CONCLUSION High coverage of mass drug administration with primaquine and chloroquine before transmission was the key driver of the malaria decline in China from 1971 to 1983. The best-fit intervention coverage combinations derived from calibration are provided as a reference for malaria control in other countries.
Collapse
Affiliation(s)
- Bo Bi
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, School of Public Health, Hainan Medical University, Haikou, People's Republic of China
| | - Logan Wu
- Department of Population Health and Immunity, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianren Shen
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, Scotland, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Li Cao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, School of Public Health, Hainan Medical University, Haikou, People's Republic of China
| | - Michael White
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Guo-Jing Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, School of Public Health, Hainan Medical University, Haikou, People's Republic of China.
| |
Collapse
|
5
|
Esayas E, Assefa M, Bennett A, Thomsen E, Gowelo S, Vajda E, Getachew A, Ashine T, Yeshaneh A, Kassa FA, Demisse M, Ntuku H, Dinka H, Golassa L, Lobo NF, Gadisa E. Bionomic characterization of Anopheles mosquitoes in the Ethiopian highlands and lowlands. Parasit Vectors 2024; 17:306. [PMID: 39014474 PMCID: PMC11251230 DOI: 10.1186/s13071-024-06378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The protective effectiveness of vector control in malaria relies on how the implemented tools overlap with mosquito species-specific compositions and bionomic traits. In Ethiopia, targeted entomological data enabling strategic decision-making are lacking around high-risk migrant worker camps in the lowlands and resident communities in the highlands-resulting in suboptimal malaria control strategies for both populations. This study investigates spatial and temporal mosquito behavior, generating baseline evidence that will improve malaria control for both migrant workers in the lowlands and their home communities in the highlands. METHODS Hourly Centers for Disease Control and Prevention (CDC) light trap collections were performed indoors and outdoors during the peak (October to December 2022) and minor (March to May 2023) malaria transmission seasons. These seasons coincide with the post-long rain and post-short rain seasons, respectively. Eight resident households were sampled from each of four villages in the highlands and eight households/farm structures on and near farms in four villages in the lowlands. The sampling occurred between 18:00 and 06:00. Spatiotemporal vector behaviors and hourly indoor and outdoor mosquito capture rates, used as a proxy for human biting rates, were calculated for overall catches and for individual species. Adult mosquitoes were identified using morphological keys, and a subset of samples were confirmed to species by sequencing ribosomal DNA internal transcribed spacer region 2 (ITS2) and/or mitochondrial DNA cytochrome c oxidase subunit 1 (Cox1). RESULTS In the highlands, 4697 Anopheles mosquitoes belonging to 13 morphologically identified species were collected. The predominant species of Anopheles identified in the highlands was An. gambiae sensu lato (s.l.) (n = 1970, 41.9%), followed by An. demeilloni (n = 1133, 24.1%) and An. cinereus (n = 520, 11.0%). In the lowland villages, 3220 mosquitoes belonging to 18 morphological species were collected. Anopheles gambiae s.l. (n = 1190, 36.9%), An. pretoriensis (n = 899, 27.9%), and An. demeilloni (n = 564, 17.5%) were the predominant species. A total of 20 species were identified molecularly, of which three could not be identified to species through comparison with published sequences. In highland villages, the indoor Anopheles mosquito capture rate was much greater than the outdoor rate. This trend reversed in the lowlands, where the rate of outdoor captures was greater than the indoor rate. In both highlands and lowlands, Anopheles mosquitoes showed early biting activities in the evening, which peaked between 18:00 and 21:00, for both indoor and outdoor locations. CONCLUSIONS The high diversity of Anopheles vectors and their variable behaviors result in a dynamic and resilient transmission system impacting both exposure to infectious bites and intervention effectiveness. This creates gaps in protection allowing malaria transmission to persist. To achieve optimal control, one-size-fits-all strategies must be abandoned, and interventions should be tailored to the diverse spatiotemporal behaviors of different mosquito populations.
