1
|
Huang R, Zhang X, Luo K, Tembrock LR, Li S, Wu Z. The Identification of Auxin Response Factors and Expression Analyses of Different Floral Development Stages in Roses. Genes (Basel) 2025; 16:41. [PMID: 39858591 PMCID: PMC11764539 DOI: 10.3390/genes16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:Auxin response factors (ARFs) are important in plant growth and development, especially flower development. However, there is limited research on the comprehensive identification and characterization of ARF genes in roses. Methods: We employed bioinformatics tools to identify the ARF genes of roses. These genes were characterized for their phylogenetic relationships, chromosomal positions, conserved motifs, gene structures, and expression patterns. Results: In this study, a total of 17 ARF genes were identified in the genomes of Rosa chinensis 'OB', R. chinensis 'CH', R. rugosa, and R. wichurana. Based on RNA-seq analyses, we found that the ARF genes had diverse transcript patterns in various tissues and cultivars. In 'CH', the expression levels of RcCH_ARFs during different flower-development stages were classified into four clusters. In cluster 3 and cluster 4, RcCH_ARFs were specifically high and low in different stages of floral evocation. Gene expression and phylogenetic analyses showed that RcCH_ARF3, RcCH_ARF4, and RcCH_ARF18 were likely to be the key genes for rose flower development. Conclusions: The identification and characterization of ARF genes in Rosa were investigated. The results presented here provide a theoretical basis for the molecular mechanisms of ARF genes in plant development and flowering for roses, with a broader application for other species in the rose family and for the development of novel cultivars.
Collapse
Affiliation(s)
- Rui Huang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
2
|
Huo Y, Chen H, Zhang Z, Song Y, Liu S, Wang P, Fan S. GmARF15 Enhances the Resistance of Soybean to Phytophthora sojae by Promoting GmPT10d Expression in Response to Salicylic Acid Signalling. Int J Mol Sci 2024; 26:191. [PMID: 39796049 PMCID: PMC11720048 DOI: 10.3390/ijms26010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of Glycine max (soybean) to P. sojae infection. In this study, we demonstrated that an isoflavonoid-specific prenyltransferase gene (GmPT10d, Glyma.10G070300) was significantly upregulated in the soybean cultivar Williams 82 with high resistance to P. sojae infection. Transgenic soybean seedlings overexpressing GmPT10d exhibited enhanced resistance to P. sojae, and those subjected to RNA interference showed increased susceptibility to the pathogen. Yeast-one-hybrid and electrophoretic mobility shift assays revealed that GmARF15 could directly bind to the promoter of GmPT10d. Further analysis of the GmARF15 function showed that transgenic soybean seedlings overexpressing GmARF15 also exhibited enhanced resistance to P. sojae. Transactivation assay, luciferase assay, and qPCR analysis showed that GmARF15 could promote the expression of GmPT10d. Further analysis indicated that elevated salicylic acid levels were associated with increased expression of GmARF15 and GmPT10d. Taken together, these findings reveal a regulatory mechanism by which GmARF15 enhances soybean resistance to P. sojae, potentially by promoting the expression of GmPT10d through the salicylic acid signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Piwu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China; (Y.H.)
| | - Sujie Fan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China; (Y.H.)
| |
Collapse
|
3
|
Singh S, Prakash G, Nanjundappa S, Malipatil R, Kalita P, Satyavathi TC, Thirunavukkarasu N. Novel SNPs Linked to Blast Resistance Genes Identified in Pearl Millet Through Genome-Wide Association Models. Int J Mol Sci 2024; 25:12048. [PMID: 39596115 PMCID: PMC11593765 DOI: 10.3390/ijms252212048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a genome-wide association study (GWAS) involving 281 diverse pearl millet inbreds. GWAS panel was phenotyped for blast resistance against three distinct isolates of P. grisea collected from Delhi, Gujarat, and Rajasthan locations, revealing a significant variability with 16.7% of the inbreds showing high resistance. Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK) and Multi-Locus Mixed Model (MLMM) models using transformed means identified 68 significant SNPs linked to resistance, with hotspots for resistance-related genes on chromosomes 1, 2, and 6. These regions harbor genes involved in defense mechanisms, including immune response, stress tolerance, signal transduction, transcription regulation, and pathogen defense. Genes, namely 14-3-3-like proteins RGA2, RGA4, hypersensitive-induced response proteins, NHL3, NBS-LRR, LRR-RLK, LRRNT_2, and various transcription factors such as AP2/ERF and WRKY, played a crucial role in the stress-responsive pathways. Analyses of transporter proteins, redox processes, and structural proteins revealed additional mechanisms contributing to blast resistance. This study offers valuable insights into the complex genetic architecture of blast resistance in pearl millet, offering a solid foundation for marker-assisted breeding programs and gene-editing experiments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sandeep Nanjundappa
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Prerana Kalita
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Tara C. Satyavathi
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| |
Collapse
|
4
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
5
|
Zhang X, Wang X, Wang T. Comprehensive Transcriptomic Analysis Reveals Defense-Related Genes and Pathways of Rice Plants in Response to Fall Armyworm ( Spodoptera frugiperda) Infestation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2879. [PMID: 39458827 PMCID: PMC11510987 DOI: 10.3390/plants13202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Rice (Oryza sativa L.) serves as a substitute for bread and is a staple food for half of the world's population, but it is heavily affected by insect pests. The fall armyworm (Spodoptera frugiperda) is a highly destructive pest, threatening rice and other crops in tropical regions. Despite its significance, little is known about the molecular mechanisms underlying rice's response to fall armyworm infestation. In this study, we used transcriptome analysis to explore the global changes in gene expression in rice leaves during a 1 h and 12 h fall armyworm feeding. The results reveal 2695 and 6264 differentially expressed genes (DEGs) at 1 and 12 h post-infestation, respectively. Gene Ontology (GO) and KEGG enrichment analyses provide insights into biological processes and pathways affected by fall armyworm feeding. Key genes associated with hormone regulation, defense metabolic pathways, and antioxidant and detoxification processes were upregulated, suggesting the involvement of jasmonic acid (JA) signaling, salicylic acid biosynthesis pathways, auxin response, and heat shock proteins in defense during 1 h and 12 h after fall armyworm infestation. Similarly, key genes involved in transcriptional regulation and defense mechanisms reveal the activation of calmodulins, transcription factors (TFs), and genes related to secondary metabolite biosynthesis. Additionally, MYB, WRKY, and ethylene-responsive factors (ERFs) are identified as crucial TF families in rice's defense response. This study provides a comprehensive understanding of the molecular dynamics in rice responding to fall armyworm infestation, offering valuable insights for developing pest-resistant rice varieties and enhancing global food security. The identified genes and pathways provide an extensive array of genomic resources that can be used for further genetic investigation into rice herbivore resistance. This also suggests that rice plants may have evolved strategies against herbivorous insects. It also lays the groundwork for novel pest-resistance techniques for rice.
