1
|
Farías MA, Cancino FA, Navarro AJ, Duarte LF, Soto AA, Tognarelli EI, Ramm MJ, Alarcón-Zapata BN, Cordero J, San Martín S, Agurto-Muñoz C, Retamal-Díaz A, Riedel CA, Barrera NP, Bustamante L, Bueno SM, Kalergis AM, González PA. HSV-1 alters lipid metabolism and induces lipid droplet accumulation in functionally impaired mouse dendritic cells. iScience 2025; 28:112441. [PMID: 40343272 PMCID: PMC12059724 DOI: 10.1016/j.isci.2025.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) significantly impairs dendritic cell (DC) function, ultimately eliciting the death of these cells. Here, we sought to assess whether HSV-1 modulates lipid metabolism in mouse DCs as a mechanism of immune evasion. For this, we performed RT-qPCR gene arrays with ingenuity pathway analysis (IPA), RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA), confocal microscopy, transmission electron microscopy, ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) analysis, pharmacological inhibition of eight lipid-metabolism-related enzymes in HSV-1-infected DCs, co-cultures between virus-specific transgenic CD4+ and CD8+ T cells and HSV-1-infected DCs, and in vivo assays with mice. We found that HSV-1 significantly alters lipid metabolism in DCs and induces lipid droplet (LD) accumulation in these cells. Pharmacological inhibition of two particular lipid metabolism enzymes was found to partially restore DC function. Overall, these results suggest that lipid metabolism plays an important role in the impairment of DC function by HSV-1.
Collapse
Affiliation(s)
- Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A. Cancino
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Areli J. Navarro
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abel A. Soto
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano J. Ramm
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Bárbara N. Alarcón-Zapata
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - José Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio San Martín
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, Hospital Clínico Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Chile
- Centro de Investigación para la Resiliencia a Pandemias, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nelson P. Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Hoffmann N, Ahrends R, Baker ES, Ekroos K, Han X, Holčapek M, Liebisch G, Wenk MR, Xia Y, Köfeler HC. Introduction of a Lipidomics Scoring System for data quality assessment. J Lipid Res 2025:100817. [PMID: 40316026 DOI: 10.1016/j.jlr.2025.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025] Open
Abstract
The scientific field of lipidomics has shown a constantly growing publication number in recent years, which is accompanied by an increasing need for quality standards. While the official shorthand nomenclature of lipids is a first and important step towards a reporting quality tool, an additional point score would reflect the quality of reported data at an even more detailed granularity. Thus, we propose a lipidomics scoring scheme that considers all the different layers of analytical information to be obtained by mass spectrometry, chromatography, and ion mobility spectrometry and awards scoring points for each of them. Furthermore, the scoring scheme is integrated with the annotation levels as proposed by the official shorthand nomenclature, with a point score, which roughly correlates with the annotated compound details. The merit of such a scoring system is the fact that it abstracts evidence for structural information into a number, which gives even the non-lipidomics expert an idea about the reporting, and by extension, data quality at first glance. Additionally, it could serve as an aid for internal quality control and for data quality assessment in the peer review process.
Collapse
Affiliation(s)
- Nils Hoffmann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences (IBG-5), Jülich, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Markus R Wenk
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, Austria
| |
Collapse
|
3
|
Flinders B, Huizing L, Singh B, Lim HK, van Heerden M, Cuyckens F, Heeren RMA, Vreeken RJ. Investigation into Drug-Induced Liver Damage Using Multimodal Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:265-276. [PMID: 39824777 PMCID: PMC11808762 DOI: 10.1021/jasms.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
Drug toxicity during the development of candidate pharmaceuticals is the leading cause of discontinuation in preclinical drug discovery and development. Traditionally, the cause of the toxicity is often determined by histological examination, clinical pathology, and the detection of drugs and/or metabolites by liquid chromatography-mass spectrometry (LC-MS). While these techniques individually provide information on the pathological effects of the drug and the detection of metabolites, they cannot provide specific molecular spatial information without additional experiments. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful, label-free technique for the simultaneous detection of pharmaceuticals, metabolites, and endogenous chemical species in tissue sections, which makes it suitable for mechanistic toxicological studies to directly correlate the distribution of the drug and its metabolites with histological findings. This capability was demonstrated by the analysis of the liver from dogs dosed with discontinued drug compound B and its N-desmethyl metabolite, compound A. Histological examination showed multifocal hepatocellular necrosis, bile duct hyperplasia, periportal fibrosis, and chronic inflammation. MALDI-MSI analysis of liver tissue dosed with only compound A indicated that liver lesions were associated exclusively with the parent compound, whereas liver lesions with compound B showed the presence of the parent compound and its two metabolites (compound A and an N-oxide metabolite). Using both positive and negative ion modes, simultaneous detection and identification of endogenous molecular markers of the connective tissue, blood vessels, liver parenchyma, and bile duct epithelium was achieved, allowing optimal visualization of histological lesions by mass spectrometry imaging.
Collapse
Affiliation(s)
- Bryn Flinders
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lennart Huizing
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bhanu Singh
- Janssen
Research & Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Heng-Keang Lim
- Janssen
Research & Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | | | - Filip Cuyckens
- Janssen
Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Rob J. Vreeken
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Janssen
Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
4
|
Puig N, Camps-Renom P, Hermansson M, Aguilera-Simón A, Marín R, Bautista O, Rotllan N, Blanco-Sanroman N, Domine MC, Öörni K, Sánchez-Quesada JL, Benitez S. Alterations in LDL and HDL after an ischemic stroke associated with carotid atherosclerosis are reversed after 1 year. J Lipid Res 2025; 66:100739. [PMID: 39746448 PMCID: PMC11815653 DOI: 10.1016/j.jlr.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Approximately, 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes. In this study, we examined the qualitative properties of lipoproteins in ischemic stroke patients with carotid atherosclerosis. Lipoproteins were isolated from the blood of healthy controls (n = 27) and patients with carotid atherosclerosis (n = 64) at 7 days and 1 year postischemic stroke. Compared to controls, patients' LDL 7 days poststroke showed increased levels of apoC-III, triacylglycerol, and ceramide, along with decreased cholesterol and phospholipid content. LDL from patients induced more inflammation in macrophages than did LDL from controls. HDL isolated from patients 7 days after stroke showed alterations in the apolipoprotein cargo, with reduced levels of apoA-I and increased levels of apoA-II, and apoC-III compared to controls. Patients' HDL also showed a higher electronegative charge than that of controls and partially lost its ability to counteract the modification of LDL and the inflammatory effects of modified LDL. One year after stroke onset, the composition of patients' LDL and HDL resembled those of the controls. In parallel, LDL and HDL gained positive charge, LDL became less prone to oxidation and aggregation, and HDL regained protective properties. In conclusion, LDL and HDL in ischemic stroke patients with carotid atherosclerosis exhibited alterations in composition and function, which were partially reversed 1 year after stroke.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Martin Hermansson
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Ana Aguilera-Simón
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Rebeca Marín
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Olga Bautista
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain
| | - Noemi Rotllan
- Pathophysiology of Lipid-Related Diseases, Research Institute Sant Pau (Institut de Recerca Sant Pau, IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | | | | | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
5
|
Tomiyasu N, Takahashi M, Toyonaga K, Yamasaki S, Bamba T, Izumi Y. Efficient lipidomic approach for the discovery of lipid ligands for immune receptors by combining LC-HRMS/MS analysis with fractionation and reporter cell assay. Anal Bioanal Chem 2024; 416:5445-5456. [PMID: 38135762 PMCID: PMC11427514 DOI: 10.1007/s00216-023-05111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
C-type lectin receptors (CLRs), which are pattern recognition receptors responsible for triggering innate immune responses, recognize damaged self-components and immunostimulatory lipids from pathogenic bacteria; however, several of their ligands remain unknown. Here, we propose a new analytical platform combining liquid chromatography-high-resolution tandem mass spectrometry with microfractionation capability (LC-FRC-HRMS/MS) and a reporter cell assay for sensitive activity measurements to develop an efficient methodology for searching for lipid ligands of CLR from microbial trace samples (crude cell extracts of approximately 5 mg dry cell/mL). We also developed an in-house lipidomic library containing accurate mass and fragmentation patterns of more than 10,000 lipid molecules predicted in silico for 90 lipid subclasses and 35 acyl side chain fatty acids. Using the developed LC-FRC-HRMS/MS system, the lipid extracts of Helicobacter pylori were separated and fractionated, and HRMS and HRMS/MS spectra were obtained simultaneously. The fractionated lipid extract samples in 96-well plates were thereafter subjected to reporter cell assays using nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing mouse or human macrophage-inducible C-type lectin (Mincle). A total of 102 lipid molecules from all fractions were annotated using an in-house lipidomic library. Furthermore, a fraction that exhibited significant activity in the NFAT-GFP reporter cell assay contained α-cholesteryl glucoside, a type of glycolipid, which was successfully identified as a lipid ligand molecule for Mincle. Our analytical platform has the potential to be a useful tool for efficient discovery of lipid ligands for immunoreceptors.