Collapse
Affiliation(s)
- Endashaw Esayas
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Muluken Assefa
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adam Bennett
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Seattle, USA
| | - Edward Thomsen
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | - Steven Gowelo
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | - Elodie Vajda
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | - Asefaw Getachew
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Addis Ababa, Ethiopia
| | - Temesgen Ashine
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abebaw Yeshaneh
- West Gondar Zone Health Department, Amhara Regional Health Bureau, Metema, Ethiopia
| | - Fikregabrail Aberra Kassa
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mulugeta Demisse
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Henry Ntuku
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Seattle, USA
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Neil F Lobo
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Mondal A, Sánchez C. HM, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. PLoS Comput Biol 2024; 20:e1012133. [PMID: 38805562 PMCID: PMC11161092 DOI: 10.1371/journal.pcbi.1012133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/07/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
7
|
Mondal A, C. HMS, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556958. [PMID: 37745458 PMCID: PMC10515759 DOI: 10.1101/2023.09.09.556958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Assa A, Eligo N, Massebo F. Anopheles mosquito diversity, entomological indicators of malaria transmission and challenges of morphological identification in southwestern Ethiopia. Trop Med Health 2023; 51:38. [PMID: 37452392 PMCID: PMC10347854 DOI: 10.1186/s41182-023-00529-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND A number of Anopheles species play either a primary or secondary role in malaria transmission. This necessitates understanding the species composition, bionomics, and behaviors of malaria mosquitoes in a particular geographic area, which is relevant to design and implement tailored intervention tools. This study aimed to assess the species composition, sporozoite infection rate, and blood meal origins of malaria mosquitoes in two malaria-endemic villages of Boreda district in Gamo Zone, southwest Ethiopia. METHODS Thirty houses, 20 for Center for Disease Control and Prevention (CDC) light traps and 10 for Pyrethrum Spray Catches (PSC) were randomly selected for bimonthly mosquito collection from October 2019 to February 2020. An enzyme-linked immunosorbent assay (ELISA) was carried out to detect the blood meal origins and circumsporozoite proteins (CSPs). The entomological inoculation rate (EIR) was calculated by multiplying the sporozoite and human biting rates from PSCs. Anopheles gambiae complex and An. funestus group samples were further identified to species by the polymerase chain reaction (PCR). Anopheles species with some morphological similarity with An. gambiae complex or An. funestus group were tested using the primers of the two species complexes. RESULTS A total of 14 Anopheles species were documented, of which An. demeilloni was found to be the dominant species. An. arabiensis was found to be positive for P. falciparum CSP with the overall CSP rate of 0.53% (1/190: 95% CI 0.01-2.9). The overall estimated P. falciparum EIR of An. arabiensis from PSC was 1.5 infectious bites/person/5 months. Of the 145 freshly fed Anopheles mosquitoes tested for blood meal sources, 57.9% (84/145) had bovine blood meal, 15.2% (22/145) had human blood meal origin alone, and 16.5% (24/145) had a mixed blood meal origin of human and bovine. Anopheles demeilloni were more likely to feed on blood meals of bovine origin (102/126 = 80.9%), while An. arabiensis were more likely to have blood meals of human origin. Eleven samples (2.6%; 11/420) were morphologically categorized as An. demeilloni, but it has been identified as An. leesoni (the only An. funestus group identified in the area) by PCR, though it requires additional verification by sequencing, because different species genes may have amplified for these species specific primers. Similarly, a small number of An. arabiensis were morphologically identified as An. salbaii, An. maculipalpis and An. fuscivenosus. CONCLUSIONS AND RECOMMENDATIONS In spite of the wide variety of Anopheles mosquito species, An. arabiensis dominates indoor malaria transmission, necessitating additional interventions targeting this species. In addition, increasing entomological knowledge may make morphological identification less difficult.
Collapse
Affiliation(s)
- Adilo Assa
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
9
|
Njoroge TM, Hamid-Adiamoh M, Duman-Scheel M. Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management. INSECTS 2023; 14:585. [PMID: 37504591 PMCID: PMC10380652 DOI: 10.3390/insects14070585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Due to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.