Collapse
Affiliation(s)
| | | | - Tao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (X.Z.); (X.W.)
| |
Collapse
|
6
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
7
|
Morton M, Fiene G, Ahmed HI, Rey E, Abrouk M, Angel Y, Johansen K, Saber NO, Malbeteau Y, Al-Mashharawi S, Ziliani MG, Aragon B, Oakey H, Berger B, Brien C, Krattinger SG, Mousa MAA, McCabe MF, Negrão S, Tester M, Julkowska MM. Deciphering salt stress responses in Solanum pimpinellifolium through high-throughput phenotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2514-2537. [PMID: 38970620 DOI: 10.1111/tpj.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.
Collapse
Affiliation(s)
- Mitchell Morton
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gabriele Fiene
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elodie Rey
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yoseline Angel
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| | - Kasper Johansen
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noha O Saber
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yoann Malbeteau
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samir Al-Mashharawi
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Matteo G Ziliani
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Hydrosat S.à r.l., 9 Rue du Laboratoire, Luxembourg City, 1911, Luxembourg
| | - Bruno Aragon
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Helena Oakey
- Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Bettina Berger
- Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, Australia
| | - Chris Brien
- Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, Australia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magdi A A Mousa
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, 80208, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Matthew F McCabe
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- University College, Dublin, Republic of Ireland
| | - Mark Tester
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena M Julkowska
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Boyce Thompson Institute, Ithaca, New York, USA
| |
Collapse
|
8
|
Mal S, Panchal S. Drought and salt stress mitigation in crop plants using stress-tolerant auxin-producing endophytic bacteria: a futuristic approach towards sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1422504. [PMID: 39015292 PMCID: PMC11250085 DOI: 10.3389/fpls.2024.1422504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Abiotic stresses, especially drought stress and salt stress in crop plants are accelerating due to climate change. The combined impact of drought and salt is anticipated to lead to the loss of up to 50% of arable land globally, resulting in diminished growth and substantial yield losses threatening food security. Addressing the challenges, agriculture through sustainable practices emerges as a potential solution to achieve Zero Hunger, one of the sustainable development goals set by the IUCN. Plants deploy a myriad of mechanisms to effectively address drought and salt stress with phytohormones playing pivotal roles as crucial signaling molecules for stress tolerance. The phytohormone auxin, particularly indole acetic acid (IAA) emerges as a paramount regulator integral to numerous aspects of plant growth and development. During both drought and salt stress conditions, auxin plays crucial roles for tolerance, but stress-induced processes lead to decreased levels of endogenous free auxin in the plant, leading to an urgent need for auxin production. With an aim to augment this auxin deficiency, several researchers have extensively investigated auxin production, particularly IAA by plant-associated microorganisms, including endophytic bacteria. These endophytic bacteria have been introduced into various crop plants subjected to drought or salt stress and potential isolates promoting plant growth have been identified. However, post-identification, essential studies on translational research to advance these potential isolates from the laboratory to the field are lacking. This review aims to offer an overview of stress tolerant auxin-producing endophytic bacterial isolates while identifying research gaps that need to be fulfilled to utilize this knowledge for the formulation of crop-specific and stress-specific endophyte bioinoculants for the plant to cope with auxin imbalance occurring during these stress conditions.
Collapse
Affiliation(s)
| | - Shweta Panchal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
Ji Z, Wang R, Zhang M, Chen L, Wang Y, Hui J, Hao S, Lv B, Jiang Q, Cao Y. Genome-Wide Identification and Expression Analysis of BrBASS Genes in Brassica rapa Reveals Their Potential Roles in Abiotic Stress Tolerance. Curr Issues Mol Biol 2024; 46:6646-6664. [PMID: 39057038 PMCID: PMC11275500 DOI: 10.3390/cimb46070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The bile acid sodium symporter (BASS) family plays an important role in transporting substances and coordinating plants' salt tolerance. However, the function of BASS in Brassica rapa has not yet been elucidated. In this study, eight BrBASS genes distributed on five chromosomes were identified that belonged to four subfamilies. Expression profile analysis showed that BrBASS7 was highly expressed in roots, whereas BrBASS4 was highly expressed in flowers. The promoter element analysis also identified several typical homeopathic elements involved in abiotic stress tolerance and stress-related hormonal responses. Notably, under salt stress, the expression of BrBASS2 was significantly upregulated; under osmotic stress, that of BrBASS4 increased and then decreased; and under cold stress, that of BrBASS7 generally declined. The protein-protein interaction analysis revealed that the BrBASS2 homologous gene AtBASS2 interacted with Nhd1 (N-mediated heading date-1) to alleviate salt stress in plants, while the BrBASS4 homologous gene AtBASS3 interacted with BLOS1 (biogenesis of lysosome-related organelles complex 1 subunit 1) via co-regulation with SNX1 (sorting nexin 1) to mitigate an unfavorable growing environment for roots. Further, Bra-miR396 (Bra-microRNA396) targeting BrBASS4 and BrBASS7 played a role in the plant response to osmotic and cold stress conditions, respectively. This research demonstrates that BrBASS2, BrBASS4, and BrBASS7 harbor great potential for regulating abiotic stresses. The findings will help advance the study of the functions of the BrBASS gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.J.)
| |
Collapse
|
11
|
Liu L, Gong Y, Yahaya BS, Chen Y, Shi D, Liu F, Gou J, Zhou Z, Lu Y, Wu F. Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:75. [PMID: 38878261 DOI: 10.1007/s11103-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/12/2024] [Indexed: 06/29/2024]
Abstract
Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Gong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yushu Chen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Dengke Shi
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Fangyuan Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Junlin Gou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Gao Z, Wu Y, Li M, Ding L, Li J, Liu Y, Cao Y, Hua Y, Jia Q, Wang D. The auxin response factor ( ARF) gene family in Cyclocarya paliurus: genome-wide identification and their expression profiling under heat and drought stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:921-944. [PMID: 38974352 PMCID: PMC11222355 DOI: 10.1007/s12298-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Auxin response factors (ARFs), as the main components of auxin signaling, play a crucial role in various processes of plant growth and development, as well as in stress response. So far, there have been no reports on the genome-wide identification of the ARF transcription factor family in Cyclocarya paliurus, a deciduous tree plant in the family Juglaceae. In this study, a total of 34 CpARF genes were identified based on whole genome sequence, and they were unevenly distributed on 16 chromosomes, with the highest distribution on chromosome 6. Domain analysis of CpARF proteins displayed that 31 out of 34 CpARF proteins contain a typical B3 domain (DBD domain), except CpARF12/ CpARF14/CpARF31, which all belong to Class VI. And 20 CpARFs (58.8%) contain an auxin_IAA binding domain, and are mainly distributed in classes I, and VI. Phylogenetic analysis showed that CpARF was divided into six classes (I-VI), each containing 4, 4, 1, 8, 4, and 13 members, respectively. Gene duplication analysis showed that there are 14 segmental duplications and zero tandem repeats were identified in the CpARF gene family of the C. paliurus genome. The Ka/Ks ratio of duplicate gene pairs indicates that CpARF genes are subjected to strong purification selection pressure. Synteny analysis showed that C. paliurus shared the highest homology in 74 ARF gene pairs with Juglans regia, followed by 73, 51, 25, and 11 homologous gene pairs with Populus trichocarpa, Juglans cathayensis, Arabidopsis, and rice, respectively. Promoter analysis revealed that 34 CpARF genes had cis-elements related to hormones, stress, light, and growth and development except for CpARF12. The expression profile analysis showed that almost all CpARF genes were differentially expressed in at least one tissue, and several CpARF genes displayed tissue-specific expression. Furthermore, 24 out of the 34 CpARF genes have significantly response to drought stress (P < 0.05), and most of them (16) being significantly down-regulated under moderate drought treatment. Meanwhile, the majority of CpARF genes (28) have significantly response to drought stress (P < 0.05), and most of them (26) are significantly down-regulated under severe drought treatment. Furthermore, 32 out of the 34 CpARF genes have significantly response to high, middle, and low salt stress under salt treatment (P < 0.05). Additionally, subcellular localization analysis confirmed that CpARF16 and CpARF32 were all localized to nucleus. Thus, our findings expand the understanding of the function of CpARF genes and provide a basis for further functional studies on CpARF genes in C. paliurus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01474-1.