Collapse
Affiliation(s)
- Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Toyonaga
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Kopczynski D, Ejsing CS, McDonald JG, Bamba T, Baker ES, Bertrand-Michel J, Brügger B, Coman C, Ellis SR, Garrett TJ, Griffiths WJ, Guan XL, Han X, Höring M, Holčapek M, Hoffmann N, Huynh K, Lehmann R, Jones JW, Kaddurah-Daouk R, Köfeler HC, Meikle PJ, Metz TO, O'Donnell VB, Saigusa D, Schwudke D, Shevchenko A, Torta F, Vizcaíno JA, Welti R, Wenk MR, Wolrab D, Xia Y, Ekroos K, Ahrends R, Liebisch G. The lipidomics reporting checklist a framework for transparency of lipidomic experiments and repurposing resource data. J Lipid Res 2024; 65:100621. [PMID: 39151590 PMCID: PMC11417233 DOI: 10.1016/j.jlr.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
The rapid increase in lipidomic studies has led to a collaborative effort within the community to establish standards and criteria for producing, documenting, and disseminating data. Creating a dynamic easy-to-use checklist that condenses key information about lipidomic experiments into common terminology will enhance the field's consistency, comparability, and repeatability. Here, we describe the structure and rationale of the established Lipidomics Minimal Reporting Checklist to increase transparency in lipidomics research.
Collapse
Affiliation(s)
- Dominik Kopczynski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justine Bertrand-Michel
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Inserm I2MC, Toulouse, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Cristina Coman
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Nils Hoffmann
- Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, North Carolina, USA; Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA; Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, Graz, Austria
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany; German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland.
| | - Robert Ahrends
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Ogrinc N, Barka EA, Clément C, Salzet M, Sanchez L, Fournier I. In Vivo and Real-Time Metabolic Profiling of Plant-Microbe Interactions in Leaves, Stems, and Roots of Bacterially Inoculated Chardonnay Plantlets using SpiderMass. Anal Chem 2024. [PMID: 39155838 DOI: 10.1021/acs.analchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
There is growing interest in limiting the use of fungicides and implementing innovative, environmentally friendly strategies, such as the use of beneficial bacteria-triggered immunity, to protect grapevines from natural pathogens. Therefore, we need rapid and innovative ways to translate the knowledge of the molecular mechanisms underlying the activation of grapevine defenses against pathogens to induced resistance. Here, we have implemented an in vivo minimally invasive approach to study the interaction between plants and beneficial bacteria based on metabolic signatures. Paraburkholderia phytofirmans strain PsJN and PsJN-grapevine were used as bacterial and plant-bacterium interaction models, respectively. Using an innovative tool, SpiderMass, based on water-assisted laser desorption ionization with an IR microsampling probe, we simultaneously detect metabolic and lipidomic species. A metabolomic spectrum was thus generated, which was used to build a library and identify the most variable and discriminative peaks between the two conditions. We then showed that caftaric acid (m/z 311.04), caftaric acid dimer (m/z 623.09), derived caftaric acid (m/z 653.15), and quercetin-O-glucuronide tended to accumulate in grapevine leaves after root bacterization with PsJN. In addition, together with these phenolic messengers, we identified lipid biomarkers such as palmitic acid, linoleic acid, and α-linoleic acid as important messengers of enhanced defense mechanisms in Chardonnay plantlets. Taken together, SpiderMass is the next-generation methodology for studying plant-microorganism metabolic interactions with the prospect of in vivo real-time analysis in viticulture.
Collapse
Affiliation(s)
- Nina Ogrinc
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Essaïd Ait Barka
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Christophe Clément
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Michel Salzet
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Lisa Sanchez
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| | - Isabelle Fournier
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| |
Collapse
|
8
|
Sprenger RR, Bilgin M, Ostenfeld MS, Bjørnshave A, Rasmussen JT, Ejsing CS. Dietary intake of a MFGM/EV-rich concentrate promotes accretion of very long odd-chain sphingolipids and increases lipid metabolic turnover at the whole-body level. Food Res Int 2024; 190:114601. [PMID: 38945615 DOI: 10.1016/j.foodres.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Lipids from cow milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for neurodevelopment, cognitive maintenance and human health in general. Nevertheless, it is largely unknown whether intake of infant formulas and medical nutrition products rich in these particles promote accretion of specific lipids and whether this affects metabolic homeostasis. To address this, we carried out a 16-week dietary intervention study where mice were supplemented with a MFGM/EV-rich concentrate, a control diet supplemented with a whey protein concentrate and devoid of milk lipids, or regular chow. Assessment of commonly used markers of metabolic health, including body weight, glucose intolerance and liver microanatomy, demonstrated no differences across the dietary regimes. In contrast, in-depth lipidomic analysis revealed accretion of milk-derived very long odd-chain sphingomyelins and ceramides in blood plasma and multiple tissues of mice fed the MFGM/EV diet. Furthermore, lipidomic flux analysis uncovered that mice fed the MFGM/EV diet have increased lipid metabolic turnover at the whole-body level. These findings help fill a long-lasting knowledge gap between the intake of MFGM/EV-containing foods and the health-promoting effects of their lipid constituents. In addition, the findings suggest that dietary sphingomyelins or ceramide-breakdown products with very long-chains can be used as structural components of cellular membranes, lipoprotein particles and signaling molecules that modulate metabolic homeostasis and health.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | | | - Jan T Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
9
|
Nauta S, Greven J, Hofman M, Mohren R, Meesters DM, Möckel D, Lammers T, Hildebrand F, Siegel TP, Cuypers E, Heeren RM, Poeze M. Mass Spectrometry Reveals Molecular Effects of Citrulline Supplementation during Bone Fracture Healing in a Rat Model. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1184-1196. [PMID: 38679918 PMCID: PMC11157653 DOI: 10.1021/jasms.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (μCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. μCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with μCT.
Collapse
Affiliation(s)
- Sylvia Nauta
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Johannes Greven
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martijn Hofman
- Center
of Musculoskeletal Surgery, Bonifatius Hospital
Lingen, 49808 Lingen, Germany
| | - Ronny Mohren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Dennis M. Meesters
- Department
of Genetics & Cell Biology, Maastricht
University, 6229ER Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Diana Möckel
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tiffany Porta Siegel
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Eva Cuypers
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Ron M.A. Heeren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Martijn Poeze
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Gopalan AB, van Uden L, Sprenger RR, Fernandez-Novel Marx N, Bogetofte H, Neveu PA, Meyer M, Noh KM, Diz-Muñoz A, Ejsing CS. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons. Life Sci Alliance 2024; 7:e202402622. [PMID: 38418090 PMCID: PMC10902711 DOI: 10.26508/lsa.202402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.
Collapse
Affiliation(s)
- Anusha B Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Candidate for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lisa van Uden
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Helle Bogetofte
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christer S Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Xu R, Liu H, Yuan F, Kim S, Kirpich I, McClain CJ, Zhang X. Lipid Wizard: Analysis Software for Comprehensive Two-Dimensional Liquid Chromatography-Mass Spectrometry-Based Lipid Profiling. Anal Chem 2024; 96:5375-5383. [PMID: 38523323 DOI: 10.1021/acs.analchem.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipids play a significant role in life activities and participate in the biological system through different pathways. Although comprehensive two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) has been developed to profile lipid abundance changes, lipid identification and quantification from 2DLC-MS data remain a challenge. We created Lipid Wizard, open-source software for lipid assignment and isotopic peak stripping of the 2DLC-MS data. Lipid Wizard takes the peak list deconvoluted from the 2DLC-MS data as input and assigns each isotopic peak to the lipids recorded in the LIPID MAPS database by precursor ion m/z matching. The matched lipids are then filtered by the first-dimension retention time (1D RT), followed by the second-dimension retention time (2D RT), where the 2D RT of each lipid is predicted using an equivalent carbon number (ECN) model. The remaining assigned lipids are used for isotopic peak stripping via an iterative linear regression. The performance of Lipid Wizard was tested using a set of lipid standards and then applied to study the lipid changes in the livers of mice (fat-1) fed with alcohol.