Collapse
Affiliation(s)
- Teresia Muthoni Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| |
Collapse
|
10
|
Bertozzi-Villa A, Bever CA, Gerardin J, Proctor JL, Wu M, Harding D, Hollingsworth TD, Bhatt S, Gething PW. An archetypes approach to malaria intervention impact mapping: a new framework and example application. Malar J 2023; 22:138. [PMID: 37101269 PMCID: PMC10131392 DOI: 10.1186/s12936-023-04535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored. METHODS First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environmental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and Malaria Atlas Project covariates, singular value decomposition, k-means clustering, and the Institute for Disease Modeling's EMOD model to explore a range of three-year malaria interventions primarily focused on vector control and case management. RESULTS Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with distinct properties. Example intervention impact curves and maps highlighted archetype-specific variation in efficacy of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to simulate worked well in all but one archetype. CONCLUSION This paper introduces a novel methodology which combines the richness of spatiotemporal mapping with the rigor of mechanistic modeling to create a multi-purpose infrastructure for answering a broad range of important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic models, and mapping strategies and can be adapted to the modelers' setting of choice.
Collapse
Affiliation(s)
- Amelia Bertozzi-Villa
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA.
- Malaria Atlas Project, Telethon Kids Institute, Perth, Australia.
- Big Data Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| | - Caitlin A Bever
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA
| | - Jaline Gerardin
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, USA
| | - Joshua L Proctor
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA
| | - Meikang Wu
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA
| | - Dennis Harding
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, USA
| | | | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter W Gething
- Malaria Atlas Project, Telethon Kids Institute, Perth, Australia
- Curtin University, Perth, Australia
| |
Collapse
|
11
|
Runge M, Stahlfeld A, Ambrose M, Toh KB, Rahman S, Omoniwa OF, Bever CA, Oresanya O, Uhomoibhi P, Galatas B, Tibenderana JK, Gerardin J. Perennial malaria chemoprevention with and without malaria vaccination to reduce malaria burden in young children: a modelling analysis. Malar J 2023; 22:133. [PMID: 37095480 PMCID: PMC10124689 DOI: 10.1186/s12936-023-04564-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.
Collapse
Affiliation(s)
- Manuela Runge
- Department of Preventive Medicine, Institute for Global Health, Northwestern University, Chicago, IL USA
| | - Anne Stahlfeld
- Department of Preventive Medicine, Institute for Global Health, Northwestern University, Chicago, IL USA
| | - Monique Ambrose
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Kok Ben Toh
- Department of Preventive Medicine, Institute for Global Health, Northwestern University, Chicago, IL USA
| | - Semiu Rahman
- Malaria Consortium Nigeria, 33 Pope John Paul Street, Off Gana Street, Maitama, Abuja-FCT Nigeria
| | - Omowunmi F. Omoniwa
- Malaria Consortium Nigeria, 33 Pope John Paul Street, Off Gana Street, Maitama, Abuja-FCT Nigeria
| | - Caitlin A. Bever
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Olusola Oresanya
- Malaria Consortium Nigeria, 33 Pope John Paul Street, Off Gana Street, Maitama, Abuja-FCT Nigeria
| | - Perpetua Uhomoibhi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Beatriz Galatas
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | - Jaline Gerardin
- Department of Preventive Medicine, Institute for Global Health, Northwestern University, Chicago, IL USA
| |
Collapse
|
12
|
Achee NL, Perkins TA, Moore SM, Liu F, Sagara I, Van Hulle S, Ochomo EO, Gimnig JE, Tissera HA, Harvey SA, Monroe A, Morrison AC, Scott TW, Reiner RC, Grieco JP. Spatial repellents: The current roadmap to global recommendation of spatial repellents for public health use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 3:100107. [PMID: 36590345 PMCID: PMC9801085 DOI: 10.1016/j.crpvbd.2022.100107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.