Collapse
Affiliation(s)
- Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yazhu Wu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Muzi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Lan Ding
- Linan District Agriculture and Rural Bureau, Hangzhou, 311399 People’s Republic of China
| | - Junyi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
13
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
14
|
Asins MJ, Carbonell EA. Meta-QTL and Candidate Gene Analyses of Agronomic Salt Tolerance and Related Traits in an RIL Population Derived from Solanum pimpinellifolium. Int J Mol Sci 2024; 25:6055. [PMID: 38892245 PMCID: PMC11172916 DOI: 10.3390/ijms25116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.
Collapse
Affiliation(s)
- Maria J. Asins
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | |
Collapse
|
15
|
Tiwari K, Tripathi S, Mahra S, Mathew S, Rana S, Tripathi DK, Sharma S. Carrier-based delivery system of phytohormones in plants: stepping outside of the ordinary. PHYSIOLOGIA PLANTARUM 2024; 176:e14387. [PMID: 38925551 DOI: 10.1111/ppl.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 06/28/2024]
Abstract
Climate change is increasing the stresses on crops, resulting in reduced productivity and further augmenting global food security issues. The dynamic climatic conditions are a severe threat to the sustainability of the ecosystems. The role of technology in enhancing agricultural produce with the minimum environmental impact is hence crucial. Active molecule/Plant growth regulators (PGRs) are molecules helping plants' growth, development, and tolerance to abiotic and biotic stresses. However, their degradation, leaching in surrounding soil and ground water, as well as the assessment of the correct dose of application etc., are some of the technical disadvantages faced. They can be resolved by encapsulation/loading of PGRs on polymer matrices. Micro/nanoencapsulation is a revolutionary tool to deliver bioactive compounds in an economically affordable and environmentally friendly way. Carrier-based smart delivery systems could be a better alternative to PGRs application in the agriculture field than conventional methods (e.g., spraying). The physiochemical properties and release kinetics of PGRs from the encapsulating system are being explored. Therefore, the present review emphasizes the current status of PGRs encapsulation approach and their potential benefits to plants. This review also addressed the mechanistic action of carrier-based delivery systems for release, which may aid in developing smart delivery systems with specific tailored properties in future research.
Collapse
Affiliation(s)
- Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sobhitha Mathew
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| |
Collapse
|
16
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
17
|
Wang Z, Shang Q, Zhang W, Huang D, Pan X. Identification of ARF genes in Juglans Sigillata Dode and analysis of their expression patterns under drought stress. Mol Biol Rep 2024; 51:539. [PMID: 38642202 DOI: 10.1007/s11033-024-09441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Auxin response factor (ARF), a transcription factors that controls the expression of genes responsive to auxin, plays a key role in the regulation of plant growth and development. Analyses aimed at identifying ARF family genes and characterizing their functions in Juglans sigillata Dode are lacking. METHODS AND RESULTS We used bioinformatic approaches to identify members of the J. sigillata ARF gene family and analyze their evolutionary relationships, collinearity, cis-acting elements, and tissue-specific expression patterns. The expression patterns of ARF gene family members under natural drought conditions were also analyzed. The J. sigillata ARF gene family contained 31 members, which were unevenly distributed across 16 chromosomes. We constructed a phylogenetic tree of JsARF genes and other plant ARF genes. Cis-acting elements in the promoters of JsARF were predicted. JsARF28 showed higher expressions in both the roots and leaves. A heat map of the transcriptome data of the cluster analysis under drought stress indicated that JsARF3/9/11/17/20/26 are responsive to drought. The expression of the 11 ARF genes varied under PEG treatment and JsARF18 and JsARF20 were significantly up-regulated. CONCLUSIONS The interactions between abiotic stresses and plant hormones are supported by our cumulative data, which also offers a theoretical groundwork for comprehending the ARF mechanism and drought resistance in J. sigillata.
Collapse
Affiliation(s)
- Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Qing Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Dong Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Xuejun Pan
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Zhang Y, Wu W, Shen H, Yang L. Genome-wide identification and expression analysis of ARF gene family in embryonic development of Korean pine (Pinus koraiensis). BMC PLANT BIOLOGY 2024; 24:267. [PMID: 38600459 PMCID: PMC11005186 DOI: 10.1186/s12870-024-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND The Auxin Responsive Factor (ARF) family plays a crucial role in mediating auxin signal transduction and is vital for plant growth and development. However, the function of ARF genes in Korean pine (Pinus koraiensis), a conifer species of significant economic value, remains unclear. RESULTS This study utilized the whole genome of Korean pine to conduct bioinformatics analysis, resulting in the identification of 13 ARF genes. A phylogenetic analysis revealed that these 13 PkorARF genes can be classified into 4 subfamilies, indicating the presence of conserved structural characteristics within each subfamily. Protein interaction prediction indicated that Pkor01G00962.1 and Pkor07G00704.1 may have a significant role in regulating plant growth and development as core components of the PkorARFs family. Additionally, the analysis of RNA-seq and RT-qPCR expression patterns suggested that PkorARF genes play a crucial role in the development process of Korean pine. CONCLUSION Pkor01G00962.1 and Pkor07G00704.1, which are core genes of the PkorARFs family, play a potentially crucial role in regulating the fertilization and developmental process of Korean pine. This study provides a valuable reference for investigating the molecular mechanism of embryonic development in Korean pine and establishes a foundation for cultivating high-quality Korean pine.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hailong Shen
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Park YS, Cho HJ, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper. BMC PLANT BIOLOGY 2024; 24:201. [PMID: 38500065 PMCID: PMC10949715 DOI: 10.1186/s12870-024-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS Our study provides evolutionary and functional insights into the REM gene family in pepper.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
20
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
21
|
Ayyappan V, Sripathi VR, Xie S, Saha MC, Hayford R, Serba DD, Subramani M, Thimmapuram J, Todd A, Kalavacharla VK. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass. BMC Genomics 2024; 25:223. [PMID: 38424499 PMCID: PMC10903042 DOI: 10.1186/s12864-024-10068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA.
| | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Rita Hayford
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | | | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
22
|
Zhang MJ, Xue YY, Xu S, Jin XR, Man XC. Identification of ARF genes in Cucurbita pepo L and analysis of expression patterns, and functional analysis of CpARF22 under drought, salt stress. BMC Genomics 2024; 25:112. [PMID: 38273235 PMCID: PMC10809590 DOI: 10.1186/s12864-024-09992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Auxin transcription factor (ARF) is an important transcription factor that transmits auxin signals and is involved in plant growth and development as well as stress response. However, genome-wide identification and responses to abiotic and pathogen stresses of the ARF gene family in Cucurbita pepo L, especially pathogen stresses, have not been reported. RESULTS Finally, 33 ARF genes (CpARF01 to CpARF33) were identified in C.pepo from the Cucurbitaceae genome database using bioinformatics methods. The putative protein contains 438 to 1071 amino acids, the isoelectric point is 4.99 to 8.54, and the molecular weight is 47759.36 to 117813.27 Da, the instability index ranged from 40.74 to 68.94, and the liposoluble index ranged from 62.56 to 76.18. The 33 genes were mainly localized in the nucleus and cytoplasm, and distributed on 16 chromosomes unevenly. Phylogenetic analysis showed that 33 CpARF proteins were divided into 6 groups. According to the amino acid sequence of CpARF proteins, 10 motifs were identified, and 1,3,6,8,10 motifs were highly conserved in most of the CpARF proteins. At the same time, it was found that genes in the same subfamily have similar gene structures. Cis-elements and protein interaction networks predicted that CpARF may be involved in abiotic factors related to the stress response. QRT-PCR analysis showed that most of the CpARF genes were upregulated under NaCl, PEG, and pathogen treatment compared to the control. Subcellular localization showed that CpARF22 was localized in the nucleus. The transgenic Arabidopsis thaliana lines with the CpARF22 gene enhanced their tolerance to salt and drought stress. CONCLUSION In this study, we systematically analyzed the CpARF gene family and its expression patterns under drought, salt, and pathogen stress, which improved our understanding of the ARF protein of zucchini, and laid a solid foundation for functional analysis of the CpARF gene.
Collapse
Affiliation(s)
- Ming-Jun Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying-Yu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shuang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuan-Ru Jin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xing-Chu Man
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
23
|
Cantó-Pastor A, Kajala K, Shaar-Moshe L, Manzano C, Timilsena P, De Bellis D, Gray S, Holbein J, Yang H, Mohammad S, Nirmal N, Suresh K, Ursache R, Mason GA, Gouran M, West DA, Borowsky AT, Shackel KA, Sinha N, Bailey-Serres J, Geldner N, Li S, Franke RB, Brady SM. A suberized exodermis is required for tomato drought tolerance. NATURE PLANTS 2024; 10:118-130. [PMID: 38168610 PMCID: PMC10808073 DOI: 10.1038/s41477-023-01567-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Concepción Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Prakash Timilsena
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Sharon Gray
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Julia Holbein
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - He Yang
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Sana Mohammad
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Niba Nirmal
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kenneth A Shackel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
24
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
25
|
Jing H, Strader LC. AUXIN RESPONSE FACTOR protein accumulation and function. Bioessays 2023; 45:e2300018. [PMID: 37584215 PMCID: PMC10592145 DOI: 10.1002/bies.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo-cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | |
Collapse
|
26
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
27
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Zhai Y, Shen X, Sun Y, Liu Q, Ma N, Zhang X, Jia Q, Liang Z, Wang D. Genome-wide investigation of ARF transcription factor gene family and its responses to abiotic stress in Coix (Coix lacryma-jobi L.). PROTOPLASMA 2023; 260:1389-1405. [PMID: 37041371 DOI: 10.1007/s00709-023-01855-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Auxin response factor (ARF) is an important transcription factor that regulates the expression of auxin-responsive genes by direct binding to their promoters, which play a central role in plant growth, development, and response to abiotic stresses. The availability of the entire Coix (Coix lacryma-jobi L.) genome sequence provides an opportunity to investigate the characteristics and evolutionary history of the ARF gene family in this medicine and food homology plant for the first time. In this study, a total of 27 ClARF genes were identified based on the genome-wide sequence of Coix. Twenty-four of the 27 ClARF genes were unevenly distributed on 8 chromosomes except Chr 4 and 10, and the remaining three genes (ClARF25-27) were not assigned to any chromosome. Most of the ClARF proteins were predicted to be localized to the nucleus, except ClARF24, which was localized to both the plasma membrane and nucleus. Twenty-seven ClARFs were clustered into six subgroups based on the phylogenetic analysis. Duplication analysis showed that segmental duplication, rather than tandem duplications promoting the expansion of the ClARF gene family. Synteny analysis showed that purifying selection might have been a primary driving force in the development of the ARF gene family in Coix and other investigated cereal plants. The prediction of the cis element of the promoter showed that 27 ClARF genes contain several stress response elements, suggesting that ClARFs might be involved in the abiotic stress response. Expression profile analysis shows that 27 ClARF genes were all expressed in the root, shoot, leaf, kernel, glume, and male flower of Coix with varying expression levels. Furthermore, qRT-PCR analyses revealed that the majority of ClARFs members were upregulated or downregulated in response to hormone treatment and abiotic stress. The current study expands our understanding of the functional roles of ClARFs in stress responses and provides basic information for the ClARF genes.