Collapse
Affiliation(s)
- Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, Kentucky 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, United States
| | - Huan Liu
- Department of Computer Science and Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, Kentucky 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Irina Kirpich
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40292, United States
| | - Craig J McClain
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, United States
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40206, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40292, United States
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, Kentucky 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
12
|
Vaysse PM, van den Hout MFCM, Engelen SME, Keymeulen KBMI, Bemelmans MHA, Heeren RMA, Olde Damink SWM, Porta Siegel T. Lipid profiling of electrosurgical vapors for real-time assistance of soft tissue sarcoma resection. J Surg Oncol 2024; 129:499-508. [PMID: 38050894 DOI: 10.1002/jso.27502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Soft tissue sarcomas (STS) constitute a heterogeneous group of rare tumor entities. Treatment relies on challenging patient-tailored surgical resection. Real-time intraoperative lipid profiling of electrosurgical vapors by rapid evaporative ionization mass spectrometry (REIMS) may aid in achieving successful surgical R0 resection (i.e., microscopically negative-tumor margin resection). Here, we evaluate the ex vivo accuracy of REIMS to discriminate and identify various STS from normal surrounding tissue. METHODS Twenty-seven patients undergoing surgery for STS at Maastricht University Medical Center+ were included in the study. Samples of resected STS specimens were collected and analyzed ex vivo using REIMS. Electrosurgical cauterization of tumor and surrounding was generated successively in both cut and coagulation modes. Resected specimens were subsequently processed for gold standard histopathological review. Multivariate statistical analysis (principal component analysis-linear discriminant analysis) and leave-one patient-out cross-validation were employed to compare the classifications predicted by REIMS lipid profiles to the pathology classifications. Electrosurgical vapors produced during sarcoma resection were analyzed in vivo using REIMS. RESULTS In total, 1200 histopathologically-validated ex vivo REIMS lipid profiles were generated from 27 patients. Ex vivo REIMS lipid profiles classified STS and normal tissues with 95.5% accuracy. STS, adipose and muscle tissues were classified with 98.3% accuracy. Well-differentiated liposarcomas and adipose tissues could not be discriminated based on their respective lipid profiles. Distinction of leiomyosarcomas from other STS could be achieved with 96.6% accuracy. In vivo REIMS analyses generated intense mass spectrometric signals. CONCLUSION Lipid profiling by REIMS is able to discriminate and identify STS with high accuracy and therefore constitutes a potential asset to improve surgical resection of STS in the future.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging institute (M4i), University of Maastricht, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Otorhinolaryngology, Head & Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mari F C M van den Hout
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sanne M E Engelen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Marc H A Bemelmans
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute (M4i), University of Maastricht, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism Faculty of Health, Maastricht University, Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging institute (M4i), University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
13
|
Sprenger RR, Ostenfeld MS, Bjørnshave A, Rasmussen JT, Ejsing CS. Lipidomic Characterization of Whey Concentrates Rich in Milk Fat Globule Membranes and Extracellular Vesicles. Biomolecules 2023; 14:55. [PMID: 38254655 PMCID: PMC10813332 DOI: 10.3390/biom14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Lipids from milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for cognitive development and human health. Milk-derived whey concentrates rich in these lipids are therefore used as ingredients in infant formulas to mimic human milk and in medical nutrition products to improve the metabolic fitness of adults and elderly people. In spite of this, there is no consensus resource detailing the multitude of lipid molecules in whey concentrates. To bridge this knowledge gap, we report a comprehensive and quantitative lipidomic resource of different whey concentrates. In-depth lipidomic analysis of acid, sweet, and buttermilk whey concentrates identified 5714 lipid molecules belonging to 23 lipid classes. The data show that the buttermilk whey concentrate has the highest level of fat globule-derived triacylglycerols and that the acid and sweet whey concentrates have the highest proportions of MFGM- and EV-derived membrane lipids. Interestingly, the acid whey concentrate has a higher level of cholesterol whereas sweet whey concentrate has higher levels of lactosylceramides. Altogether, we report a detailed lipid molecular compendium of whey concentrates and lay the groundwork for using in-depth lipidomic technology to profile the nutritional value of milk products and functional foods containing dairy-based concentrates.
Collapse
Affiliation(s)
- Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | | | - Jan T. Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
14
|
Peng L, Xu W, Wang J, Liu Y, Qian W, Wang S, Xie T, Shan J. Optimization of bronchoalveolar lavage fluid volume for untargeted lipidomic method and application in influenza A virus infection. J Pharm Biomed Anal 2023; 236:115677. [PMID: 37651923 DOI: 10.1016/j.jpba.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Bronchoalveolar lavage (BAL) has been widely applied for the diagnosis of pulmonary diseases in clinical as it was recognized as a minimally invasive, well-tolerated and easily performed procedure. Lipid analysis of BAL fluid is a comprehensive strategy to observe lipid phenotypes, explore potential biomarkers, and elucidate the biological mechanisms of respiratory diseases. However, the highly diverse concentration of lipids in BAL fluid due to the deviation between the retrieved and injected aliquot volumes during lavage raised a challenge in obtaining high-quality lipidomic data. Here, this study aims to investigate what volume of BAL fluid is suitable for lipidomic analysis. Specifically, the BAL fluid harvested from H1N1 infected mice and controls was concentrated to varying degrees by freeze-drying technique before preparation for lipidomic analysis. The optimal concentration multiple of BAL fluid was approved by comparing the coverage and quality of identified lipids, as well as the number of differentially expressed lipids in the H1N1 infection model. Sixty-two differential lipids were identified respectively in the positive and negative modes when the BAL fluid was condensed five times, and they were classified into glycerolipids, phospholipids and fatty acids. This study focuses on the alterations of phospholipids, since they are the main constituents of pulmonary surfactants. Several phospholipids significantly accumulated in the BAL fluid of H1N1-infected mice, while most of them contained omega-3 polyunsaturated fatty acids, indicating disrupted inflammatory homeostasis in lungs. This study recommends freeze-drying/reconstitution prior to lipid extraction from BAL fluid for lipidomic analysis, as this procedure increased the richness and abundance of lipids.
Collapse
Affiliation(s)
- Linxiu Peng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jingying Wang
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjuan Qian
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Shaodong Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tong Xie
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Haartmans MJJ, Claes BSR, Eijkel GB, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal Bioanal Chem 2023; 415:5997-6007. [PMID: 37505238 PMCID: PMC10556153 DOI: 10.1007/s00216-023-04871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The incidence of osteoarthritis (OA) has been expected to increase due to an aging population, as well as an increased incidence of intra-articular (osteo-) chondral damage. Lipids have already been shown to be involved in the inflammatory process of OA. This study aims at revealing region-specific lipid profiles of the infrapatellar fat pad (IPFP) of OA or cartilage defect patients by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which could be used as biomarkers for early OA detection. A higher presence of phospholipids was found in OA patients compared with cartilage defect patients. In addition, a higher abundance of ether-linked phosphatidylethanolamines (PE O-s) containing arachidonic acid was specifically found in OA patients compared with cartilage defect patients. These lipids were mainly found in the connective tissue of the IPFP. Specific lipid species were associated to OA patients compared with cartilage defect patients. PE O-s have been suggested as possible biomarkers for OA. As these were found more abundantly in the connective tissue, the IPFP's intra-tissue heterogeneity might play an important role in biomarker discovery, implying that the amount of fibrous tissue is associated with OA.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Britt S R Claes
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Gert B Eijkel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gabrielle J M Tuijthof
- Biomedical Device Design and Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Scott AJ, Ellis SR, Hofstaedter CE, Heeren RM, Ernst RK. Spatial lipidomics reveals biased phospholipid remodeling in acute Pseudomonas lung infection. iScience 2023; 26:107700. [PMID: 37680478 PMCID: PMC10480615 DOI: 10.1016/j.isci.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the whole-lung phospholipid response using mass spectrometry imaging (MSI) and spatial lipidomics. Using a histology-driven analysis, we isolated airways and parenchyma from both mock- and Pa-infected lungs and used systems biology tools to identify enriched metabolic pathways from the differential phospholipid identities. Infection was associated with a set of 26 ions, with 11 unique to parenchyma and 6 unique to airways. Acyl remodeling was differentially enriched in infected parenchyma as the predominant biological function. These functions correlated with markers of polymorphonuclear (PMN) cell influx, a defining feature of the lung response to Pa infection, implicating enzymes active in phospholipid remodeling.
Collapse
Affiliation(s)
- Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Ventura G, Calvano CD, Bianco M, Castellaneta A, Losito I, Cataldi TRI. PE, or not PE, that is the question: The case of overlooked lyso-N-acylphosphatidylethanolamines. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9527. [PMID: 37117037 DOI: 10.1002/rcm.9527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Lyso derivatives of N-acyl-1,2-diacylglycero-3-phosphoethanolamines (L-NAPEs) are a lipid class mostly expressed in vegetables during stress and tissue damage that is involved in the synthesis of the lipid mediator N-acylethanolamines. L-NAPEs can be challenging to distinguish from isomeric phosphatidylethanolamines (PEs), especially in extracted complex samples where they could be confused with abundant PEs. METHODS In this study, hydrophilic interaction liquid chromatography with electrospray ionization hyphenated with (tandem) mass spectrometry (MS) was proposed to distinguish L-NAPEs and PEs as deprotonated molecules, [M - H]─ , using both high-resolution/accuracy Fourier transform MS and low-resolution linear ion trap (LIT) mass analyzers. MS3 experiments of [M - H - KE]─ as precursor ions (KE, ketene loss) using the LIT instrument allowed us to distinguish between isomeric L-NAPE and PE species. RESULTS Regiochemical rules were proposed working on enzymatically synthesized L-NAPEs. A few key differences in MS/MS spectra, including abnormal intensity of acyl chain losses as fatty acids, the presence of N-acylphosphoethanolamine ions, and diagnostic ions of the polar head, were disclosed. Additionally, MS3 spectra of [M - H - KE]─ as precursor ions allowed us to confirm the identification of L-NAPE species. The proposed rules were applied to samples extracted from tomato by-products including stems and leaves. CONCLUSIONS Overall, our methodology is demonstrated as a robust approach to recognizing L-NAPEs in complex samples. L-NAPEs 18:2-N-18:2, 18:2-N-18:3, 18:3-N-18:2, and 18:2-N-18:1 were the prevailing compounds in the analyzed tomato samples, accounting for more than 90%. In summary, a reliable method for identifying L-NAPEs in complex samples is described. The proposed method could prevent overlooking L-NAPEs and overestimating isomeric PE species in future lipid analyses.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
19
|
Diao X, Ellin NR, Prentice BM. Selective Schiff base formation via gas-phase ion/ion reactions to enable differentiation of isobaric lipids in imaging mass spectrometry. Anal Bioanal Chem 2023; 415:4319-4331. [PMID: 36629896 PMCID: PMC10329984 DOI: 10.1007/s00216-023-04523-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
The separation and identification of lipids in complex mixtures are critical to deciphering their cellular functions. Failure to resolve isobaric compounds (e.g., via high mass resolution or tandem mass spectrometry) can result in incorrect identifications in mass spectrometry experiments. In imaging mass spectrometry, unresolved peaks can also result in composite images of multiple compounds, giving inaccurate depictions of molecular distributions. Gas-phase ion/ion reactions can be used to selectively react with specific chemical functional groups on a target analyte, thereby extracting it from a complex mixture and shifting its m/z value to an unobstructed region of the mass range. Herein, we use selective Schiff base formation via a novel charge inversion ion/ion reaction to purify phosphatidylserines from other isobaric (i.e., same nominal mass) lipids and reveal their singular distributions in imaging mass spectrometry. The selective Schiff base formation between singly deprotonated phosphatidylserine (PS) lipid anions and doubly charged N,N,N',N'-tetramethyl-N,N'-bis(6-oxohexyl)hexane-1,6-diaminium (TMODA) cations is performed using a modified commercial dual source hybrid Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This process is demonstrated using the isobaric lipids [PS 40:6 - H]- (m/z 834.528) and [SHexCer d38:1 - H]- (m/z 834.576), which produces [PS 40:6 + TMODA - H - H2O]+ (m/z 1186.879), and [SHexCer d38:1 + TMODA - H]+ (m/z 1204.938) product ions following the gas-phase charge inversion reaction. These product ions differ by roughly 18 Da in mass and are easily separated by low mass resolution analysis, while the isobaric precursor ions require roughly 45,000 mass resolving power (full-width at half maximum) to separate. Imaging mass spectrometry using targeted gas-phase ion/ion reactions shows distinct spatial distributions for the separated lipid product ions relative to the composite images of the unseparated precursor ions.