Collapse
Affiliation(s)
- Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA,Corresponding author. Department of Biological Sciences, Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - T. Alex Perkins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sean M. Moore
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Issaka Sagara
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Dentistry and Pharmacy at the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Eric O. Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E. Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | | | - Steven A. Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Robert C. Reiner
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
13
|
Msoffe R, Hewitt M, Masalu JP, Finda M, Kavishe DR, Okumu FO, Mpolya EA, Kaindoa EW, Killeen GF. Participatory development of practical, affordable, insecticide-treated mosquito proofing for a range of housing designs in rural southern Tanzania. Malar J 2022; 21:318. [PMCID: PMC9636681 DOI: 10.1186/s12936-022-04333-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract
Background
Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM).
Methods
A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays.
Results
Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively.
Conclusions
Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments.
Collapse
|
14
|
Rochlin I, White G, Reissen N, Swanson D, Cohnstaedt L, Chura M, Healy K, Faraji A. Laboratory evaluation of sugar alcohols for control of mosquitoes and other medically important flies. Sci Rep 2022; 12:13763. [PMID: 35962013 PMCID: PMC9374714 DOI: 10.1038/s41598-022-15825-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Insecticide application for vector control is the most controversial component of a public health program due to concerns about environmental and human health safety. One approach to overcome this challenge is the use of environmentally benign active ingredients. Among the most promising emerging strategies are attractive toxic sugar baits. Sugar alcohols-naturally occurring molecules safe for human consumption but potentially toxic to insects when ingested, have received increased attention for use with this approach. For this study, we screened the toxicity of four different sugar alcohols on several mosquito species, a biting midge, and a filth fly. Sugar alcohol mortalities exceeded those in the sucrose (positive control) only group. However, only erythritol and highly concentrated xylitol induced mortalities exceeding those in the water only (negative control) treatment ranging from approximately 40-75%. Formulations containing erythritol and xylitol should be further investigated under field conditions for efficacy in reducing populations of biting flies and for assessing potential non-target impacts.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ, 08901, USA.,Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| | - Gregory White
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA.
| | - Nadja Reissen
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| | - Dustin Swanson
- USDA-ARS, Arthropod Borne Animal Disease Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Lee Cohnstaedt
- USDA-ARS, Foreign Arthropod Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Madeleine Chura
- Entomology Department, Louisiana State University, 404 Life Sciences, Baton Rouge, LA, 70803, USA
| | - Kristen Healy
- Entomology Department, Louisiana State University, 404 Life Sciences, Baton Rouge, LA, 70803, USA
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| |
Collapse
|
15
|
Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, Sanou A, Nash RK, Hill A, Russell EL, Woodbridge M, Tungu P, Kont MD, Mclean T, Fornadel C, Richardson JH, Donnelly MJ, Staedke SG, Gonahasa S, Protopopoff N, Rowland M, Churcher TS. Optimising the deployment of vector control tools against malaria: a data-informed modelling study. Lancet Planet Health 2022; 6:e100-e109. [PMID: 35065707 DOI: 10.1016/s2542-5196(21)00296-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. Malaria control programmes have a choice of vector control interventions although it is unclear which controls should be used to combat the disease. The study aimed at producing a framework to easily compare the public health impact and cost-effectiveness of different malaria prevention measures currently in widespread use. METHODS We used published data from experimental hut trials conducted across Africa to characterise the entomological effect of pyrethroid-only ITNs versus ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO). We use these estimates to parameterise a dynamic mathematical model of Plasmodium falciparum malaria which is validated for two sites by comparing simulated results to empirical data from randomised control trials (RCTs) in Tanzania and Uganda. We extrapolated model simulations for a series of potential scenarios likely across the sub-Saharan African region and include results in an online tool (Malaria INtervention Tool [MINT]) that aims to identify optimum vector control intervention packages for scenarios with varying budget, price, entomological and epidemiological factors. FINDINGS Our model indicates that switching from pyrethroid-only to pyrethroid-PBO ITNs could averted up to twice as many cases, although the additional benefit is highly variable and depends on the setting conditions. We project that annual delivery of long-lasting, non-pyrethroid IRS would prevent substantially more cases over 3-years, while pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. The model was able to predict prevalence and efficacy against prevalence in both RCTs for the intervention types tested. MINT is applicable to regions of sub-Saharan Africa with endemic malaria and provides users with a method of designing intervention packages given their setting and budget. INTERPRETATION The most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control. FUNDING Medical Research Council, IVCC, Wellcome Trust. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Corine Ngufor
- Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin; London School of Hygiene and Tropical Medicine, London, UK
| | | | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | - Rebecca K Nash
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Alexander Hill
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Emma L Russell
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Mark Woodbridge
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Patrick Tungu
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Mara D Kont
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Tom Mclean
- Innovative Vector Control Consortium, Liverpool, UK
| | | | | | | | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, London, UK; Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Mark Rowland
- London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
16
|
Mlacha YP, Chaki PP, Muhili A, Massue DJ, Tanner M, Majambere S, Killen GF, Govella NJ. Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: controlled, competitive host-preference experiments in Tanzania. Malar J 2020; 19:418. [PMID: 33218346 PMCID: PMC7678205 DOI: 10.1186/s12936-020-03495-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. METHODS Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. RESULTS The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). CONCLUSION Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.