Collapse
Affiliation(s)
- Yufeng Zhai
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaoxia Shen
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Songyang Institute of Zhejiang Chinese Medical University, Lishui, 323400, China
| | - Yimin Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Qiao Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
29
|
Zhang X, Wang H, Chen Y, Huang M, Zhu S. The Over-Expression of Two R2R3-MYB Genes, PdMYB2R089 and PdMYB2R151, Increases the Drought-Resistant Capacity of Transgenic Arabidopsis. Int J Mol Sci 2023; 24:13466. [PMID: 37686270 PMCID: PMC10487491 DOI: 10.3390/ijms241713466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The R2R3-MYB genes in plants play an essential role in the drought-responsive signaling pathway. Plenty of R2R3-MYB S21 and S22 subgroup genes in Arabidopsis have been implicated in dehydration conditions, yet few have been covered in terms of the role of the S21 and S22 subgroup genes in poplar under drought. PdMYB2R089 and PdMYB2R151 genes, respectively belonging to the S21 and S22 subgroups of NL895 (Populus deltoides × P. euramericana cv. 'Nanlin895'), were selected based on the previous expression analysis of poplar R2R3-MYB genes that are responsive to dehydration. The regulatory functions of two target genes in plant responses to drought stress were studied and speculated through the genetic transformation of Arabidopsis thaliana. PdMYB2R089 and PdMYB2R151 could promote the closure of stomata in leaves, lessen the production of malondialdehyde (MDA), enhance the activity of the peroxidase (POD) enzyme, and shorten the life cycle of transgenic plants, in part owing to their similar conserved domains. Moreover, PdMYB2R089 could strengthen root length and lateral root growth. These results suggest that PdMYB2R089 and PdMYB2R151 genes might have the potential to improve drought adaptability in plants. In addition, PdMYB2R151 could significantly improve the seed germination rate of transgenic Arabidopsis, but PdMYB2R089 could not. This finding provides a clue for the subsequent functional dissection of S21 and S22 subgroup genes in poplar that is responsive to drought.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Haoran Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China;
| | - Ying Chen
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Minren Huang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Chen F, Zhang J, Ha X, Ma H. Genome-wide identification and expression analysis of the Auxin-Response factor (ARF) gene family in Medicago sativa under abiotic stress. BMC Genomics 2023; 24:498. [PMID: 37644390 PMCID: PMC10463752 DOI: 10.1186/s12864-023-09610-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa) is the most widely planted legume forage and one of the most economically valuable crops in the world. The periodic changes in its growth and development and abiotic stress determine its yield and economic benefits. Auxin controls many aspects of alfalfa growth by regulating gene expression, including organ differentiation and stress response. Auxin response factors (ARF) are transcription factors that play an essential role in auxin signal transduction and regulate the expression of auxin-responsive genes. However, the function of ARF transcription factors is unclear in autotetraploid-cultivated alfalfa. RESULT A total of 81 ARF were identified in the alfalfa genome in this study. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, identifying that ARF genes are mainly involved in transcriptional regulation and plant hormone signal transduction pathways. Phylogenetic analysis showed that MsARF was divided into four clades: I, II, III, and IV, each containing 52, 13, 7, and 9 genes, respectively. The promoter region of the MsARF gene contained stress-related elements, such as ABRE, TC-rich repeats, MBS, LTR. Proteins encoded by 50 ARF genes were localized in the nucleus without guide peptides, signal peptides, or transmembrane structures, indicating that most MsARF genes are not secreted or transported but only function in the nucleus. Protein structure analysis revealed that the secondary and tertiary structures of the 81 MsARF genes varied. Chromosomal localization analysis showed 81 MsARF genes were unevenly distributed on 25 chromosomes, with the highest distribution on chromosome 5. Furthermore, 14 segmental duplications and two sets of tandem repeats were identified. Expression analysis indicated that the MsARF was differentially expressed in different tissues and under various abiotic stressors. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression profiles of 23 MsARF genes were specific to abiotic stresses such as drought, salt, high temperature, and low temperature, as well as tissue-specific and closely related to the duration of stress. CONCLUSION This study identified MsARF in the cultivated alfalfa genome based on the autotetraploid level, which GO, KEGG analysis, phylogenetic analysis, sequence characteristics, and expression pattern analysis further confirmed. Together, these findings provide clues for further investigation of MsARF functional verification and molecular breeding of alfalfa. This study provides a novel approach to systematically identify and characterize ARF transcription factors in autotetraploid cultivated alfalfa, revealing 23 MsARF genes significantly involved in response to various stresses.
Collapse
Affiliation(s)
- Fenqi Chen
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Xue Ha
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
31
|
Gundaraniya SA, Ambalam PS, Budhwar R, Padhiyar SM, Tomar RS. Transcriptome analysis provides insights into the stress response in cultivated peanut (Arachis hypogaea L.) subjected to drought-stress. Mol Biol Rep 2023; 50:6691-6701. [PMID: 37378750 DOI: 10.1007/s11033-023-08563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) is one of the valuable oilseed crops grown in drought-prone areas worldwide. Drought severely limits peanut production and productivity significantly. METHOD AND RESULTS In order to decipher the drought tolerance mechanism in peanut under drought stress, RNA sequencing was performed in TAG - 24 (drought tolerant genotype) and JL-24 (drought susceptible genotype). Approximately 51 million raw reads were generated from four different libraries of two genotypes subjected to drought stress exerted by 20% PEG 6000 stress and control conditions, of which ~ 41 million (80.87%) filtered reads were mapped to the Arachis hypogaea L. reference genome. The transcriptome analysis detected 1,629 differentially expressed genes (DEGs), 186 genes encoding transcription factors (TFs) and 30,199 SSR among the identified DEGs. Among the differentially expressed TF encoding genes, the highest number of genes were WRKY followed by bZIP, C2H2, and MYB during drought stress. The comparative analysis between the two genotypes revealed that TAG-24 exhibits activation of certain key genes and transcriptional factors that are involved in essential biological processes. Specifically, TAG-24 showed activation of genes involved in the plant hormone signaling pathway such as PYL9, Auxin response receptor gene, and ABA. Additionally, genes related to water deprivation such as LEA protein and those involved in combating oxidative damage such as Glutathione reductase were also found to be activated in TAG-24. CONCLUSION This genome-wide transcription map, therefore, provides a valuable tool for future transcript profiling under drought stress and enriches the genetic resources available for this important oilseed crop.
Collapse
Affiliation(s)
- Srutiben A Gundaraniya
- Department of Biosciences, Saurashtra University Rajkot, Christ Campus, 360005, Vidya Niketan, Gujarat, India
| | - Padma S Ambalam
- Christ Campus, Saurashtra University, 360005, Vidya Niketan, Rajkot, Gujarat, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, India
| | - Shital M Padhiyar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India.
| |
Collapse
|
32
|
El Mamoun I, Bouzroud S, Zouine M, Smouni A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2804. [PMID: 37570958 PMCID: PMC10420960 DOI: 10.3390/plants12152804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.
Collapse
Affiliation(s)
- Ibtihaj El Mamoun
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Sarah Bouzroud
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| |
Collapse
|
33
|
Qi Y, Wang L, Li W, Dang Z, Xie Y, Zhao W, Zhao L, Li W, Yang C, Xu C, Zhang J. Genome-Wide Identification and Expression Analysis of Auxin Response Factor Gene Family in Linum usitatissimum. Int J Mol Sci 2023; 24:11006. [PMID: 37446183 DOI: 10.3390/ijms241311006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Auxin response factors (ARFs) are critical components of the auxin signaling pathway, and are involved in diverse plant biological processes. However, ARF genes have not been investigated in flax (Linum usitatissimum L.), an important oilseed and fiber crop. In this study, we comprehensively analyzed the ARF gene family and identified 33 LuARF genes unevenly distributed on the 13 chromosomes of Longya-10, an oil-use flax variety. Detailed analysis revealed wide variation among the ARF family members and predicted nuclear localization for all proteins. Nineteen LuARFs contained a complete ARF structure, including DBD, MR, and CTD, whereas the other fourteen lacked the CTD. Phylogenetic analysis grouped the LuARFs into four (I-V) clades. Combined with sequence analysis, the LuARFs from the same clade showed structural conservation, implying functional redundancy. Duplication analysis identified twenty-seven whole-genome-duplicated LuARF genes and four tandem-duplicated LuARF genes. These duplicated gene pairs' Ka/Ks ratios suggested a strong purifying selection pressure on the LuARF genes. Collinearity analysis revealed that about half of the LuARF genes had homologs in other species, indicating a relatively conserved nature of the ARFs. The promoter analysis identified numerous hormone- and stress-related elements, and the qRT-PCR experiment revealed that all LuARF genes were responsive to phytohormone (IAA, GA3, and NAA) and stress (PEG, NaCl, cold, and heat) treatments. Finally, expression profiling of LuARF genes in different tissues by qRT-PCR indicated their specific functions in stem or capsule growth. Thus, our findings suggest the potential functions of LuARFs in flax growth and response to an exogenous stimulus, providing a basis for further functional studies on these genes.