Collapse
Affiliation(s)
- Xizheng Diao
- Department of Chemistry, University of Florida, PO Box 117200, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Nicholas R Ellin
- Department of Chemistry, University of Florida, PO Box 117200, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Boone M Prentice
- Department of Chemistry, University of Florida, PO Box 117200, 214 Leigh Hall, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Limar S, Körner C, Martínez-Montañés F, Stancheva VG, Wolf VN, Walter S, Miller EA, Ejsing CS, Galassi VV, Fröhlich F. Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface. J Cell Biol 2023; 222:e202109162. [PMID: 36897280 PMCID: PMC10038888 DOI: 10.1083/jcb.202109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Ceramides are essential precursors of complex sphingolipids and act as potent signaling molecules. Ceramides are synthesized in the endoplasmic reticulum (ER) and receive their head-groups in the Golgi apparatus, yielding complex sphingolipids (SPs). Transport of ceramides between the ER and the Golgi is executed by the essential ceramide transport protein (CERT) in mammalian cells. However, yeast cells lack a CERT homolog, and the mechanism of ER to Golgi ceramide transport remains largely elusive. Here, we identified a role for yeast Svf1 in ceramide transport between the ER and the Golgi. Svf1 is dynamically targeted to membranes via an N-terminal amphipathic helix (AH). Svf1 binds ceramide via a hydrophobic binding pocket that is located in between two lipocalin domains. We showed that Svf1 membrane-targeting is important to maintain flux of ceramides into complex SPs. Together, our results show that Svf1 is a ceramide binding protein that contributes to sphingolipid metabolism at Golgi compartments.
Collapse
Affiliation(s)
- Sergej Limar
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Verena N. Wolf
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| | | | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Florian Fröhlich
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| |
Collapse
|
21
|
Nguyen BT, Yen NTH, Tung NKT, Jeong GS, Kang JS, Long NP, Kim HM. Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure. J Pharm Biomed Anal 2023; 231:115401. [PMID: 37105045 DOI: 10.1016/j.jpba.2023.115401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
Collapse
Affiliation(s)
- Bao Tan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Ninh Khac Thanh Tung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
22
|
Haartmans MJJ, Claes BSR, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Sample preparation for lipid analysis of intra-articular adipose tissue by using matrix-assisted laser desorption/ionization imaging. Anal Biochem 2023; 662:115018. [PMID: 36521559 DOI: 10.1016/j.ab.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique enabling the visualization of the spatial distribution of different molecules in tissue biopsies with different pathologies. Sample handling and preparing adipose tissue for MSI is challenging and prone to molecular delocalization due to tissue melting. In this work, we developed a method for matrix-assisted laser desorption/ionization (MALDI)-MSI to study lipids in human infrapatellar fat pad (IPFP), a biomarker source in musculoskeletal pathologies, while preserving molecular spatial distribution. Cryosectioning at 15 μm with a temperature below -30 °C, thaw-mounting, and sublimation, was demonstrated to preserve IPFP's heterogeneous appearance and spatial distribution of lipids.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, Amsterdam Movement Sciences, Department of Orthopedic Surgery and Sports Medicine, Amsterdam, the Netherlands.
| | - Gabrielle J M Tuijthof
- Faculty of Engineering Technology, Biomedical Device Design and Production Technology (BDDP), Twente University, Twente, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Rose TD, Köhler N, Falk L, Klischat L, Lazareva OE, Pauling JK. Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data. Brief Bioinform 2023; 24:bbac572. [PMID: 36592059 PMCID: PMC9851308 DOI: 10.1093/bib/bbac572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023] Open
Abstract
Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated computational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying (patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX$^2$), a lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.
Collapse
Affiliation(s)
- Tim D Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lisa Falk
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lucie Klischat
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olga E Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
24
|
Guan XL, Loh JYX, Lizwan M, Chan SCM, Kwan JMC, Lim TP, Koh TH, Hsu LY, Lee BTK. LipidA-IDER to Explore the Global Lipid A Repertoire of Drug-Resistant Gram-Negative Bacteria. Anal Chem 2023; 95:602-611. [PMID: 36599414 PMCID: PMC9850412 DOI: 10.1021/acs.analchem.1c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the global emergence of drug-resistant bacteria causing difficult-to-treat infections, there is an urgent need for a tool to facilitate studies on key virulence and antimicrobial resistant factors. Mass spectrometry (MS) has contributed substantially to the elucidation of the structure-function relationships of lipid A, the endotoxic component of lipopolysaccharide which also serves as an important protective barrier against antimicrobials. Here, we present LipidA-IDER, an automated structure annotation tool for system-level scale identification of lipid A from high-resolution tandem mass spectrometry (MS2) data. LipidA-IDER was validated against previously reported structures of lipid A in the reference bacteria, Escherichia coli and Pseudomonas aeruginosa. Using MS2 data of variable quality, we demonstrated LipidA-IDER annotated lipid A with a performance of 71.2% specificity and 70.9% sensitivity, offering greater accuracy than existing lipidomics software. The organism-independent workflow was further applied to a panel of six bacterial species: E. coli and Gram-negative members of ESKAPE pathogens. A comprehensive atlas comprising 188 distinct lipid A species, including remodeling intermediates, was generated and can be integrated with software including MS-DIAL and Metabokit for identification and semiquantitation. Systematic comparison of a pair of polymyxin-sensitive and polymyxin-resistant Acinetobacter baumannii isolated from a human patient unraveled multiple key lipid A structural features of polymyxin resistance within a single analysis. Probing the lipid A landscape of bacteria using LipidA-IDER thus holds immense potential for advancing our understanding of the vast diversity and structural complexity of a key lipid virulence and antimicrobial-resistant factor. LipidA-IDER is freely available at https://github.com/Systems-Biology-Of-Lipid-Metabolism-Lab/LipidA-IDER.
Collapse
Affiliation(s)
- Xue Li Guan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,. Tel: +65 6592 3957
| | - Johnathan Yi-Xiong Loh
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Marco Lizwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Sharon Cui Mun Chan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Jeric Mun Chung Kwan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Tze Peng Lim
- Department
of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore
| | - Tse Hsien Koh
- Department
of Microbiology, Singapore General Hospital, Singapore 169608, Singapore
| | - Li-Yang Hsu
- Saw Swee
Hock School of Public Health, National University
of Singapore, Singapore 117549, Singapore
| | - Bernett Teck Kwong Lee
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore,Centre
for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore,Singapore
Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| |
Collapse
|
25
|
Ogrinc N, Chaillou P, Kruszewski A, Duriez C, Salzet M, Fournier I. Ambient Mass Spectrometry Imaging by Water-Assisted Laser Desorption/Ionization for Ex Vivo and in Vivo Applications. Methods Mol Biol 2023; 2688:83-94. [PMID: 37410286 DOI: 10.1007/978-1-0716-3319-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Water-assisted laser desorption/ionization mass spectrometry (WALDI-MS), also known as SpiderMass, is an emerging ambient ionization technique for in vivo and real-time analysis. It employs a remote infrared (IR) laser tuned to excite the most intense vibrational band (O-H) of water. The water molecules act as an endogenous matrix leading to the desorption/ionization of a variety of biomolecules from tissues, particularly metabolites and lipids. WALDI-MS was recently advanced into an imaging modality for ex vivo 2D sections and 3D in vivo real-time imaging. Here, we describe the methodological aspects for performing 2D and 3D imaging experiments with WALDI-MSI and the parameters for optimizing the image acquisition.