Collapse
Affiliation(s)
- Yeromin P Mlacha
- Ecological Sciences Department, Ifakara Health Institute, Environmental Health, Kiko Avenue, P.O. Box 78373, Mikocheni, Dar es Salaam, United Republic of Tanzania.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Prosper P Chaki
- Ecological Sciences Department, Ifakara Health Institute, Environmental Health, Kiko Avenue, P.O. Box 78373, Mikocheni, Dar es Salaam, United Republic of Tanzania
- The Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Mbagathi Road, Nairobi, 54840-00200, Nairobi, Kenya
| | - Athuman Muhili
- Ecological Sciences Department, Ifakara Health Institute, Environmental Health, Kiko Avenue, P.O. Box 78373, Mikocheni, Dar es Salaam, United Republic of Tanzania
| | - Dennis J Massue
- Univerity of Dar Es Salaam, Mbeya College of Health and Allied Sciences, P.O. Box 608, Mbeya, United Republic of Tanzania
- Amani Research Centre, National Institute for Medical Research, P.O. Box 81, Muheza-Tanga, United Republic of Tanzania
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Silas Majambere
- The Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Mbagathi Road, Nairobi, 54840-00200, Nairobi, Kenya
| | - Gerry F Killen
- Ecological Sciences Department, Ifakara Health Institute, Environmental Health, Kiko Avenue, P.O. Box 78373, Mikocheni, Dar es Salaam, United Republic of Tanzania
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, UK
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Nicodem J Govella
- Ecological Sciences Department, Ifakara Health Institute, Environmental Health, Kiko Avenue, P.O. Box 78373, Mikocheni, Dar es Salaam, United Republic of Tanzania
- The Nelson Mandela, African Institution of Science and Technology, The School of Life Science and Bio-Engineering (LISBE), P.O.BOX 447, Tengeru, Arusha, United Republic of Tanzania
| |
Collapse
|
17
|
Zeru MA, Shibru S, Massebo F. Exploring the impact of cattle on human exposure to malaria mosquitoes in the Arba Minch area district of southwest Ethiopia. Parasit Vectors 2020; 13:322. [PMID: 32571402 PMCID: PMC7310237 DOI: 10.1186/s13071-020-04194-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The success of indoor interventions that target mosquitoes for malaria control is partially dependent on early evening and outdoor biting behaviours of mosquito vectors. In southwest Ethiopia, people and cattle live in proximity, which calls to investigate whether the presence of cattle increase or decrease bites from malaria mosquito vectors. This study assessed both host-seeking and overnight activity of malaria mosquito vectors given the presence or absence of cattle in Chano Mille village, Arba Minch district, Ethiopia. METHODS Anopheles species density and activity time was compared when a calf was: (i) placed inside; (ii) 1 m away from; or (iii) absent from a tent with a human volunteer resting insides using hourly human landing catches (HLC) conducted from 18:00-0:00 h for 3 months. This trial was performed close to the shore of the Lake Abaya to minimize the interference of other animals on mosquito movement. The overnight activity of malaria vectors was assessed within a Chano village from 18:00-6:00 h with collections carried out both indoors and outdoors by HLC. Generalized estimating equations were used to statistically assess differences. RESULTS Anopheles pharoensis was significantly more prevalent when a calf was present either inside (42%, P < 0.001), or adjacent to (46%, P = 0.002) a tent relative to a tent without a calf present. The presence of a calf did not affect densities of the primarily anthropophilic species A. gambiae (s.l.), or An. tenebrosus. Anopheles gambiae (s.l.) (P < 0.001) and An. pharoensis (P = 0.015) both had a tendency for early evening biting between 19:00 h and 20:00 h. Anopheles gambiae (s.l.) was mainly biting humans outdoors in the village. CONCLUSIONS The presence of calves within and close to human dwellings acts to draw malaria mosquitoes toward the human occupant with the potential to increase their risk of malaria. Hence, deployment of cattle far from human residence could be recommended to reduce human exposure. Outdoor and early evening biting could threaten the success of current indoor-based interventions. Hence, tools could be designed to reduce this threat.
Collapse
Affiliation(s)
- Melkam Abiye Zeru
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia. .,Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| | - Simon Shibru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
18
|
Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, Sherrard-Smith E, Gimnig J, Killeen GF. Methods and indicators for measuring patterns of human exposure to malaria vectors. Malar J 2020; 19:207. [PMID: 32546166 PMCID: PMC7296719 DOI: 10.1186/s12936-020-03271-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. MAIN TEXT A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. CONCLUSIONS If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.
Collapse
Affiliation(s)
- April Monroe
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA.
- University of Basel, Basel, Switzerland.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Sarah Moore
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Hannah Koenker
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John Gimnig
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| |
Collapse
|
19
|
Wu SL, Sánchez C HM, Henry JM, Citron DT, Zhang Q, Compton K, Liang B, Verma A, Cummings DAT, Le Menach A, Scott TW, Wilson AL, Lindsay SW, Moyes CL, Hancock PA, Russell TL, Burkot TR, Marshall JM, Kiware S, Reiner RC, Smith DL. Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Comput Biol 2020; 16:e1007446. [PMID: 32320389 PMCID: PMC7197866 DOI: 10.1371/journal.pcbi.1007446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/04/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.
Collapse
Affiliation(s)
- Sean L Wu
- Divisions of Biostatistics & Epidemiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Héctor M Sánchez C
- Divisions of Biostatistics & Epidemiology, University of California, Berkeley, Berkeley, California, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - John M Henry
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Qian Zhang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Kelly Compton
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Biyonka Liang
- Divisions of Biostatistics & Epidemiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Amit Verma
- Emory University, Atlanta, Georgia, United States of America
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Arnaud Le Menach
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| | - Thomas W Scott
- University of California, Davis, California, United States of America
| | - Anne L Wilson
- Liverpool School of Tropical Tropical Medicine, Liverpool, United Kingdom
| | - Steven W Lindsay
- Department of Biosciences, University of Durham, Durham, United Kingdom
| | | | - Penny A Hancock
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - John M Marshall
- Divisions of Biostatistics & Epidemiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Samson Kiware
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Tanzania
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America.,Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America.,Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Opiyo MA, Paaijmans KP. 'We spray and walk away': wall modifications decrease the impact of indoor residual spray campaigns through reductions in post-spray coverage. Malar J 2020; 19:30. [PMID: 31952538 PMCID: PMC6969461 DOI: 10.1186/s12936-020-3102-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
Malaria prevalence has significantly reduced since 2000, largely due to the scale-up of vector control interventions, mainly indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs). Given their success, these tools remain the frontline interventions in the fight against malaria. Their effectiveness relies on three key ingredients: the intervention, the mosquito vector and the end-user. Regarding the intervention, factors such as the insecticide active ingredient(s) used and the durability and/or bio-efficacy of the tool over time are critical. For the vectors, these factors include biting and resting behaviours and the susceptibility to insecticides. Finally, the end-users need to accept and properly use the intervention. Whilst human attitude and behaviour towards LLINs are well-documented both during and after distribution, only initial coverage is monitored for IRS and in a few geographic settings the residual efficacy of the used product. Here, the historical evidence on end-users modifying their wall surfaces post-spraying is presented, a behaviour that has the potential to reduce actual IRS coverage, effectiveness and impact, as fewer people are truly protected. Therefore, clear guidelines on how to monitor IRS acceptability and/or coverage, both before, during and after spraying, are urgently needed as part of the Monitoring and Evaluation of malaria programmes.