Collapse
Affiliation(s)
- Yanni Qi
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Limin Wang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wenjuan Li
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zhao Dang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yaping Xie
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wei Zhao
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Lirong Zhao
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Wen Li
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chenxi Yang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chenmeng Xu
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Jianping Zhang
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
34
|
Kaur S, Seem K, Kumar S, Kaundal R, Mohapatra T. Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Indica Rice Cultivars under Reproductive-Stage Drought. Genes (Basel) 2023; 14:1390. [PMID: 37510295 PMCID: PMC10379292 DOI: 10.3390/genes14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. The root of a plant is primarily responsible to perceive drought stress and acquire sufficient water for the survival/optimal growth of the plant under extreme climatic conditions. Earlier studies reported the involvement/important roles of microRNAs (miRNAs) in plants' responses to environmental/abiotic stresses. A number (738) of miRNAs is known to be expressed in different tissues under varying environmental conditions in rice, but our understanding of the role, mode of action, and target genes of the miRNAs are still elusive. Using contrasting rice [IR-64 (reproductive-stage drought sensitive) and N-22 (drought-tolerant)] cultivars, imposed with terminal (reproductive-stage) drought stress, we demonstrate differential expression of 270 known and 91 novel miRNAs in roots of the contrasting rice cultivars in response to the stress. Among the known miRNAs, osamiR812, osamiR166, osamiR156, osamiR167, and osamiR396 were the most differentially expressed miRNAs between the rice cultivars. In the root of N-22, 18 known and 12 novel miRNAs were observed to be exclusively expressed, while only two known (zero novels) miRNAs were exclusively expressed in the roots of IR-64. The majority of the target gene(s) of the miRNAs were drought-responsive transcription factors playing important roles in flower, grain development, auxin signaling, root development, and phytohormone-crosstalk. The novel miRNAs identified in this study may serve as good candidates for the genetic improvement of rice for terminal drought stress towards developing climate-smart rice for sustainable food production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
35
|
Nidumolu LCM, Lorilla KM, Chakravarty I, Uhde-Stone C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112117. [PMID: 37299096 DOI: 10.3390/plants12112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max) is an important agricultural crop, but nutrient deficiencies frequently limit soybean production. While research has advanced our understanding of plant responses to long-term nutrient deficiencies, less is known about the signaling pathways and immediate responses to certain nutrient deficiencies, such as Pi and Fe deficiencies. Recent studies have shown that sucrose acts as a long-distance signal that is sent in increased concentrations from the shoot to the root in response to various nutrient deficiencies. Here, we mimicked nutrient deficiency-induced sucrose signaling by adding sucrose directly to the roots. To unravel transcriptomic responses to sucrose acting as a signal, we performed Illumina RNA-sequencing of soybean roots treated with sucrose for 20 min and 40 min, compared to non-sucrose-treated controls. We obtained a total of 260 million paired-end reads, mapping to 61,675 soybean genes, some of which are novel (not yet annotated) transcripts. Of these, 358 genes were upregulated after 20 min, and 2416 were upregulated after 40 min of sucrose exposure. GO (gene ontology) analysis revealed a high proportion of sucrose-induced genes involved in signal transduction, particularly hormone, ROS (reactive oxygen species), and calcium signaling, in addition to regulation of transcription. In addition, GO enrichment analysis indicates that sucrose triggers crosstalk between biotic and abiotic stress responses.
Collapse
Affiliation(s)
| | - Kristina Mae Lorilla
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Indrani Chakravarty
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| |
Collapse
|
36
|
Bitarishvili S, Dikarev A, Kazakova E, Bondarenko E, Prazyan A, Makarenko E, Babina D, Podobed M, Geras'kin S. Growth, antioxidant system, and phytohormonal status of barley cultivars contrasting in cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59749-59764. [PMID: 37014597 DOI: 10.1007/s11356-023-26523-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Cadmium leads to disturbance of plant growth, and the manifestation of toxicity can vary greatly in different genotypes within one species. In this work we studied the effect of Cd on growth, antioxidant enzyme activity, and phytohormonal status of four barley cultivars (cvs. Simfoniya, Mestnyj, Ca 220702, Malva). According to the earlier study on seedlings, these cultivars were contrast in tolerance to Cd: Simfoniya and Mestnyj are Cd-tolerant and Ca 220702 and Malva are Cd-sensitive. The results presented showed that barley plants accumulated more Cd in straw than in grain. Tolerant cultivars accumulated significantly less Cd in grain than sensitive ones. The leaf area appeared to be a growth parameter susceptible to Cd treatment. The significant differences in leaf area values depended on Cd contamination and were not associated with cultivars' tolerance. Tolerance of cultivars was contingent on the activity of the antioxidant defense system. Indeed, activity of enzymes decreased in sensitive cultivars Ca 220702 and Malva under Cd stress. In contrast, in tolerant cultivars, increased activity of guaiacol peroxidase was revealed. The concentrations of abscisic acid and salicylic acid mostly increased as a result of Cd treatment, while the concentrations of auxins and trans-zeatin either decreased or did not change. The results obtained indicate that antioxidant enzymes and phytohormones play an important role in the response of barley plants to elevated concentrations of cadmium; however, these parameters are not able to explain the differentiation of barley cultivars in terms of tolerance to cadmium at the seedling stage. Therefore, barley intraspecific polymorphism for cadmium resistance is determined by the interplay of antioxidant enzymes, phytohormones, and other factors that require further elucidation.