Collapse
Affiliation(s)
- Nina Ogrinc
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Paul Chaillou
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Alexandre Kruszewski
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Cristian Duriez
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Michel Salzet
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.
| |
Collapse
|
26
|
Michael JA, Mutuku SM, Ucur B, Sarretto T, Maccarone AT, Niehaus M, Trevitt AJ, Ellis SR. Mass Spectrometry Imaging of Lipids Using MALDI Coupled with Plasma-Based Post-Ionization on a Trapped Ion Mobility Mass Spectrometer. Anal Chem 2022; 94:17494-17503. [PMID: 36473074 DOI: 10.1021/acs.analchem.2c03745] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report the development and optimization of a mass spectrometry imaging (MSI) platform that combines an atmospheric-pressure matrix-assisted laser desorption/ionization platform with plasma postionization (AP-MALDI-PPI) and trapped ion mobility spectrometry (TIMS). We discuss optimal parameters for operating the source, characterize the behavior of a variety of lipid classes in positive- and negative-ion modes, and explore the capabilities for lipid imaging using murine brain tissue. The instrument generates high signal-to-noise for numerous lipid species, with mass spectra sharing many similarities to those obtained using laser postionization (MALDI-2). The system is especially well suited for detecting lipids such as phosphatidylethanolamine (PE), as well as numerous sphingolipid classes and glycerolipids. For the first time, the coupling of plasma-based postionization with ion mobility is presented, and we show the value of ion mobility for the resolution and identification of species within rich spectra that contain numerous isobaric/isomeric signals that are not resolved in the m/z dimension alone, including isomeric PE and demethylated phosphatidylcholine lipids produced by in-source fragmentation. The reported instrument provides a powerful and user-friendly approach for MSI of lipids.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shadrack M Mutuku
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Alan T Maccarone
- Molecular Horizons and School of Chemistry and Molecular Bioscience Mass Spectrometry Facility, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Marcel Niehaus
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
27
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
28
|
Khalil SM, Sprenger RR, Hermansson M, Ejsing CS. DDA-imaging with structural identification of lipid molecules on an Orbitrap Velos Pro mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4882. [PMID: 36055222 PMCID: PMC9541402 DOI: 10.1002/jms.4882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a useful technique for visualizing the spatial distribution of lipid molecules in tissues. Nevertheless, the use of MSI to investigate local lipid metabolic hallmarks has until recently been hampered by a lack of adequate technology that supports confident lipid identification. This limitation was recently mitigated by the development of DDA-imaging technology where high-resolution MSI is combined with parallel acquisition of lipid tandem MS2 spectra on a hybrid ion trap-Orbitrap Elite mass spectrometer featuring a resolving power of 240,000 and a scan time of 1 s. Here, we report the key tenets related to successful transfer of the DDA-imaging technology onto an Orbitrap Velos Pro instrument featuring a resolving power of 120,000 and a scan time of 2 s. Through meticulous performance assessments and method optimization, we tuned the DDA-imaging method to be able to confidently identify 73 molecular lipid species in mouse brain sections and demonstrate that the performance of the technology is comparable with DDA-imaging on the Orbitrap Elite. Altogether, our work shows that DDA-imaging on the Orbitrap Velos Pro instrument can serve as a robust workhorse for lipid imaging in routine applications.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
29
|
Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab 2022; 34:1214-1225.e6. [PMID: 35858629 DOI: 10.1016/j.cmet.2022.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 02/28/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.
Collapse
|
30
|
Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D, Ahrends R, Marcus K, Eisenacher M, Turewicz M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022; 12:584. [PMID: 35888710 PMCID: PMC9319858 DOI: 10.3390/metabo12070584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mass spectrometry is a widely used technology to identify and quantify biomolecules such as lipids, metabolites and proteins necessary for biomedical research. In this study, we catalogued freely available software tools, libraries, databases, repositories and resources that support lipidomics data analysis and determined the scope of currently used analytical technologies. Because of the tremendous importance of data interoperability, we assessed the support of standardized data formats in mass spectrometric (MS)-based lipidomics workflows. We included tools in our comparison that support targeted as well as untargeted analysis using direct infusion/shotgun (DI-MS), liquid chromatography-mass spectrometry, ion mobility or MS imaging approaches on MS1 and potentially higher MS levels. As a result, we determined that the Human Proteome Organization-Proteomics Standards Initiative standard data formats, mzML and mzTab-M, are already supported by a substantial number of recent software tools. We further discuss how mzTab-M can serve as a bridge between data acquisition and lipid bioinformatics tools for interpretation, capturing their output and transmitting rich annotated data for downstream processing. However, we identified several challenges of currently available tools and standards. Potential areas for improvement were: adaptation of common nomenclature and standardized reporting to enable high throughput lipidomics and improve its data handling. Finally, we suggest specific areas where tools and repositories need to improve to become FAIRer.
Collapse
Affiliation(s)
- Nils Hoffmann
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5), 52425 Jülich, Germany
| | - Gerhard Mayer
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany;
| | - Canan Has
- Biological Mass Spectrometry, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- CENTOGENE GmbH, 18055 Rostock, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Fadi Al Machot
- Faculty of Science and Technology, Norwegian University for Life Science (NMBU), 1433 Ås, Norway;
| | - Dominik Schwudke
- Bioanalytical Chemistry, Forschungszentrum Borstel, Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North, German Center for Lung Research (DZL), 23845 Borstel, Germany
- German Center for Infection Research (DZIF), TTU Tuberculosis, 23845 Borstel, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Katrin Marcus
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
| | - Martin Eisenacher
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
31
|
Ogrinc N, Schneider S, Bourmaud A, Gengler N, Salzet M, Fournier I. Direct In Vivo Analysis of CBD- and THC-Acid Cannabinoids and Classification of Cannabis Cultivars Using SpiderMass. Metabolites 2022; 12:metabo12060480. [PMID: 35736414 PMCID: PMC9227750 DOI: 10.3390/metabo12060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, cannabis and hemp-based products have become increasingly popular for recreational use, edibles, beverages, health care products, and medicines. The rapid detection and differentiation of phytocannabinoids is, therefore, essential to assess the potency and the therapeutic and nutritional values of cannabis cultivars. Here, we implemented SpiderMass technology for in vivo detection of cannabidiolic acid (CBDA) and ∆9-tetrahydrocannabinolicacid (∆9-THCA), and other endogenous organic plant compounds, to access distribution gradients within the plants and differentiate between cultivars. The SpiderMass system is composed of an IR-laser handheld microsampling probe connected to a mass spectrometer through a transfer tube. The analysis was performed on different plant organs from freshly cultivated cannabis plants in only a few seconds. SpiderMass analysis easily discriminated the two acid phytocannabinoid isomers via MS/MS, and the built statistical models differentiated between four cannabis cultivars. Different abundancies of the two acid phytocannabinoids were found along the plant as well as between different cultivars. Overall, these results introduce direct analysis by SpiderMass as a compelling analytical alternative for rapid hemp analysis.
Collapse
Affiliation(s)
- Nina Ogrinc
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
| | - Serge Schneider
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Adèle Bourmaud
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Nicolas Gengler
- Service de Toxicologie Analytique–Chimie Pharmaceutique, Laboratoire National de Santé (LNS), Dudelange, L-3555 Luxembourg, Luxembourg; (S.S.); (A.B.); (N.G.)
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
- Institut Universitaire de France (IUF), F-75000 Paris, France
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Inserm U1192, Université de Lille, F-59000 Lille, France; (N.O.); (M.S.)
- Institut Universitaire de France (IUF), F-75000 Paris, France
- Correspondence:
| |
Collapse
|
32
|
Space- and Time-Resolved Metabolomics of a High-Grade Serous Ovarian Cancer Mouse Model. Cancers (Basel) 2022; 14:cancers14092262. [PMID: 35565391 PMCID: PMC9104348 DOI: 10.3390/cancers14092262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The dismally low survival rate of ovarian cancer patients diagnosed with high-grade serous carcinoma (HGSC) emphasizes the lack of effective screening strategies. One major obstacle is the limited knowledge of the underlying mechanisms of HGSC pathogenesis at very early stages. Here, we present the first 10-month time-resolved serum metabolic profile of a triple mutant (TKO) HGSC mouse model, along with the spatial lipidome profile of its entire reproductive system. A high-coverage liquid chromatography mass spectrometry-based metabolomics approach was applied to longitudinally collected serum samples from both TKO (n = 15) and TKO control mice (n = 15), tracking metabolome and lipidome changes from premalignant stages to tumor initiation, early stages, and advanced stages until mouse death. Time-resolved analysis showed specific temporal trends for 17 lipid classes, amino acids, and TCA cycle metabolites, associated with HGSC progression. Spatial lipid distributions within the reproductive system were also mapped via ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and compared with serum lipid profiles for various lipid classes. Altogether, our results show that the remodeling of lipid and fatty acid metabolism, amino acid biosynthesis, TCA cycle and ovarian steroidogenesis are critical components of HGSC onset and development. These metabolic alterations are accompanied by changes in energy metabolism, mitochondrial and peroxisomal function, redox homeostasis, and inflammatory response, collectively supporting tumorigenesis.