Collapse
Affiliation(s)
- Mercy A Opiyo
- ISGlobal, Hospital Clinic, University of Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Krijn P Paaijmans
- ISGlobal, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.,The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
21
|
Nankabirwa JI, Briggs J, Rek J, Arinaitwe E, Nayebare P, Katrak S, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Kamya MR, Dorsey G, Greenhouse B. Persistent Parasitemia Despite Dramatic Reduction in Malaria Incidence After 3 Rounds of Indoor Residual Spraying in Tororo, Uganda. J Infect Dis 2020; 219:1104-1111. [PMID: 30383230 DOI: 10.1093/infdis/jiy628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Indoor residual spraying of insecticide (IRS) has been associated with reductions in the incidence of malaria, but its impact on malaria parasitemia is unclear. METHODS We followed 469 participants from August 2011 to May 2016 in Tororo, Uganda, a historically high malaria transmission setting. Three rounds of IRS with bendiocarb were implemented from December 2014 to December 2015. Symptomatic malaria episodes were identified by passive surveillance. Parasitemia was identified by active surveillance every 1-3 months using microscopy and Plasmodium falciparum-specific loop-mediated isothermal amplification. RESULTS IRS was associated with a significant decline in the incidence of symptomatic malaria irrespective of age (episodes per person per year declined from 3.98 to 0.13 in children aged <5 years, 2.30 to 0.15 in children aged 5-10 years, and 0.41 to 0 in adults; P < .001 for all). IRS significantly reduced the prevalence of parasitemia, but the prevalence remained high (pre-IRS to post-third round: 58.5% to 11.3% in children aged <5 years, 73.3% to 23.7% in children aged 5-10 years, and 52.2% to 15.4% in adults; P < .001 for all). CONCLUSIONS Although IRS was associated with significant reductions in the incidence of malaria and prevalence of parasitemia, a proportion of the population remained parasitemic, providing a potential reservoir for malaria transmission.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jessica Briggs
- Department of Medicine, University of California, San Francisco
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Shereen Katrak
- Department of Medicine, University of California, San Francisco
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | | | | | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco
| | | |
Collapse
|
22
|
Marshall JM, Raban RR, Kandul NP, Edula JR, León TM, Akbari OS. Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Front Genet 2019; 10:1072. [PMID: 31737050 PMCID: PMC6831721 DOI: 10.3389/fgene.2019.01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based strategies to control these diseases. In one such strategy, called "population replacement", mosquitoes, and other disease vectors are engineered with effector genes that render them unable to transmit pathogens. These effector genes can be linked to "gene drive" systems that can bias inheritance in their favor, providing novel opportunities to replace disease-susceptible vector populations with disease-refractory ones over the course of several generations. While promising for the control of vector-borne diseases on a wide scale, this sets up an evolutionary tug-of-war between the introduced effector genes and the pathogen. Here, we review the disease-refractory genes designed to date to target Plasmodium falciparum malaria transmitted by Anopheles gambiae, and arboviruses transmitted by Aedes aegypti, including dengue serotypes 2 and 3, chikungunya, and Zika viruses. We discuss resistance concerns for these effector genes, and genetic approaches to prevent parasite and viral escape variants. One general approach is to increase the evolutionary hurdle required for the pathogen to evolve resistance by attacking it at multiple sites in its genome and/or multiple stages of development. Another is to reduce the size of the pathogen population by other means, such as with vector control and antimalarial drugs. We discuss lessons learned from the evolution of resistance to antimalarial and antiviral drugs and implications for the management of resistance after its emergence. Finally, we discuss the target product profile for population replacement strategies for vector-borne disease control. This differs between early phase field trials and wide-scale disease control. In the latter case, the demands on effector gene efficacy are great; however, with new possibilities ushered in by CRISPR-based gene editing, and when combined with surveillance, monitoring, and rapid management of pathogen resistance, the odds are increasingly favoring effector genes in the upcoming evolutionary tug-of-war.