Collapse
Affiliation(s)
- Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation.
| | - Alexey Dikarev
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Alexandr Prazyan
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | | - Darya Babina
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - Marina Podobed
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | | |
Collapse
|
37
|
Ramazan S, Jan N, John R. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature. BMC PLANT BIOLOGY 2023; 23:183. [PMID: 37020183 PMCID: PMC10074880 DOI: 10.1186/s12870-023-04198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Low temperature (LT) stress is one of the major environmental stress factors affecting the growth and yield of maize (Zea mays L.). Hence, it is important to unravel the molecular mechanisms behind LT stress tolerance to improve molecular breeding in LT tolerant genotypes. In the present study, two maize genotypes viz. Gurez local from Kashmir Himalaya and tropical grown GM6, were dissected for their LT stress response in terms of accumulation of differentially regulated proteins (DRPs). Leaf proteome analysis at three-leaf stage of maize seedlings subjected to LT stress of 6 °C for a total of 12 h duration was performed using two dimensional gel electrophoresis (2D-PAGE) followed by subsequent identification of the proteins involved. RESULTS After MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) and bioinformatics analysis, 19 proteins were successfully identified in Gurez local, while as 10 proteins were found to get successful identification in GM6. The interesting observations from the present investigation is the identification of three novel proteins viz. threonine dehydratase biosynthetic chloroplastic, thylakoidal processing peptidase 1 chloroplastic, and nodulin-like protein, whose role in abiotic stress tolerance, in general, and LT stress, in particular, has not been reported so far. It is important to highlight here that most of LT responsive proteins including the three novel proteins were identified from Gurez local only, owing to its exceptional LT tolerance. From the protein profiles, obtained in both genotypes immediately after LT stress perception, it was inferred that stress responsive protein accumulation and their expression fashion help the Gurez local in seedling establishment and withstand unfavorable conditions as compared to GM6. This was inferred from the findings of pathway enrichment analysis like regulation of seed growth, timing of floral transition, lipid glycosylation, and aspartate family amino acid catabolic processes, besides other key stress defense mechanisms. However, in GM6, metabolic pathways enriched were found to be involved in more general processes including cell cycle DNA replication and regulation of phenylpropanoid metabolism. Furthermore, majority of the qRT-PCR results of the selected proteins demonstrated positive correlation between protein levels and transcript abundance, thereby strengthening our findings. CONCLUSIONS In conclusion, our findings reported majority of the identified proteins in Gurez local exhibiting up-regulated pattern under LT stress as compared to GM6. Furthermore, three novel proteins induced by LT stress were found in Gurez local, requiring further functional validation. Therefore, our results offer more insights for elucidating the molecular networks mediating LT stress tolerance in maize.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Nelofer Jan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India.
| |
Collapse
|
38
|
Terletskaya NV, Turzhanova AS, Khapilina ON, Zhumagul MZ, Meduntseva ND, Kudrina NO, Korbozova NK, Kubentayev SA, Kalendar R. Genetic Diversity in Natural Populations of Rhodiola Species of Different Adaptation Strategies. Genes (Basel) 2023; 14:794. [PMID: 37107552 PMCID: PMC10137911 DOI: 10.3390/genes14040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Representatives of the Crassulaceae family's genus Rhodiola are succulents, making them distinctive in a changing environment. One of the most significant tools for analyzing plant resources, including numerous genetic processes in wild populations, is the analysis of molecular genetic polymorphism. This work aimed to look at the polymorphisms of allelic variations of the superoxide dismutase (SOD) and auxin response factor (ARF) gene families, as well as the genetic diversity of five Rhodiola species, using the retrotransposons-based fingerprinting approach. The multi-locus exon-primed intron-crossing (EPIC-PCR) profiling approach was used to examine allelic variations in the SOD and ARF gene families. We implemented the inter-primer binding site (iPBS) PCR amplification technique for genome profiling, which demonstrated a significant level of polymorphism in the Rhodiola samples studied. Natural populations of Rhodiola species have a great capacity for adaptation to unfavorable environmental influences. The genetic variety of wild populations of Rhodiola species leads to their improved tolerance of opposing environmental circumstances and species evolutionary divergence based on the diversity of reproductive systems.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Ainur S. Turzhanova
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Oxana N. Khapilina
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Moldir Z. Zhumagul
- Astana International University, Kabanbai Batyr 8, Astana 010000, Kazakhstan;
- Astana Botanical Garden, Orunbur 16, Astana 010000, Kazakhstan;
| | - Nataliya D. Meduntseva
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Nataliya O. Kudrina
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Nazym K. Korbozova
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | | | - Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
39
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
40
|
Maksoud SA, Gad KI, Hamed EYM. The potentiality of biostimulant (Lawsonia inermis L.) on some morpho-physiological, biochemical traits, productivity and grain quality of Triticum aestivum L. BMC PLANT BIOLOGY 2023; 23:95. [PMID: 36782121 PMCID: PMC9926747 DOI: 10.1186/s12870-023-04083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In conformity with the international trend to substitute the artificial agro-chemicals by natural products to improve growth and productivity of crops, there is a necessity to focus on the environment sustainable and eco-friendly resources to increase crops productivity per unit area. One of these resources is the use of biostimulants. The aim of this study is to allow the vertical expansion of wheat crop by improving its growth and productivity per unit area as well as enhancing its grain quality using henna leaf extract as a biostimulant. RESULTS Field study was conducted to evaluate the potentiality of different doses of henna leaf extract (HLE) for improving the performance of wheat plants (Triticum aestivum L.) at three development stages. Results revealed that the response was dose dependent hence both 0.5 and 1.0 g/L doses significantly enhanced the growth of shoot and root systems, biochemical traits, yield and yield related components with being 1.0 g/L the most effective one. Furthermore, 1.0 g/L HLE markedly enhanced the quality of the yielded grains as revealed by increasing the content of soluble sugars (23%), starch (19%), gluten (50%), soluble proteins (37%), amylase activity (27%), total phenolics, flavonoids and tannins (67, 87 and 23%, respectively) as well as some elements including Ca (184%), Na and Fe (10%). Also, HPLC analysis of grains revealed that 1.0 g/L dose significantly increased the level of different phytohormones, soluble sugars and flavonoids (quercetin, resveratrol and catechin). CONCLUSION Application of Henna (Lawsonia inermis) leaf extract at 1.0 g/L dose as a combination of seed priming and foliar spray can be recommended as a nonpolluting, inexpensive promising biostimulant, it can effectively enhance wheat growth, biochemical traits and productivity as well as improving the quality of the yielded grains.
Collapse
Affiliation(s)
- Salwa A Maksoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Khaled I Gad
- Wheat Department, Agricultural Research Center, Giza, Egypt
| | - Eman Y M Hamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
41
|
Roșca M, Mihalache G, Stoleru V. Tomato responses to salinity stress: From morphological traits to genetic changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1118383. [PMID: 36909434 PMCID: PMC10000760 DOI: 10.3389/fpls.2023.1118383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Tomato is an essential annual crop providing human food worldwide. It is estimated that by the year 2050 more than 50% of the arable land will become saline and, in this respect, in recent years, researchers have focused their attention on studying how tomato plants behave under various saline conditions. Plenty of research papers are available regarding the effects of salinity on tomato plant growth and development, that provide information on the behavior of different cultivars under various salt concentrations, or experimental protocols analyzing various parameters. This review gives a synthetic insight of the recent scientific advances relevant into the effects of salinity on the morphological, physiological, biochemical, yield, fruit quality parameters, and on gene expression of tomato plants. Notably, the works that assessed the salinity effects on tomatoes were firstly identified in Scopus, PubMed, and Web of Science databases, followed by their sifter according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and with an emphasis on their results. The assessment of the selected studies pointed out that salinity is one of the factors significantly affecting tomato growth in all stages of plant development. Therefore, more research to find solutions to increase the tolerance of tomato plants to salinity stress is needed. Furthermore, the findings reported in this review are helpful to select, and apply appropriate cropping practices to sustain tomato market demand in a scenario of increasing salinity in arable lands due to soil water deficit, use of low-quality water in farming and intensive agronomic practices.