Collapse
|
33
|
Li HF, Zhao J, Cao W, Zhang W, Xia Y, Ouyang Z. Site-Specific Photochemical Reaction for Improved C=C Location Analysis of Unsaturated Lipids by Ultraviolet Photodissociation. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9783602. [PMID: 35252873 PMCID: PMC8859641 DOI: 10.34133/2022/9783602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Unraveling the complexity of the lipidome requires the development of novel approaches to facilitate structural identification and characterization of lipid species with isomer-level discrimination. Ultraviolet photodissociation tandem mass spectrometry (UVPD MS/MS) is a promising tool for structure determination of lipids. The sensitivity of UVPD for lipid analysis however is limited mainly due to weak absorption of UV photons by a C=C. Herein, a C=C site-specific derivatization, the Paternò-Büchi (PB) reaction, was used to incorporate a chromophore to the C=C moiety in fatty acyls, leading to significantly improved UVPD efficiency and sensitivity for pinpointing C=C locations. The wavelength-dependent photodissociation of the PB products demonstrated 4-CF3-benzophenone as the best reagent for UVPD in terms of the efficiency of generating C=C diagnostic fragments and simplicity for C=C location assignments. We demonstrated the effectiveness of this approach for the shotgun profiling of C=C location isomers in different lipid classes from complex lipid extracts, highlighting its potential to advancing the identification of the C=C bond locations in unsaturated lipids.
Collapse
Affiliation(s)
- Hai-Fang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Ogrinc N, Attencourt C, Colin E, Boudahi A, Tebbakha R, Salzet M, Testelin S, Dakpé S, Fournier I. Mass Spectrometry-Based Differentiation of Oral Tongue Squamous Cell Carcinoma and Nontumor Regions With the SpiderMass Technology. FRONTIERS IN ORAL HEALTH 2022; 3:827360. [PMID: 35309279 PMCID: PMC8929397 DOI: 10.3389/froh.2022.827360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oral cavity cancers are the 15th most common cancer with more than 350,000 new cases and ~178,000 deaths each year. Among them, squamous cell carcinoma (SCC) accounts for more than 90% of tumors located in the oral cavity and on oropharynx. For the oral cavity SCC, the surgical resection remains the primary course of treatment. Generally, surgical margins are defined intraoperatively using visual and tactile elements. However, in 15-30% of cases, positive margins are found after histopathological examination several days postsurgery. Technologies based on mass spectrometry (MS) were recently developed to help guide surgical resection. The SpiderMass technology is designed for in-vivo real-time analysis under minimally invasive conditions. This instrument achieves tissue microsampling and real-time molecular analysis with the combination of a laser microprobe and a mass spectrometer. It ultimately acts as a tool to support histopathological decision-making and diagnosis. This pilot study included 14 patients treated for tongue SCC (T1 to T4) with the surgical resection as the first line of treatment. Samples were first analyzed by a pathologist to macroscopically delineate the tumor, dysplasia, and peritumoral areas. The retrospective and prospective samples were sectioned into three consecutive sections and thaw-mounted on slides for H&E staining (7 μm), SpiderMass analysis (20 μm), and matrix-assisted laser desorption ionization (MALDI) MS imaging (12 μm). The SpiderMass microprobe collected lipidometabolic profiles of the dysplasia, tumor, and peritumoral regions annotated by the pathologist. The MS spectra were then subjected to the multivariate statistical analysis. The preliminary data demonstrate that the lipidometabolic molecular profiles collected with the SpiderMass are significantly different between the tumor and peritumoral regions enabling molecular classification to be established by linear discriminant analysis (LDA). MALDI images of the different samples were submitted to segmentation for cross instrument validation and revealed additional molecular discrimination within the tumor and nontumor regions. These very promising preliminary results show the applicability of the SpiderMass to SCC of the tongue and demonstrate its interest in the surgical treatment of head and neck cancers.
Collapse
Affiliation(s)
- Nina Ogrinc
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse – PRISM, Lille, France
| | - Christophe Attencourt
- Department of Pathology, CHU Amiens-Picardie, Amiens, France
- UR7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Emilien Colin
- UR7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery, CHU Amiens-Picardie, Amiens, France
- Institut Faire Faces, Amiens, France
| | - Ahmed Boudahi
- Department of Pathology, CHU Amiens-Picardie, Amiens, France
| | - Riad Tebbakha
- Tumorothèque de Picardie, CHU Amiens-Picardie, Amiens, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse – PRISM, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sylvie Testelin
- UR7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery, CHU Amiens-Picardie, Amiens, France
- Institut Faire Faces, Amiens, France
| | - Stéphanie Dakpé
- UR7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery, CHU Amiens-Picardie, Amiens, France
- Institut Faire Faces, Amiens, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse – PRISM, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
35
|
Henriksen NL, Asmussen KS, Pan X, Jiang PP, Mori Y, Christiansen LI, Sprenger RR, Ejsing CS, Pankratova S, Thymann T. Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets. Sci Rep 2022; 12:3303. [PMID: 35228576 PMCID: PMC8885751 DOI: 10.1038/s41598-022-07133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Breast milk has neurodevelopmental advantages compared to infant formula, especially in low-birth-weight infants, which may in part relate to the fat source. This study compared neurodevelopmental outcomes in three-day-old normal birth weight (NBW) and intrauterine growth restricted (IUGR) piglets fed a formula diet with either vegetable oil (VEG) or bovine milk fat sources (MILK) for three weeks in a 2 × 2 factorial design. Behavioural tests, lipidomics, MRI and RNA sequencing analyses of plasma and brain tissue were conducted. The absolute levels of 82% and 11% of lipid molecules were different between dietary groups in plasma and hippocampus, respectively. Of the lipid molecules with differential abundance in the hippocampus, the majority were upregulated in MILK versus VEG, and they mainly belonged to the group of glycerophospholipids. Lower absolute brain weights, absolute grey and white matter volumes and behaviour and motor function scores, and higher relative total brain weights were present in IUGR compared to NBW with minor influence of diet. Cognitive function and cerebellar gene expression profiles were similar for dietary and weight groups, and overall only minor interactive effects between diet and birth weight were observed. Overall, we show that the dietary fat source influences the plasma and to a lesser degree the hippocampal lipidome and is unable to improve on IUGR-induced brain structural and functional impairments.
Collapse
Affiliation(s)
- Nicole L Henriksen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Karina S Asmussen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Xiaoyu Pan
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Ping-Ping Jiang
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Line I Christiansen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Stanislava Pankratova
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Prentice BM. Gas-Phase Ion-Ion Reactions for Lipid Identification in Biological Tissue Sections. Methods Mol Biol 2022; 2437:3-19. [PMID: 34902137 PMCID: PMC9148664 DOI: 10.1007/978-1-0716-2030-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The unambiguous identification of isobaric (i.e., same nominal mass) and isomeric (i.e., same exact mass) lipids remains a challenging yet vital aspect of imaging mass spectrometry (IMS) workflows. This chapter presents a methodology for the preparation of biological tissue samples and the use of a hybrid mass spectrometer to perform gas-phase charge inversion ion/ion reactions for improved lipid identification. This gas-phase ion/ion reaction method provides lipid structural information beyond what can be obtained via conventional tandem mass spectrometry (MS/MS) experiments. While this procedure is described here for the identification of phosphatidylcholine (PC) analyte cations using 1,4-phenylenedipropionic acid reagent dianions, it can readily be generalized to perform a diverse array of ion/ion reaction chemistries.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Ogrinc N, Kruszewski A, Chaillou P, Saudemont P, Lagadec C, Salzet M, Duriez C, Fournier I. Robot-Assisted SpiderMass for In Vivo Real-Time Topography Mass Spectrometry Imaging. Anal Chem 2021; 93:14383-14391. [PMID: 34670081 DOI: 10.1021/acs.analchem.1c01692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mass spectrometry imaging (MSI) has shown to bring invaluable information for biological and clinical applications. However, conventional MSI is generally performed ex vivo from tissue sections. Here, we developed a novel MS-based method for in vivo mass spectrometry imaging. By coupling the SpiderMass technology, that provides in vivo minimally invasive analysis-to a robotic arm of high accuracy, we demonstrate that images can be acquired from any surface by moving the laser probe above the surface. By equipping the robotic arm with a sensor, we are also able to both get the topography image of the sample surface and the molecular distribution, and then and plot back the molecular data, directly to the 3D topographical image without the need for image fusion. This is shown for the first time with the 3D topographic MS-based whole-body imaging of a mouse. Enabling fast in vivo MSI bridged to topography paves the way for surgical applications to excision margins.