Collapse
Affiliation(s)
- John M. Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
- Innovative Genomics Institute, Berkeley, CA, United States
| | - Robyn R. Raban
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Nikolay P. Kandul
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Jyotheeswara R. Edula
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Tomás M. León
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
- Tata Institute for Genetics and Society, University of California, San Diego, CA, United States
| |
Collapse
|
23
|
Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A 2019; 116:15086-15095. [PMID: 31285346 PMCID: PMC6660788 DOI: 10.1073/pnas.1820646116] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria transmission persists even when mosquito control is used effectively. This “residual transmission” measures all forms of transmission that are beyond the reach of standard insecticidal nets and indoor residual spraying of insecticides when used optimally. The epidemiological importance of the time of day mosquitoes bite and how much this contributes to residual transmission is unclear. The scale of the problem must be understood to demonstrate the need for outdoor vector control tools. An additional 10.6 million clinical cases of malaria are predicted annually given the 10% higher level of outdoor biting observed here. Mosquito species and behavior data together with people’s resting and sleeping patterns are needed to fully measure indoor intervention efficacy and accurately quantify residual transmission. The antimalarial efficacy of the most important vector control interventions—long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)—primarily protect against mosquitoes’ biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa.
Collapse
|
24
|
Assessment of the Status of Awareness, Ownership, and Usage of Long-Lasting Insecticide Treated Nets after Mass Distribution in Ekiti State, Nigeria. J Parasitol Res 2019; 2019:1273714. [PMID: 31057955 PMCID: PMC6463581 DOI: 10.1155/2019/1273714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Vector control with long-lasting insecticide treated nets (LLINs) has been identified as a major component of malaria prevention and control. The study examined present status of awareness, ownership, and utilization of LLINs in malaria high-risk areas of Ekiti State, Nigeria. Data were obtained from 352 copies of semistructured interviewer-guided questionnaire distributed to participants of each household in the four Local Government Areas (LGAs) of Ekiti State, where malaria is endemic after mass distribution of LLINs. Findings in this study showed that awareness was high (91.8%) in the Local Government Areas (LGAs) with mass media contributing largely (44.3%) to awareness. Also, LLINs ownership was found to be high (71.3%) with 72.9% of the nets being supplied by the government. Of the owners of LLINs, usage rate was observed to be 67.6%. Multivariate analysis result showed that statistically significant sociodemographic characteristics of respondents predicting the usage of LLINs included age greater than 50 years (p value = 0.008), female gender (χ2 = 8.2014, p value = 0.004), being married (χ2 = 24.721, p value <0.001), civil servants (χ2 = 12.739, p value = 0.005), and average income above poverty line (χ2 = 13.576, p value = 0.004). The study concluded that although not all households surveyed owned LLINs, nevertheless, the level of usage of LLINs among net-owning households was high. The study recommended continuous free distribution, periodic household survey, and expanding public knowledge on the benefits of LLINs usage especially through social media.
Collapse
|
25
|
Killeen GF, Reed TE. The portfolio effect cushions mosquito populations and malaria transmission against vector control interventions. Malar J 2018; 17:291. [PMID: 30097031 PMCID: PMC6086012 DOI: 10.1186/s12936-018-2441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations. IMPLICATIONS Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models. CONCLUSION Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Western Road, Cork, Republic of Ireland
| |
Collapse
|