Collapse
|
42
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
43
|
Kruasuwan W, Lohmaneeratana K, Munnoch JT, Vongsangnak W, Jantrasuriyarat C, Hoskisson PA, Thamchaipenet A. Transcriptome Landscapes of Salt-Susceptible Rice Cultivar IR29 Associated with a Plant Growth Promoting Endophytic Streptomyces. RICE (NEW YORK, N.Y.) 2023; 16:6. [PMID: 36739313 PMCID: PMC9899303 DOI: 10.1186/s12284-023-00622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting endophytic (PGPE) actinomycetes have been known to enhance plant growth and mitigate plant from abiotic stresses via their PGP-traits. In this study, PGPE Streptomyces sp. GKU 895 promoted growth and alleviated salt tolerance of salt-susceptible rice cultivar IR29 by augmentation of plant weight and declined ROS after irrigation with 150 mM NaCl in a pot experiment. Transcriptome analysis of IR29 exposed to the combination of strain GKU 895 and salinity demonstrated up and downregulated differentially expressed genes (DEGs) classified by gene ontology and plant reactome. Streptomyces sp. GKU 895 induced changes in expression of rice genes including transcription factors under salt treatment which involved in growth and development, photosynthesis, plant hormones, ROS scavenging, ion transport and homeostasis, and plant-microbe interactions regarding pathogenesis- and symbiosis-related proteins. Taken together, these data demonstrate that PGPE Streptomyces sp. GKU 895 colonized and enhanced growth of rice IR29 and triggered salt tolerance phenotype. Our findings suggest that utilisation of beneficial endophytes in the saline fields could allow for the use of such marginal soils for growing rice and possibly other crops.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Karan Lohmaneeratana
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - John T Munnoch
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Sciences, Kasetsart University, Bangkok, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
44
|
Sacco Botto C, Matić S, Moine A, Chitarra W, Nerva L, D’Errico C, Pagliarani C, Noris E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int J Mol Sci 2023; 24:2893. [PMID: 36769211 PMCID: PMC9918285 DOI: 10.3390/ijms24032893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.
Collapse
Affiliation(s)
- Camilla Sacco Botto
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| |
Collapse
|
45
|
Singh D, Debnath P, Sane AP, Sane VA. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:330-340. [PMID: 36669348 DOI: 10.1016/j.plaphy.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress is one of the biggest problems in agriculture, which adversely affects crop productivity. Plants adopt several strategies to overcome osmotic stresses that include transcriptional reprogramming and activation of stress responses mediated by different transcription factors and phytohormones. We have identified a WRKY transcription factor from tomato, SlWRKY23, which is induced by mannitol and NaCl treatment. Over-expression of SlWRKY23 in transgenic Arabidopsis enhances osmotic stress tolerance to mannitol and NaCl and affects root growth and lateral root number. Transgenic Arabidopsis over-expressing SlWRKY23 showed reduced electrolyte leakage and higher relative water content than Col-0 plants upon mannitol and NaCl treatment. These lines also showed better membrane integrity with lower MDA content and higher proline content than Col-0. Responses to mannitol were governed by auxin as treatment with TIBA (auxin transport inhibitor) negatively affected the osmotic tolerance in transgenic lines by inhibiting lateral root growth. Similarly, responses to NaCl were controlled by ethylene as treatment with AgNO3 (ethylene perception inhibitor) inhibited the stress response to NaCl by suppressing primary and lateral root growth. The study shows that SlWRKY23, a osmotic stress inducible gene in tomato, imparts tolerance to mannitol and NaCl stress through interaction of the auxin and ethylene pathways.
Collapse
Affiliation(s)
- Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pratima Debnath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
46
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
47
|
Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24010740. [PMID: 36614182 PMCID: PMC9820880 DOI: 10.3390/ijms24010740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13-17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18-20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues.
Collapse
|
48
|
Mazalmazraei T, Nejadsadeghi L, Mehdi Khanlou K, Ahmadi DN. Comparative analysis of differentially expressed miRNAs in leaves of three sugarcanes (Saacharum officinarum L.) cultivars during salinity stress. Mol Biol Rep 2023; 50:485-492. [PMID: 36350419 DOI: 10.1007/s11033-022-07349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sugarcane is an important industrial plant cultivated mostlyin the arid and semiarid regions. Due to climate change and anthropogenic activities, the sugarcane fieldsare prone to be damagedas a result of salt deposition. The consequence of such phenomena is turning to become a major thread in sugarcane cultivation. To address this issue, the identification of salinity tolerant cultivars would be a suitable strategy to minimize yield loss in the area. It is well known thatthe expression of abiotic stress-responsive genes including noncoding microRNAs (miRNAs) and their codingtargetscould lead to enhancement of stress tolerance in crops. Therefore, the expression study of those noncoding and coding genes under stress conditions is an appropriate approach to screen the tolerant cultivars. In addition, the examination of the expression of miRNA's target genes could provide deeper insight into the molecular stress mechanism and facilitate the identification of tolerant cultivars. METHODS AND RESULTS We aimedto assess the expression of nine candidate miRNAsand their corresponding targeted genes among the studied sugarcane cultivars under high salinity conditions, leading to the identification of the salt-tolerant cultivar. To achieve our goal, a two-factorial experiment with three sugarcane cultivars (CP-48, CP-57, CP-69) and two salinity levels (0 and 8 ds/m) was conducted. The result indicated significant differences in expression with in miRNAs and also their target genes. The highest reduction of miRNAs expression occurred in miR160 while the lowest oneappeared in miR1432. The data also indicated that the higher and the lowest expression of targeted genes occurred in miR160 and miR393 respectively. Among studied cultivars, the CP-57 showed poor performance while CP-69 expresses a superior tolerance to salt stress. CONCLUSIONS Taken together, these results suggested that the monitoring of microRNA expressioncould provide a new approach forthe screening of well-adapted cultivars under salt conditions. Such an approach would be the appropriate solutionto combat plant stress inhigh salinity region/soil. Our result indicated that the miR160 generates sugarcane tolerant to salt stress, can be potentially be used as a biomarker to salt stress.
Collapse
Affiliation(s)
- Tofigh Mazalmazraei
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Leila Nejadsadeghi
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Khosro Mehdi Khanlou
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Daryoosh Nabati Ahmadi
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
49
|
Du W, Lu Y, Li Q, Luo S, Shen S, Li N, Chen X. TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:1083409. [PMID: 36523629 PMCID: PMC9745157 DOI: 10.3389/fpls.2022.1083409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.
Collapse
Affiliation(s)
- Wenchao Du
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Lu
- Hebei University Characteristic sericulture Application Technology Research and Development Center, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Qiang Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
50
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|