Collapse
Affiliation(s)
- Nina Ogrinc
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Alexandre Kruszewski
- UMR 9189 - CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille, University of Lille, INRIA, CNRS, F-59000 Lille, France
| | - Paul Chaillou
- UMR 9189 - CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille, University of Lille, INRIA, CNRS, F-59000 Lille, France
| | - Philippe Saudemont
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Chann Lagadec
- University of Lille, CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.,Institut Universitaire de France (IUF), Paris 75231, France
| | - Christian Duriez
- UMR 9189 - CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille, University of Lille, INRIA, CNRS, F-59000 Lille, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.,Institut Universitaire de France (IUF), Paris 75231, France
| |
Collapse
|
38
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
39
|
Schmidt S, Gallego SF, Zelnik ID, Kovalchuk S, Albæk N, Sprenger RR, Øverup C, Pewzner-Jung Y, Futerman AH, Lindholm MW, Jensen ON, Ejsing CS. Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Mol Ther 2021; 30:1661-1674. [PMID: 34400330 PMCID: PMC9077316 DOI: 10.1016/j.ymthe.2021.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Steffen Schmidt
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Sandra F Gallego
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Iris Daphne Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nanna Albæk
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marie W Lindholm
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
40
|
Lyu L, Sonik N, Bhattacharya S. An overview of lipidomics utilizing cadaver derived biological samples. Expert Rev Proteomics 2021; 18:453-461. [PMID: 34130579 DOI: 10.1080/14789450.2021.1941894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We present lipidomic studies that have utilized cadaveric biological samples, including tissues and bodily fluids (excluding blood or serum). Analyses of lipids from cadaveric-derived tissues play vital roles in many different fields, such as in anthropogeny to understand food habits of ancient people, in forensics for postmortem analyses, and in biomedical research to study human diseases. AREAS COVERED The goal of the review is to demonstrate how cadavers can be utilized for study of lipidome to get biological insight in different fields. Several important considerations need to be made when analyzing lipids from cadaver samples. For example, what important postmortem changes occur due to environmental or other intrinsic factors that introduce deviations in the observed differences versus true differences? Do these factors affect distinct classes of lipids differently? How do we arrive at a reasonable level of certainty that the observed differences are truly biological rather than artifacts of sample collection, changes during transportation, or variations in analytical procedures? These are pressing questions that need to be addressed when performing lipidomics investigations utilizing postmortem tissues, which inherently presents hurdles and unknowns beginning with harvesting methods, transportation logistics, and at analytical techniques. In our review, we have purposefully omitted blood and serum studies since they pose greater challenges in this regard. Several studies have been carried out with cadaveric tissues and fluids that support the successful use of cases of these samples; however, many control studies are still necessary to provide insight into full potential of the cadaveric tissue and fluid resources. Most importantly, additional control studies will allow us to gain important insights into the opportunities lipidomics presents for biomedical studies of complex human disease and disorders. Another goal of the review is to generate awareness about limitations and pitfalls of use of cadaver materials for study of lipidome. EXPERT OPINION We comment on the current state of lipidomics studies that utilize cadaveric tissues, provide a few pertinent examples, and discuss perspectives on both future technological directions and the applications they will enable.
Collapse
Affiliation(s)
- Luheng Lyu
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute and Department of Ophthalmology, University of Miami, Miami, Florida, USA.,Master's Program in Biomedical Sciences, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida USA
| | - Neel Sonik
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute and Department of Ophthalmology, University of Miami, Miami, Florida, USA.,Master's Program in Biomedical Sciences, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida USA
| | - Sanjoy Bhattacharya
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute and Department of Ophthalmology, University of Miami, Miami, Florida, USA.,Master's Program in Biomedical Sciences, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida USA
| |
Collapse
|
41
|
Eveque-Mourroux M, Emans PJ, Boonen A, Claes BSR, Bouwman FG, Heeren RMA, Cillero-Pastor B. Heterogeneity of Lipid and Protein Cartilage Profiles Associated with Human Osteoarthritis with or without Type 2 Diabetes Mellitus. J Proteome Res 2021; 20:2973-2982. [PMID: 33866785 PMCID: PMC8155553 DOI: 10.1021/acs.jproteome.1c00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a multifactorial pathology and comprises a wide range of distinct phenotypes. In this context, the characterization of the different molecular profiles associated with each phenotype can improve the classification of OA. In particular, OA can coexist with type 2 diabetes mellitus (T2DM). This study investigates lipidomic and proteomic differences between human OA/T2DM- and OA/T2DM+ cartilage through a multimodal mass spectrometry approach. Human cartilage samples were obtained after total knee replacement from OA/T2DM- and OA/T2DM+ patients. Label-free proteomics was employed to study differences in protein abundance and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for spatially resolved-lipid analysis. Label-free proteomic analysis showed differences between OA/T2DM- and OA/T2DM+ phenotypes in several metabolic pathways such as lipid regulation. Interestingly, phospholipase A2 protein was found increased within the OA/T2DM+ cohort. In addition, MALDI-MSI experiments revealed that phosphatidylcholine and sphingomyelin species were characteristic of the OA/T2DM- group, whereas lysolipids were more characteristic of the OA/T2DM+ phenotype. The data also pointed out differences in phospholipid content between superficial and deep layers of the cartilage. Our study shows distinctively different lipid and protein profiles between OA/T2DM- and OA/T2DM+ human cartilage, demonstrating the importance of subclassification of the OA disease for better personalized treatments.
Collapse
Affiliation(s)
- Maxime
R. Eveque-Mourroux
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Pieter J. Emans
- Department
of Orthopedic Surgery, Maastricht University
Medical Center, 6229 HX Maastricht, Netherlands
| | - Annelies Boonen
- Department
of Internal Medicine, Division of Rheumatology, and Care and Public
Health Research Institute (CAPHRI), Maastricht
University Medical Center, 6229 HX Maastricht, Netherlands
| | - Britt S. R. Claes
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Freek G. Bouwman
- Department
of Human Biology, NUTRIM School of Nutrition and Translational Research
in Metabolism, Maastricht University Medical
Center, 6229 HX Maastricht, Netherlands
| | - Ron M. A. Heeren
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| |
Collapse
|
42
|
Vandenbosch M, Nauta SP, Svirkova A, Poeze M, Heeren RMA, Siegel TP, Cuypers E, Marchetti-Deschmann M. Sample preparation of bone tissue for MALDI-MSI for forensic and (pre)clinical applications. Anal Bioanal Chem 2021; 413:2683-2694. [PMID: 32930817 PMCID: PMC8007508 DOI: 10.1007/s00216-020-02920-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
In the past decades, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been applied to a broad range of biological samples, e.g., forensics and preclinical samples. The use of MALDI-MSI for the analysis of bone tissue has been limited due to the insulating properties of the material but more importantly the absence of a proper sample preparation protocol for undecalcified bone tissue. Undecalcified sections are preferred to retain sample integrity as much as possible or to study the tissue-bone bio interface in particular. Here, we optimized the sample preparation protocol of undecalcified bone samples, aimed at both targeted and untargeted applications for forensic and preclinical applications, respectively. Different concentrations of gelatin and carboxymethyl cellulose (CMC) were tested as embedding materials. The composition of 20% gelatin and 7.5% CMC showed to support the tissue best while sectioning. Bone tissue has to be sectioned with a tungsten carbide knife in a longitudinal fashion, while the sections need to be supported with double-sided tapes to maintain the morphology of the tissue. The developed sectioning method was shown to be applicable on rat and mouse as well as human bone samples. Targeted (methadone and EDDP) as well as untargeted (unknown lipids) detection was demonstrated. DHB proved to be the most suitable matrix for the detection of methadone and EDDP in positive ion mode. The limit of detection (LOD) is estimated to approximately 50 pg/spot on bone tissue. The protocol was successfully applied to detect the presence of methadone and EDDP in a dosed rat femur and a dosed human clavicle. The best matrices for the untargeted detection of unknown lipids in mouse hind legs in positive ion mode were CHCA and DHB based on the number of tissue-specific peaks and signal-to-noise ratios. The developed and optimized sample preparation method, applicable on animal and human bones, opens the door for future forensic and (pre)clinical investigations.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- KU Leuven Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Sylvia P Nauta
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
- Department of Orthopedic Surgery and Trauma Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Anastasiya Svirkova
- Institute of Chemical Technologies and Analytics, Division of Imaging and Instrumental Analytical Chemistry, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Eva Cuypers
- KU Leuven Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, Division of Imaging and Instrumental Analytical Chemistry, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060, Vienna, Austria.
| |
Collapse
|
43
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
44
|
Vaysse PM, Grabsch HI, van den Hout MFCM, Bemelmans MHA, Heeren RMA, Olde Damink SWM, Porta Siegel T. Real-time lipid patterns to classify viable and necrotic liver tumors. J Transl Med 2021; 101:381-395. [PMID: 33483597 DOI: 10.1038/s41374-020-00526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Real-time tissue classifiers based on molecular patterns are emerging tools for fast tumor diagnosis. Here, we used rapid evaporative ionization mass spectrometry (REIMS) and multivariate statistical analysis (principal component analysis-linear discriminant analysis) to classify tissues with subsequent comparison to gold standard histopathology. We explored whether REIMS lipid patterns can identify human liver tumors and improve the rapid characterization of their underlying metabolic features. REIMS-based classification of liver parenchyma (LP), hepatocellular carcinoma (HCC), and metastatic adenocarcinoma (MAC) reached an accuracy of 98.3%. Lipid patterns of LP were more similar to those of HCC than to those of MAC and allowed clear distinction between primary and metastatic liver tumors. HCC lipid patterns were more heterogeneous than those of MAC, which is consistent with the variation seen in the histopathological phenotype. A common ceramide pattern discriminated necrotic from viable tumor in MAC with 92.9% accuracy and in other human tumors. Targeted analysis of ceramide and related sphingolipid mass features in necrotic tissues may provide a new classification of tumor cell death based on metabolic shifts. Real-time lipid patterns may have a role in future clinical decision-making in cancer precision medicine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging Institute (M4i), University of Maastricht, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Otorhinolaryngology, Head & Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mari F C M van den Hout
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marc H A Bemelmans
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), University of Maastricht, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism Faculty of Health, University of Maastricht, Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging Institute (M4i), University of Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sørensen SB, Fagerberg R, Ecker J, Liebisch G, Jensen ON, Vance DE, Færgeman NJ, Klemm RW, Ejsing CS. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep 2021; 34:108710. [PMID: 33535053 DOI: 10.1016/j.celrep.2021.108710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Lena Sokol Becciolini
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Bek Sørensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Rolf Fagerberg
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Josef Ecker
- ZIEL-Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Dennis E Vance
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
46
|
Andersen MK, Høiem TS, Claes BSR, Balluff B, Martin-Lorenzo M, Richardsen E, Krossa S, Bertilsson H, Heeren RMA, Rye MB, Giskeødegård GF, Bathen TF, Tessem MB. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab 2021; 9:9. [PMID: 33514438 PMCID: PMC7847144 DOI: 10.1186/s40170-021-00242-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section. Methods Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15 patients). Mass identification was performed with tandem MS. Results Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer, including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc, and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine compared to cancer and non-cancer epithelium. Conclusions This study shows that specific tissue compartments within prostate cancer samples have distinct metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk analysis. We identified several differential metabolites and lipids that have potential to be developed further as diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00242-z.
Collapse
Affiliation(s)
- Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Therese S Høiem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Elin Richardsen
- Department of Medical Biology, UiT The Artic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, UNN, Tromsø, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Bertilsson
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Urology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Morten B Rye
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro F Giskeødegård
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway. .,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
47
|
Flinders B, Morrell J, Marshall PS, Ranshaw LE, Heeren RMA, Clench MR. Monitoring the three-dimensional distribution of endogenous species in the lungs by matrix-assisted laser desorption/ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8957. [PMID: 32990347 DOI: 10.1002/rcm.8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is routinely employed to monitor the distribution of compounds in tissue sections and generate two-dimensional (2D) images. Whilst informative the images do not represent the distribution of the analyte of interest through the entire organ. The generation of 3D images is an exciting field that can provide a deeper view of the analyte of interest throughout an entire organ. METHODS Serial sections of mouse and rat lung tissue were obtained at 120 μm depth intervals and imaged individually. Homogenate registration markers were incorporated in order to aid the final 3D image construction. Using freely available software packages, the images were stacked together to generate a 3D image that showed the distribution of endogenous species throughout the lungs. RESULTS Preliminary tests were performed on 16 serial tissue sections of mouse lungs. A 3D model showing the distribution of phosphocholine at m/z 184.09 was constructed, which defined the external structure of the lungs and trachea. Later, a second experiment was performed using 24 serial tissue sections of the left lung of a rat. Two molecular markers, identified as [PC (32:1) + K]+ at m/z 770.51 and [PC (36:4) + K]+ at m/z 820.52, were used to generate 3D models of the parenchyma and airways, respectively. CONCLUSIONS A straightforward method to generate 3D MALDI-MS images of selected molecules in lung tissue has been presented. Using freely available imaging software, the 3D distributions of molecules related to different anatomical features were determined.
Collapse
Affiliation(s)
- Bryn Flinders
- Centre for Mass Spectrometry Imaging, Biomedical Research Centre, City Campus, Sheffield Hallam University, Sheffield, S1 1WB, UK
- Hair Diagnostix, Dutch Screening Group, Gaetano Martinolaan 63A, Maastricht, 6229 GS, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Josie Morrell
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Lisa E Ranshaw
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomedical Research Centre, City Campus, Sheffield Hallam University, Sheffield, S1 1WB, UK
| |
Collapse
|
48
|
Ellis SR, Hall E, Panchal M, Flinders B, Madsen J, Koster G, Heeren RMA, Clark HW, Postle AD. Mass spectrometry imaging of phosphatidylcholine metabolism in lungs administered with therapeutic surfactants and isotopic tracers. J Lipid Res 2021; 62:100023. [PMID: 33453219 PMCID: PMC7961103 DOI: 10.1016/j.jlr.2021.100023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mass spectrometry imaging (MSI) visualizes molecular distributions throughout tissues but is blind to dynamic metabolic processes. Here, MSI with high mass resolution together with multiple stable isotope labeling provided spatial analyses of phosphatidylcholine (PC) metabolism in mouse lungs. Dysregulated surfactant metabolism is central to many respiratory diseases. Metabolism and turnover of therapeutic pulmonary surfactants were imaged from distributions of intact and metabolic products of an added tracer, universally 13C-labeled dipalmitoyl PC (U13C-DPPC). The parenchymal distributions of newly synthesized PC species were also imaged from incorporations of methyl-D9-choline. This dual labeling strategy demonstrated both lack of inhibition of endogenous PC synthesis by exogenous surfactant and location of acyl chain remodeling processes acting on the U13C-DPPC-labeled surfactant, leading to formation of polyunsaturated PC lipids. This ability to visualize discrete metabolic events will greatly enhance our understanding of lipid metabolism in diverse tissues and has potential application to both clinical and experimental studies.
Collapse
Affiliation(s)
- Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Emily Hall
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Madhuriben Panchal
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Bryn Flinders
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands
| | - Jens Madsen
- Elizabeth Garrett Anderson Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Grielof Koster
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands
| | - Howard W Clark
- Elizabeth Garrett Anderson Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom; National Institute for Health Biomedical Research Centre, University College London Hospital Biomedical Research Centre, London, United Kingdom
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
49
|
Manzi M, Palazzo M, Knott ME, Beauseroy P, Yankilevich P, Giménez MI, Monge ME. Coupled Mass-Spectrometry-Based Lipidomics Machine Learning Approach for Early Detection of Clear Cell Renal Cell Carcinoma. J Proteome Res 2020; 20:841-857. [PMID: 33207877 DOI: 10.1021/acs.jproteome.0c00663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A discovery-based lipid profiling study of serum samples from a cohort that included patients with clear cell renal cell carcinoma (ccRCC) stages I, II, III, and IV (n = 112) and controls (n = 52) was performed using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and machine learning techniques. Multivariate models based on support vector machines and the LASSO variable selection method yielded two discriminant lipid panels for ccRCC detection and early diagnosis. A 16-lipid panel allowed discriminating ccRCC patients from controls with 95.7% accuracy in a training set under cross-validation and 77.1% accuracy in an independent test set. A second model trained to discriminate early (I and II) from late (III and IV) stage ccRCC yielded a panel of 26 compounds that classified stage I patients from an independent test set with 82.1% accuracy. Thirteen species, including cholic acid, undecylenic acid, lauric acid, LPC(16:0/0:0), and PC(18:2/18:2), identified with level 1 exhibited significantly lower levels in samples from ccRCC patients compared to controls. Moreover, 3α-hydroxy-5α-androstan-17-one 3-sulfate, cis-5-dodecenoic acid, arachidonic acid, cis-13-docosenoic acid, PI(16:0/18:1), PC(16:0/18:2), and PC(O-16:0/20:4) contributed to discriminate early from late ccRCC stage patients. The results are auspicious for early ccRCC diagnosis after validation of the panels in larger and different cohorts.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina
| | - Martín Palazzo
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - Pierre Beauseroy
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Isabel Giménez
- Departamento de Diagnóstico y Tratamiento, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB CABA, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| |
Collapse
|
50
|
Vaysse PM, Kooreman LFS, Engelen SME, Kremer B, Olde Damink SWM, Heeren RMA, Smidt ML, Porta Siegel T. Stromal vapors for real-time molecular guidance of breast-conserving surgery. Sci Rep 2020; 10:20109. [PMID: 33208813 PMCID: PMC7674429 DOI: 10.1038/s41598-020-77102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
Achieving radical tumor resection while preserving disease-free tissue during breast-conserving surgery (BCS) remains a challenge. Here, mass spectrometry technologies were used to discriminate stromal tissues reported to be altered surrounding breast tumors, and build tissue classifiers ex vivo. Additionally, we employed the approach for in vivo and real-time classification of breast pathology based on electrosurgical vapors. Breast-resected samples were obtained from patients undergoing surgery at MUMC+. The specimens were subsequently sampled ex vivo to generate electrosurgical vapors analyzed by rapid evaporative ionization mass spectrometry (REIMS). Tissues were processed for histopathology to assign tissue components to the mass spectral profiles. We collected a total of 689 ex vivo REIMS profiles from 72 patients which were analyzed using multivariate statistical analysis (principal component analysis-linear discriminant analysis). These profiles were classified as adipose, stromal and tumor tissues with 92.3% accuracy with a leave-one patient-out cross-validation. Tissue recognition using this ex vivo-built REIMS classification model was subsequently tested in vivo on electrosurgical vapors. Stromal and adipose tissues were classified during one BCS. Complementary ex vivo analyses were performed by REIMS and by desorption electrospray ionization mass spectrometry (DESI-MS) to study the potential of breast stroma to guide BCS. Tumor border stroma (TBS) and remote tumor stroma (RTS) were classified by REIMS and DESI-MS with 86.4% and 87.8% accuracy, respectively. We demonstrate the potential of stromal molecular alterations surrounding breast tumors to guide BCS in real-time using REIMS analysis of electrosurgical vapors.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Loes F S Kooreman
- Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sanne M E Engelen
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism Faculty of Health, University of Maastricht, Maastricht, The Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands
| | - Marjolein L Smidt
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), University of Maastricht, Maastricht, The Netherlands.
| |
Collapse
|